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ABSTRACT

~ SINGLE-SERVER QUEUEING SYSTEMS WITH FEEDBACK
by
Gilles Roland Davignon

Chairman: Ralph L. Disney

This investigation is concerned with queueing systems in which
units mayireturn to the waiting lines for anothér period of service.
Units of different types arrive to the system according to a Markov
renewal process. The service process is renewal-type where the prdb—
ability distribution of service times depends only on the type of
unit. After a service completion, the unit either leaves the system
or feeds back at the end of the lines according to a stochastic rule.
In the case where there are several types of units present at the same
time in the system, the service discipline uses priority rules.

The objective throughout the dissertation is the characteriza-
tion of the pperating processes: the queue length, the busy cycle,
the output process and the departure process. Under statidnary con-
ditions, results are of two kinds. In some cases, there exists an
equivalence between queueing systems with feedback and queues without
feedback. 1In the case of no such equivalence, queueing systems with
feedback are modelled directly.

Another objective is to relate queueing systems with feedback
to some applications. At present, queueing systems with feedback are
used to mo&el computer time-sharing systems. Other applications can
be found within health care systems and in the manufacturing

industries.



"How can it be that mathematics, being after
all a product of human thought independent

of experience, is so admirably adapted to the
object of reality?"

Albert_Einstein
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CHAPTER 1
INTRODUCTION

This dissertation explores the characterization of a particular
queueing system. In the first section, the framework is established
together with the motivation leading to the kind of analysis used.

Then, section 1.2 states the problem and enumerates the random processes
to be studied. A literature survey follows, establishing the origi-
nality of the work. In section 1.4, the main results are stated

in relation to the ones already known. The chapter ends with a word

on the organization used throughout.

1.1. BACKGROUND REMARKS

A queueing network is a collection of service facilities,
decomposition switches and recomposition nodes,.interrelated by a
set of paths which direct the flow of units. The arrivals of units
to the network are subjected to random variations. In general, they
form a random process. Services are also subjected to random varia—
tions. Again, the sequence of service time in each facility is repre-
sented by a random process. The behavior of decomposition switches
and recomposition nodes can be probabilistic.

Ihe main purpose of studying queueing networks is to characterize

their behavior through operating processes. There are basically four



operating processes: the queue length process, the departure process,
the busy cycle process and the waiting time process. From these
operating processes, one is able to obtain operating measures such
as means and variances.

In the analysis of queueing networks, there are two basic
approaches. On one hand, the network is considered as one entity.

The object is to characterize the behavior of units through the dif-
ferent parts of the network (Bene$ [1962a,1962b]), On the other hand,
the network is first broken down and separated into subnetworks and
then each part is studied independently with the understanding that a
depafture stream from a subnetwork becomes the input stream to another
subnetwork. To carry out this analysis, through separation, one

needs to characterize explicitly the departure process from every
subnetwork.

Basically, the separation of a queueing network generates three
classes of problems. The first onme is a classical queueing theory
problem: given the arrival process and the service process, one
studies the operating processes of each service facility (Takacs [1962],
Saaty [1961], Cohen [1969]). The second group of problems is related
to the stochastic decomposition of a stream into several other streams;
here one characterizes the decomposed processes (Cinlar [1965]). The
third class of problems analyzes the recomposition of streams; in the
case where the streams are independent Markov renewal processes and
the recomposition takes the form of a superposition, the problem has

been fully analyzed by Cherry [1972].



A particular queueing network or subnetwork obtained by a first
separation could be a single server queueing system with a feedback
mechanism. In such a subnetwork, units to be served wait in front
of the server and are given service one by one according to a service
discipline. After being served, units encounter the feedback mechanism,
which either recycles the unit for another service or discharges it
into the departure stream. The feedback mechanism is considered to be

a stochastic decomposition switch. Figure 1.1 illustrates the

situation.
feedback process
arrival input queues server
process , Process , process p process

. feedback mechanism
superposition node

Figure 1.1. A queueing system with feedback

There are several levels of complexity among feedback mechanisms.
The simplest one is a Bernoulli switch, where the probability for a
unit to receive another service is independent of any other event.
The next level of difficulty is a.Markovian switch, where the prob-
ability for a unit to feed back or not depends only on whether or not
the previous unit fed back or not. Other levels of complexity are
such that the decision whether or not to feed back a particular unit is
based on the increments in the queue length, the amount of service
the unit has just received and possibly the type of unit being switched.
Possibly, there are two ways to analyze queueing systems with

feedback. On one hand, there might exist an "equivalence" between



a queueing system with feedback and a queue without feedback. In

this case, one could use known results to analyze the system completely.
This possibility will be‘fqlly explored in chapter 2. On the other
hand, one could analyze the queueing system with feedback directly.

This approach will be taken in chapter 3.

The main objective throughout this dissertation is the charac-
terization of the operaﬁing processes of a queueing system with feed-
back. This objective is motivated mainly from a queueing network
point of view. If one separates a network into subnetworks, one
needs to characterize the flow in every subnetwork in order to say
something about the flow throughout the network.

A secondary objective is to relate queueing systems with feed-
back to some applications. At present, queueing systems with feedback
are often used to model computer time-sharing systems. Other applica-
tions can be found within health care systems and in the manufacturing

industries.

1.2. DESCRIPTION OF THE PROBLEM

Figure 1.1 illustrates the flow of units through a queueing
system with feedback and the following discussion refers to that
figure. A formal description of the problem will be given in section
2,1,

The arrival process is assumed to be a Markov renewal process

over a finite state space. Two particular cases of this arrival process



will be considered: the case when there is only one type of unit
and the case when the arrival process is composéd of independent
Poisson streams.

The sequence of service times is assumed to form a renewal
process for each typé of unit. This will be defined to form a renewal-
type process. Moreover, the times to perform services are independent
of any other event.

Units are given service one by one. Upon completion of/service,
units join the output stream. While a unit is in the output stream,
one would refer to it as an output. At feedback mechanism B, a decision
is made whether or not to feed back a particular output. This decision
is stochastic in nature and depends on the increments in the queue
length, the amount of service the unit has just received, the type of
unit and whether the previous output had fed back or not. If an output
does feed back, it joins the feedback stream and immediately reenters
the queues at recombosition node A. If the output does not feed back,
it joins the departure stream and leaves the sys;em forever. When
the output leaves the system, it is referred to as a departure.

The feedback is assumed to be instantaneous; that is, there is
no delay betwéen the decision to feed back at B and the reentry at A.
Moreover, since service times are considered to form a renewal-type
process, it follows that the output epochs are convenient places to

embed the random processes describing the behavior of the system.



This study is concerned with the characterization of the flow
of units, under stationary conditions, through the quéueing system
described above. More specifically, the output process is fully
analyzed. From the output process, one studies the queue length process,
the departure process and the feedback processes. The busy cycle
process is also investigated. The waiting time process presents special

difficulties, which are discussed in section 2.4.

1.3, LITERATURE REVIEW

The concept of a queue with feedback was introduced by Takacs
[1963]. Queueing systems with feedback were also treated earlier, but
in very special cases. This was the case for Finch [1959] and Jackson
[1957,1963]. 1In fact, published research on queues with feedback has
been very limited in the area of queueing theory. Models of computer
time-sharing systems are applications where studies of queues with
feedback have genera&ed interest in the last eight years.

Early studies of queueing networks which include feedback seem
to be those of Jackson [1957,1963]. Considering a finite number of
service facilities, arrivals are assumed to be Poisson streams, with
possible arrivals to each service facility from outside the network.
The service times are exponentially distributed with parameter ug for
server i. All waiting capacities are infinite. When a unit completes
its service at service facility i, it is sent to service facility j
with probability pij independent of any history of the network, For

i=j, the service facility i can be considered a particular case of our



queueing system with Bernoulli feedback. 1In his paper, Jackson [1963]
considers the arrival parameters and service parameters of each service
facility to depend on the state of that server. It is shown that the
state probabilities for the network can be written as the product of
the state probabilities for each service facility as though each
service facility had Poisson arrivals and exponential service times.
This is not surprising, due to Burke's theorem (Burke [1956]) and the
superposition and decomposition of Poisson streams. In this model,

the forgetfulness property of the exponential distribution plays an
important role.

Finch [1959] describes cyclic queues in which units pass in
turn through a series of servers to return to the initial server.
Moreover, there is an upper limit on the number of units in the system
at any time. The concept of féedback is related to this system in
two different ways. First, there is the terminal feedback; that is,
when a unit completes service at the last server there is a probability
pj that the unit will return to the queué at the j-th server. Second,
there is the service feedback; that is, on completion of a service at
station j, there is a probability pj that the unit will return to the
queue at the j-ﬁh server. In the analysis of these fwo kinds of
feedback, Finch assumes Poisson arrivals and exponential service times.
Under stationary conditions, he finds the joint probability of the number
of units at every service stage. The fundamental assumption of his
paper is that the pj's are independent of the state of thevsystem

and of any event.



A somewhat more theoretical development is made by Takacs [1963],
who considers a general probability distribution for service times and
Poisson arrivals. Basically, the model considered by Takacs islfhe one
shown in figure 1.1. Again, it is assumed that after being served,
each unit either feeds back with probability p or departs with prob-
ability 1-p. Moreover, these events are independent of any event
involved. In his paper, Takacs finds the stationary distribution of
the queue length and the conditions under which such a distribution
exists.

In the area of computer systems, several models have been
proposed, two of which are particular cases of queueing systeﬁs with
feedback: round-robin models and foregound-background models.

McKinney [1969], Chang [1970] and more recently Wyszewianski [1974]
reviewed in detail the literature concerning these models. It suffices

to glance through the Journal of ACM from 1971 to 1973 to be convinced

that these models appear in literature with increasing frequency. An

extended discussion of them will be presented in section 4.6.

1.4. MAIN RESULTS

The literature review of the preceding section raises two
considerations. First, published reports on queueing systems with a
feedback mechanism are rare outside of the computing literature. Second,
the structuring models needed to characterize operating processes of

queueing systems with feedback are also nonexistent. Therefore, this



dissertation proposes a unifying structure that can be used to analyze
queueing systems with feedback. Moreover, the structure can be used
to treat priority queues, queueing systems with complex feedback mech-
anism and more importantly, departure processes from these queueing
systems.

Necessary and sufficient conditions are found for the existence
of an "equivalent" single-server queueing system without feedback.
Moreover, it is found that there is only a limited number of queueing
systems with feedback for which there are such equivalent systems.

The queueing model studied by Takacs [1963] is one such system.

The model for queueing systems with feedback developed in this
dissertation is a generalization of both the arrival process and the
feedback mechanism of the model studied by Takacs [1963]. Moreover,
by particularizing our results, we obtain Takacs results and some new
ones: the busy cycle process and the output process, as well as the
departure process.

The importance of studying departure processes has been stressed
in section 1.1. One may recall that the characterization of the depar-
ture process from queueing systems is useful in the study of queueing
networks. Moreover, it is found that the characterization obtained
here is a generalization of results published by Vlach [1969].

This dissertation presents also a model for priority queues
when the arrival process is composed of independent Poisson streams.
Hence, by particularizing the model studied here to the no feedback
case, we obtain results previously found by Miller [1960]. Furthermore,
our model gives a characterization of the departure process for priority

queues, which appears to be new.
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The structure of the feedback mechanism in our model is such
that it can be particularized to study some computer time-sharing
systems. Among these models for computer time-sharing systems there are
the round-robin feedback studied by Coffman [1968] and the foreground-
background feedback (McKinney tl969]). From the formulation preseﬁted

here, we obtain the same results previously found by Coffman and some

new ones.

1.5, ORGANIZATION

This dissertation is organized into five chapters and one
Appendix. Each chapter is divided into sections. In oyder to keep
track of chapters and sections, a two-part numbering scheme n.m is
used throughout where n indicates the chapter and m the section. The
Appendix is divided into two sections, labelled A.l1 and A.2. Defini-
tions, lemmas, propositions, remarks and theorems are numbered consecu-
tively in eagh chapter and the Appendix. The numbering scheme n.p
where n indicates the chapter or the Appendix and p the entity in ques-
tion is used. Figures are also numbered consecutively in each chapter
and the Appendix with the same numbering scheme. Equations, which
appear solely in the statement of a theorem or in its proof, are
referenced, whenever needed, by a number enclosed within parentheses,
appearing at the left of the equations. Assumptions for the queueing
model are identified by the capital letters A through H; they are listed
in section 2.1 and are referred to by these letters. Bibliographic

references are indicated by the name of the author followed by the
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year of publication enclosed within brackets. In the case of multiple
publications in a single year, a lower case letter is used as a further
identifier.

In chapter 2, the problem of queueing systems with feedback is
formally introduced. After a description of the assumptions, the ques-
tion of the existence of an "equivalent" system without feedback is
addressed. An illustration of a case where such an equivalence exists
is presented. The problems raised in studying the waiting time process
are discussed. In the last section, the random processes to be studied
further are described.

In chapter 3, analysis of queueing systems with a general feed-
back mechanism is presented. First, the output process is explored
at length and several known processes are studied from it. Second, the
important particular case in which the arrival process is composed of
independent Poisson streams is studied. A method to determine the
stationary conditions is given.

Chapter 4 illustrates the method introduced in the preceding
chapter for two independent Poisson streams. Results concerning the
round-robin feedback and the foreground-background feedback are given.

In chapter 5, a summary of the results obtained on queueing
systems with feedback is presented. Future studies and related topics
are briefly discussed. Finally, the dissertation concludes on the

value of the research.



CHAPTER 2

THE FEEDBACK PROBLEM

This chapter formally introduces the feedback problem encountered
in queueing systems. The concept of feedback that was introduced in
chapter 1 is formally defined together with the arrival process and
the service process. In the first section, basic assumptions about
the queueing model are stated.

Section 2.2 investigates the existence of an equivalent queueing
system without feedback. If is shown that such an equivalence exists
for only a limited number of queueing systems. As will be shown, the
M/G/1 queue with state~dependent feedback is an example for which there
exists an equivalent queueing system without feedback.

A difficult problem in the analysis of queueing system with feed-
back is the waiting time process. In section 2.4, the problem is dis-
cussed for a somewhat restricted case.

The chapter concludes with a summary of the random processes to

be analyzed in chapter 3.

2.1, ASSUMPTIONS OF THE MODEL
For the model to be considered in this dissertétion, arrivals are
distinguished on the basis of their type. Different types of units

receive different services and will be subject to different stochastic

12
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feedback decisions. It is possible, therefore, to consider the queueing
system as having several queues served by a single server, each queue
being formed by units of the same type in the order of their arrival.
For convenience, only a finite number of types is considered. A service
discipline‘is established by using the type of arrivals as a priority
rule.

Figure 1.1 gives an illustration of the flow of units through the
queueing system with feedback. Because of the stochastic switch, the
order of units in the arrival stream is not necessarily the same as in
the input stream. This observation also holds for the departure stream.
Furthermore, the decision whether or not to feed back a unit after its
service suggests the sequence of service completion epochs as convenient
places to embed the operating processes. The basic notations and assump-
tions of the queueing system with feedback follow.

1 2

Units arrive at epochs T.<T <...<Tm<... . If Zm denotes the type

of the m-th arrival and Xm = Tm—Tm represents the time between the

-1

(m~1)-st and the m-th arrivals with T, = 0, then the sequence {Zm,Xm}

0

will be called the arrival process. The different types of arrivals

form the state space of the arrival process.

Assumption A. The arrival process {Zm,Xm} is a Markov renewal process
over the ergodic state space {1,2,...,b}. Moreover, the stationary
transition probability, Ahk(x) = Pr{Zm=k,Xmsx|Zm_l= h}, is such that
' i = b = =
Ahk(x) exists for all x>0, Ahk(0+) = 0 and ZkAhk(w) 1 for h,k=1,2,...,b.
Let the probability distribution of the interarrival time Xm be
b - -
Bh(x) = ZkAhk(x) for h = 1,2,...,b. Furthermore, let A = Ahk(w) be

the transition probabilities of the underlying Markov chain {Zm}.



14

We denote this arrival process by MRb. There are two important
particular cases of the above arrival process. In the case b=1l, there
is only one type of arrival and the arrival process is then renewal (GI).
There is also the case where the arrival process is the superposition
of b independent Poisson streams with parameters Ak(k=1,2,.;.,b); one
denotes this arrival process by Mb'

Let Sn be the length of the n-th service and Z; be the type of
the unit which received the n-th service. The sequence {SnIZé} will be
called the service process.

Assumption B. The service process {SHIZA} is a renewal-type sequence
over the state space {1,2,...b}. Moreover, the stationary probability,
Hr(x) = Pr{Sn§g|Z$=r}, is such that Hr(0+) = 0, Hr(w) =1,

S = E[Snlzr'l=r]<°° and Vr = V[Sn|ZI'1=r]<°° for r = 1,2,...,b.

r

One denotes the service process by G When b=1, the service

b
process becomes renewal (G) and the probability distribution is then
noted by H(-). Let service completions occur at epochs tl<t2<...<tn<... .
{tn} is the sequence of output epochs. One defines gn = g(tn+0) to be
the vector of queue lengths at tn+0, the entry N; denotes the number of
type-c units in the system, excluding the fed back unit whenever the
n-th output feeds back.

Associated with the n-th output, the random variable Yn is defined

as follows:

0 if the n-th output departs;

v if the n-th output feeds back into type-v
\ units (v=1,2,...,b).
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The value that Yn takes is referred to as the output status of the n-th

output. The state of the system at t +0 is ¥ =u and N =i = [1i ],

n n n - c
with the understanding that the queue length of type-c units is Guc+ic.
The sequence {Yn}is called the switching process and is determined by
the following
Assumption C. The output‘status depends only on the previous output
status, the increments in the queue lengths, the amount of service the
unit has just received and the type of unit receiving the service.

Moreover,

/

Pov(j_,r;y) if u=0&i=0,

' = = =4 =1 = "=y l=
Pr{Yn len—l w,N =j,N ;,Sn ysZ) r}=<

e,r; otherwise;
Puv(_a 9Y) ’

\
where e = [jc+6rc-6uc-ic], are such that the following three conditions
are satisfied:
1. puo(g,r;y)>0 for some y>0, uw=0,1,...,b and r=1,2,...,b;
2, for every vector e, there»exists a vector d>e such that poo(g)r;y)>0
for some y>0 and r=1,2,...,b;
3. for every v=1,2,...,b, there exists a vector e 2 0 such that
pov(g,r;y)>0 for some y>0 and r=1,2,...,b.
Condition 1 implies that there is a non-zero probability of a
unit departing. Otherwise, every unit would feed back. If puo(g)r;y)=l
for every u,e,r,y, one obtains queueing systems without feedback.

Without loss of generality, take one vector e, in condition 3, to be
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the zero vector; in which case, conditions 1, 2 and 3 guarantee that
évery state of the process will be visited.

To be explicit, one would use the term staté—dependent feedback

to mean a dependency on the queue lengths gn_ and En . Otherwise,

1
the term feedback would mean that there might be or not a dependency
on these queue lengths.

Concerning the time between service completions and the reentry
of a fed back unit, one states
Assumption D. There is no delay in feeding back a unit.

After a service completion, the next unit to be served is chosen

according to the following service discipline.

Assumption E. Whenever there is no unit in the system just after

the (n—l)—stJOutput, the server remains idle until the first arrival;
which arrival determines the type of unit receiving the n-th service,
Z;. In the case where the system does not become empty after tn—l’
the next unit to be served is chosen from the non-empty queue having
the lowest type index; that is, Z;=r where r=min{c:6uc+ic>0,c=l,2,...,b}.
Among units of the same type, the service discipline is first-come first-
served.

The additional three assumptions are also made.

Assumption F. At epoch tO’ a service completion occurred and the

corresponding unit left the system. Moreover, the initial queue length
probabilities a?e given to be Pr{EOé£|Y0=u} = Guoqo(l).
Assumption G. There exists an infinite capacity for each type of

unit in front of the server.
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Assumption H. There is only one server.
From now on, the queueing system with feedback to be referred
to throughout this dissertation is the model which satisfies the

above assumptions. Therefore, one states

Definition 2.1. An ygblgb/l queue with feedback is a queueing

system satisfying assumptions A through H.

2.2. THE EXISTENCE OF AN EQUIVALENT QUEUEING SYSTEM WITHOUT FEEDBACK

Given the MRb/Gb/l queues with feedback defined in section 2.1,
one would like to study the existence of an equivalent queueing system
without feedback such that operating processes of the former system and
operating processes of the latter system give the same measures. As
will be shown, the existence of such an equivalent queueing system
without feedback depends first on the operating process itself and
second on the particular queueing system with feedback.

If the operating process is the queue length process or the busy
cycle process or the departure process, then this process is independent
of the service discipline stated in assumption E and fed back units may
be given service priority. Hence, the service process and the feedback
mechanism can be joined together to constitute a new service facility.
In this way, oﬁe can produce a queueing system without feedback which
is equivalent to the feedback case with respect to these operating
processes. Two definitions are now in order.

Definition 2.2. A G-server queue is a queueing system such that the

sequence of service times form a renewal process and is independent of

the arrival process.
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Definition 2.3. Two queueing systems are said to be equivalent with

respect to an operating process whenever the operating process of one can

be derived from the operating process of the other.

In the case where there exists an equivalent queueing system»withOut
feedback, we will say that there exists a transformation which converts
a given operating process for a queueing system with feedback into a
corresponding operating process for the equivalent queueing'system
without feedback.

When the operating process is the waiting time process, it does
not appear possible to obtain an equivalent queueing system without
feedback. 1In section 2.4, the waiting time process for a particular
queueing system with feedback will be studied to further illustrate this
point.

In the case where a transformation does exist, it is explicitly
characterized by finding the probability distribution of total service
times. The total service time is the sum of éll service times received
by a single unit. This characterizes the service process of the equivalent
queueing system without feedback. Therefore, one can study operating
processes of this equivalent system and the results can be transformed
back in terms of the service process and the feedback mechanism of the
original queﬁeing system. However, this method does not give any pro-
perties for either the output process or the feedback process. 1In
section 2.3, an illustration is presented and the transformation is

explicitly found.
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To characterize the total service times of the new service facility,
one needs to convolve several service times which depends on the type of
unit being served. In turn, the type of unit might also be an output
status. Furthermore, the output status might depend on the type of unit
being served as well as on the increment in the queue lengths. Therefore,
one can state the following important result.

Therorem 2.4. When the operating process is either the queue length,

the busy cycle or the departure process; any MRb/Gb/l queue with feedback
is equivalent to a G-sever queue without feedback if and only if all of
the following three conditions are satisfied:

1. the service process is independent of the type of unit being

served, that is
Pr{s <x|z'=r} = Pr{s_<x};
n— n n—

2. the feedback mechanism is independent of the type of unit to

be switched, that is
= = =1 =4 S "=
Pf{Yn VIYn—l u, N -1 E)ﬂﬂ l,Sn y,Zn r}

= PriY =v|Y__,=u,N _,=i,N =1,5 =y};

3. either a) the feedback mechanism is independent of yn_ and En’

1
or b) the arrival process is Mb for b>1.

Since one needs heavy notations and tools that have not been

introduced yet to prove theorem 2.4, its proof will be delayed until



20

section 3.2, when the queue length process will be analyzed. The
remainder of this section is devoted to an exploration of some of the
consequences of the theorem.

Corollaryv2.5. In the class of GI/G/1 queues with state-dependent

feedback, only the queueing system with Poisson arrivals can be
transformed.

Proof: Since the arrival process of GI/G/1 queues has only one type
of units, the first two conditions of theorem 2.4 are always

satisfied. From the definition of state-dependent feedback, the feed-
back mechanism is dependent on Nn—l and Nn; therefore the arrival process

must be a Poisson stream.

Q.E.D.

Corollary 2.6. In the class of MRb/Gb/l queues with feedback depending

on the type of units and such that b21, therg exist no transformation.
Proof: This is immediate from theorem 2.4,
Q.E.D.

In the previous corollaries, it is found that the class of queues
with feedback‘for which there exists an equivalent queueing system without
feedback is small. Even in the case where there exists an equivélent
queueing system without feedback, there are reasons to justify a direct
method of analysis, where the service process and the feedback mechanism
are kept separate. A direct method of analysis will permit one to‘study

the output process and the feedback processes, while the method of
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equivalent queueing systems without feedback will give no information

on these processes. For example, the mean and variance of times between
outputs may be important to design a particular system. Furthermore,

to characterize completely the input process one needs to know the
feedback process, which together with the arrival process and the super-
position node (figure 1.1) determine the input process. A formal analysis
of MRb/Gb/l queues with feedback, following the direct method, will be
presented in chapter 3.

In the next section an illustration is given of how a particular
queueing system with feedback is transformed into queues without feedback.
Results on three operating processes are derived. Later, they will be
compared with the same result obtained using the direct analysis of
chapter 3.

Since the waiting time process is much more difficult, a discussion
of it is presented in section 2.4 of this chapter. Thereafter, the

waiting time process is dismissed for the rest of the dissertation.

2.3. AN ILLUSTRATION: THE M/G/1 QUEUE WITH FEEDBACK

As an indication on how a transformation can be carried out, we
consider the M/G/l queue with the state-dependent feedback mechanism
stated in assumption C. That feedback mechanism will be defined as:

pOV(j;y) if uti = 0,

prY =v[Y__,=u,N__=i,N =i,S =y} =

. . C S 0.
puv(k,y) if uti > 04
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where k = j+l-u-i; for u,v = 0,1 and i,j = 0,1,... . The arrival process
is assumed to be Poisson with parameter A

Whenever one considers the queue length process, the busy cycle
process and the departure procesé,the service discipline stated in assump-
tion E has no effect. Therefore, one can consider this queueing system
with the above feedback where the service is given to fed back units in
a continuous sequence of service periods. That is, output feeds back at
the head of the iine._ Since there is no feedback delay, another period
of service is given to the same unit immediately. This feedback procedure
continues until the unit departs. When the output becomes a departure,
the next unit to be served is selected under the service discipline
stated in assumption E. Hence, if one denotes by Tm the total service
time associated with the m~th departure, {Tm} wouid be called the total

service time process.

S >
) m i
] ]
’ .3 — e
éf--—-Sn--->§¢—-Sn+l--~ é éf--sn+E-—9é
n-1 n n+l n+k-1 n+k

Figure 2.1. The total service process {Tm}

In figure 2.1, the underlying service process is the sequence
{Sn} introduced in assumption B, while Yn is associated with the Output:

either a depafture (¥) or a feedback (3).
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Propostition 2.7. For the M/G/1 queue with the above state-dependent

feedback mechanism, the sequence {Yn} is a Markov process over the state
space {0,1}.
Proof: . Since there is only one type of arrival, the range of each

Yn is {0,1}. The Markov property is established as follows:

(1) PriY =v[Y _j=u,Y¥ ...

L2 Py =v,N _=i,N =3,8 =y|Y _ =u,...}dy

ZiijyPr{Yn=v[Yn_l=u,...;N .=
"PriN =3j|Y__ =u,...;N
PN =ilY _ =u,...}Pr{s =y[Y . =u,...}dy.
Now, applying assumptions A, B, and C, one obtains
2) = LI Pr{Y =v|Y uN =i =S =y}
'Pr{Nn=jIYn_l=u,Nn_l=i;sn=y}

'Pr{Nn_1=ilYn_z}Pr{Sn=y}dy,

where
va(j 3Y) if ut+i=0,
Pr{Yn=v|Yn_1=u,Nn_l=i,Nn=j,Sn=y}=
p.. (J+l-u-ij;y)  if u+i>0;
uv .
and
AY (3 gyd
e §?y> if uti=0;
Pr{yn=jlYn_l=u,Nn_l=i,sn=y} =¢ 0 if j+l<u+i#0;

e-)\y (y) j+l-u-i
(3+1-u-i)!

if JH+1>u+i#0.
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Then, equation (2) can be evaluated and it follows that

Pr{Y =v|Y _;=u,¥ ,...} = Pr{y =v|Y__ =u},

2

for u,v=0,1; which establishes the Markovian property.

Q.E.D.
Corollary 2.8. The stationary transition probabilities for the
Markov chain {Yn} are given by
PrY =v|Y 1 u} = 8y
where
= S ( )e_-)\.M dH(y)
8 v i yPuv 13y 3! y
for u,v = 0,1 .
Proof: Using equation (2) of proposition 2.7, this is immediate.
Q.E.D.
Proposition 2.9. The total service process {Tm} is a renewal process
with the stationary distribution
_ k . (k+2)

with the mean
E[T] = S(l+g,,/8;,)>
and the variance

= 2,2
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Proof: The service process {Sn} is assumed.to form a renewal process,
hence by adding a random number of service per%ods Sn’ to get Tm,

the renewal property is still retained and {Tm} is a renewal process
with stationary distribution. In order to find the probability
distribution of Tm’ let Fm be the number of féedbacks of the m-th

departure. First, the probability of Fm can be written as

(1) Pr{F =k} = Priy ,=0,Y . .=1,...,Y =1|Y =0},
for k =0,1,... . From proposition 2.7 and its corollary, equation (1)
becomes
g if k=0,
(2) PriF =k} = { 00
m k-1 .
801811 819 i k2L -

If one denotes by FT(') the stationary distribution of Tm’ one

easily finds
(3) Fo(x) = LPr{T <x|F =k}Pr{F =k}.

Now, using the definition of Tm together with equation (2), equation

(3) becomes

N | k
Fp(x) = gooPr{S <t iigy ey 8y oPriS #8 oFoe Sy <),
or
) 4 (42)
(4) Fo(x) = gOOH(x)+g01g102kgll (x )

Here, H(l)(x) represents the i-fold convolution of H(x) with itself.
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One obtains the stationary mean and variance from equation (4)
in the usual way.
Q.E.D.
An immediate property of the total service process {Tm} is the

following

Corollary 2.10. In terms of the underlying service process we have

the following relationships:

§ = EN[T] f_ E[T]’

\ VN[T] V[T];

| A

where the subscript N indicates the no feedback case.

Now, using proposition 2.7 and its corollary, the operating
processes of the M/G/1 queue with state-dependent feedback can be found
easily. From classical M/G/1 queueing theory, one has

Propositibn 2.11. The M/G/1 queue with state-dependent feedback has

stationary behavior if and only if

A§(1+g01 ) <1,

/810

where g v is given in corollary 2.8.
uv .

Now, if Qm denotes the queue length just after a departure, then
{Qm} would characterize the queue length process. So, if v(j) denotes
the stationary queue length probability, with v = [v(j)] in vector

form, then one can state without proof,
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Proposition 2.12. The probability generating function of the queue

length probabilities is

v(O)(§—1)F;(A—A§)

Lv(s’ = . |8]<1;
§-F_(A-A8)
T
where
v(0) = l—AS(l+gOl/g10),
*
* 8ynt(1-8,9=811)H (8)
FT(S) = 200 00 il H (s) Re{s}>1,.
l—gllH (s)
Proof: Using proposition 2.9 and known results from M/G/l queues,
one easily obtains the desired result.
Q.E.D.
Corollary 2.13. The steady state probability of an idle system is
1- KS(l+gOl/glO).
Proof: This is immediate, using Poisson arrivals.
Q.E.D.

In the particular case where the feedback mechanism is Bernoulli,
the above result simplifies to the one found by Takacs [1963]. Using
standard methods from the M/G/1 queueing theory, it is possible to
find the steédy state mean queue length:

Corollary 2.14.

E[Q] = AE[T] +

N IT+EITD )
2 (1-XE(T])

where E[T] and V[T] are given in proposition 2.9.
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If EN[Q] denoted the mean queue length in the particular case

where there is no feedback, one can easily verify the.following

Corollary 2.15. EN[Q] < E[Q].

Another operating process is the busy cycle process. Each busy
cycle is coﬁposed of an idle period followed by a busy period. If
one denotes by Im the time interval between the departure of the
(m-1)-st unit which leaves the system idle and the arrival of the
m-th unit, the idle period process {Im} form a Poisson process.

Now, if one denotes by Bm the length of the m-th busy period and
by G(*) its probability distribution, one states |

Proposition 2.16. Under stationary conditions, the Laplace-Stieltjes

transform of the probability distribution of busy periods is '

% 2
8018101 (&)1

( ) H ( ) + *

*
where e = s+)-)\G (s).
From proposition 2.16, one easily finds the mean of busy periods

to be:

S(814*80;)

E[B] = =
810" (8107801
A third operating process that can be obtained from the trans-
formed M/G/1 queue with state-dependent feedback is the departure

process. From known results together with proposition 2.12 one can state
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Proposition 2.17. Under stationary conditions, the probability
distribution of inter-departure times, Dm’ has the following Laplace-

Stieltjes transform

g
Fr(s) = [1- (1+——)>\s](————) F (s )+(1+~9i)xsp (s)
D 810 810

*
where FT(-) is given in proposition 2.12.

2.4. THE PROBLEMS OF THE WAITING TIME PROCESS

In the waiting time process, the service discipline and any
priority rules have a significant effect. In an attempt to illustrate
the‘problems that we encounter with this operating process, we
consider the M/G/1 queue with the state-dependent feedback defined in
section 2.3.

In addition to the service discipline stated in assumption E,
it is also possible to distinguish between units which have already
been fed back and the others. Hence, a priority rule can be designed
as follows: a fed back unit rejoins the queue at the point where it
will be, at most, the R-th unit in the queue, including the one in
service. This priority rule is called '"feedback at entry R". A
particular case is R = 1, which correponds to the case in which fed
back units are given priority. Here, the waiting time is simply the
sum of the queueing time and a series of consecutive service times.
Hence, if one denotes by Wﬁ the waiting time of the m-th unit of the

departure stream, it follows that
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W =V +8 +S +...4S ,

m m m, m, LI

m
where Vm = queueing time of the m~-th departure,
Sm = service time of the m-th departure at its i-th
i
period of service,
Fm = number of feedbacks associated with the m-th departure.

If one denotes by Fw( ) the stationary probability distribution
of the waiting time, the following theorem characterizes its Laplace-
Stieltjes transform.

Theorem 2.18. Under stationary conditions, the probability distri-
bustion of the waiting time of units is given by

*
81810 ()

* * *
F () = F (s)H (s) gy, * ) "
'g11H (s)

b
where FV(-) is the probability distribution of the queueing time in
a M/G/1 queue without feedback whose service times distribution is

given in proposition 2.9.

Proof: Consider the probability distribution of the waiting time
W :
m
(1) F, (x) = LPr{V 48 +...45 <x|F_=k}Pr{F =k}.
m 1 Fm+l

From equation (2) in proposition 2.9, recall

g if k = 0,
Pr{Fm=k} = 00

801811 810 ifk213
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now by taking the Laplace-Stieltjes transform in equation (1), one

obtains

F* = F* H* + X k F H* k2

Undef stationary conditions, the above equation is rewritten

into the desired result.
Q.E.D.

For the case R = ®, fed back units are no longer given priority.
Here, the waiting time of a particular unit consists of a series of
waiting times, each one being the waiting time for a unit to get a
period of service. In this case, the determination of the probability
distribution of the waiting time is very complex. Nevertheless, for
the M/G/1 queue with Markovian feedback, a procedure was developed
(Davignon [1972]) to evaluate the probability distribution of the
waiting time. Since no closedvform for the distribution could be

found, it is therefore not instructive to present this procedure here.

|
2.5, CONCLUSIONS

This chapter stated the feedback problem in queueing systems.
It was founq that only a limited number of queueing systems with feed-
back can be transformed into queueing systems without feedback. 1In
fact it was shown that the existence of a transformation depends on
the operating process used as well as on the particular queueing

system under consideration. The condition that the service process
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is independent of the type of unit, the feedback mechanism is indepen-
dent of the type of unit and either the arrival process has the
forgetfulness property or the feedback mechanism is independent of

the queue lengths are necessary and sufficient for the existence of

a transformation. Therefore, the M/G/1 queues with state-dependent
feedback mechanism can be transformed into G-server queues without
feedback; this case was treated as an illustratioﬁ in section 2.3.

In section 2.4, one found the probability distribution of the waiting
time in the case where priority is given to the fed back unit. Dif-
ficulties with the waiting time process were then pointed out.

For the queueing systems with feedbaék that cannot be trans-
formed, a direct analysis must be carried out. Furthermore, even
when the transformation can be carried out there are still reasons to
study queues with feedback as such. Among the reasons, one can mention
the characterization of the output process as well as the feedback
process. |

In the next chapter, a model for the MRb/Gb/l queues with feed-
back will be investigated. Results concerning several particular
queueing.systems will be derived. From the output process, one would
obtain the'cﬁaracterization of the queue length process and of the

departure process. The busy cycle process will also be investigated.



CHAPTER 3
THE QUEUEING MODEL

The feedback problem was introduced in chapter 2. It was then
stated that only a small class of queueing systems with feedback can be
transformed into queueing systems without feedback. For queueing systems
with feedback that cannot be transformed, a direct study must be carried
out.

Therefore, this chapter contains the analysis of MRb/Gbll queues
with feedback. Assumptions concerning this queueing system are stated in
section 2.1. Section 3.1 presents a characterization of the output
process together with its main properties. The queue length process is
obtained from the output process and is studied in section 3.2. The
busy cycle is analyzed in section 3.3. The output process is de-
composed by the feedback mechanism into the departure process and
feedback processes. It is the object of section 3.4 to investigate these
decomposed processes. |

Thrdugh&ut the chapter particular cases are mentioned. For
instance, when the Markov renewal arrival process is composed of a
finite number of Poisson streams and there is no feedback, one obtains
a model studied by Miller [1960]. Also, if the Markov renewal arrivals
contain only one type and when there is no feedback, the output process

studied in this chapter becomes the departure process analyzed by

Vlach [1969].

33
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3.1. THE OUTPUT PROCESS
As was mentioned in section 2.5, the output process gives rise
to the queue length process as well as the departure process. There-
fore, this section devélops the main properties of the output process.
Since the queueing system is considered only at output epochs
tn’ one must cérry extra information on the arrival process,‘in order
that the arrival process be completely known at service completion
times. Hence, one denotes by Kn the type of the last arrival before
t and by Un\the time since the last arrival measured from tn. Moreover,
if one sets On to be the output interval between output epochs tn-l and
t, with 0, = 0, the sequence {Yn’Bn’Kn’Un’On} specifies the output
process. The state space of such random process is the cross product
of a denumerable set and the non-negative real numbers.
Denote by In the idle period associated with the n-th output.

Notice that whenever the system does not become empty after the service

I = 0; in this case, one says that the idle period

completion tn-l’ n

In does not exist.
Later on, we will need to establish relatibnships among the
random variables N ,K ,U ,S and I_ for different output epochs t 's.
-n’ n’ n’n n n

Figures 3.1 and 3.2 below illustrate some of the relationships.

Z!
n
! [
! l
:e-~I--~4e ------ § o mmmmmeece S 4
} n n o
1 ]
]‘“Un-l"’: ]4 --U ---3
] H
n"l n
N N
-n-1 =

Figure 3.1. The process with an idle period
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[
D >
i : e
! — !
R =
Kn—l Nn“l “n tn
-n-1 N
~n

Figure 3.2. The process without an idle period

Recall that Z; represents the type of the n-th service or n-th
output. Notice that in the case where the system becomes idle just
after t -1 (figure 3.1), and only in this case, Z; is also the type
of the m—th arrival for some m; therefore Z; = Zm' In the case where
the system does not become idle after tn—l (figure 3.2), Z; is completely
specified by assumption E.

Proposition 3.1. The random variables gn, Kn_and Un depends only

onS, 2',¥Y

n’ “n’ "n-1’ En—l’ Kn—l’ and Un—l'

Proof: If one sets to u the value taken by the random variable

Yn—l’ then the total number of units in the system just after tn*l’

Cc

n—l)’ ZE represents the summation sign for

. . _ b

is given by E ZC(GuC+N
c =1 tob. Therefore, the system is idle or not depending on this
last quantity; consequently, one considers two cases.

i) E = 0: assumption A and figure 3.1 enable us to derive that En’
K and U depends only on S_ and Z'.

n n n n

ii) E > 0: in this case there is no idle period and the service

starts immediately on a new unit. According to assumption E, this

new unit is of type Z; = r where
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r = minfc:§ 4N . >0, ¢ = 1,2,...,b}.
uc n-

1

Again, using assumption A and from figure 3.2, one states that Nn

Kn and Un depends only on Sn, Yn-l’ N Kn-l’ and Un—

-n-1’ 1’

Q.E.D.

For the particulér cases to be treated later, the joint prob-
ability of Eﬁ; Kn and Un will be explicitly evaluated. Therefore,
some notation is introduced in the folldwing
Remark 3.2. Denote by fnk(g,y—t]s) the joint probability of En’
Kn and Un illustratéd in figures 3.1 and 3.2.ﬁ This is the probability_
of a set of arrivals associated with the Markov renewal arrival process
{Zm,Xm} defined in assumption A. In words, this is the probability
for a set e = [ec] of arrivals in an interval of length y-t with the
last one of type k and no other arrival during a length t given that
prior to that interval of length y-t the last érrival was of type h
and occurred at a distance s from the beginning df the interval of

length y-t. If one denotes by

i= el+e2+...+eb,

the total number of arrivals in the length y-t, figure 3.3 below
illustrates this probability.

[ec] arrivals

\

Figure 3.3. Set of arrivals associated with the arrival process
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Formally, the above probability can be written as follows:

fhk(g,y—tls) = Pr{Zm+l=k,Xm+l+...+Xm+i=y-t+s with
e, type-c arrivals, Xm+i+l>tlzm=h’xm+l>5}'

For the case where e = 0, the above probability is found to be

l—Bh(t)

Epi (Qsy-t[s) = shk5(5+y't)1:§;157”

since there is no arrival in the length y-t, one must have t = s+y
and the last arrival of type h.

For the case where g~# 0, there is some arrival and t must be
smaller or equal to y. Otherwise, one sets fhk(g,y-t[s) = 0.

In the case where b = 1; that is, when there is only one type of

unit in the arrival process; the above notation is simplified to

f(e,y-t|s).
Proposition 3.3. 1Whenever the idle period In exists; it depends
only on Z;, Kn—l and Un—l; and its probability distribution is given -
by
(stx)-A,__(s)
Pr{l <x|z'=r,k ,=h,U _ =s} = Anr _ (:?r ’
%hr Ahr
for r,h = 1,2,...,b and x,s > 0.
Proof: The situation is illustrated in figure 3.1; and from

. . \]
assumption A, one derives that In depends only on Zn’ Kn—l and Un-l'
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Furthermore, it follows that

"= = < =>
priz!=r,U _ =s,I <x|K _,=h}

=S} = T . =
Pr{z'=r,u _,=s[K _,=h}

(1) Pr{I <x|z' = r,K
n— n

n—l=h’U

By considering the arrival process defined in assumption A, one

finds

'= = - = -
Pr{Zn r,Un_l s,In<x!Kn_l h} Ahr(s+x) Ahr(s) R
and

V= = = = - .
Pr{Zn r’Un—l len_l h} a . Ahr(S) ;

which after substitution in equation (1), gives the desired result.

Q.E.D.
Proposition 3.4. The type of the n-th output, Z;,depends only on
Yn—l’ En—l’ Kn—l and Un—l; and its probability distribution is given
by
B3 A (8
l—Bh(s)
'= = =1 = = = if ll=0 & i=9—’v
Priz'=k|Y _ =u,N =i,k ,=h,U ,=s} = <
8 otherwise;
rk
\

where r = min{c:8 +i >0, ¢ = 1,2,...,b}.

uc ¢
Proof: Again there are two cases to consider;
i) u=0 & i=0: 1in this case the system becomes idle just after the

output epoch tn—l; the situation is illustrated in figure 3.1. From
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assumption A, the next arrival which becomes the n-th output depends

Furthermore, its probability distribution is

only on Kn—l and Un-l’
derived as follow:
Pr{z'=k,U _,=s|K__ =h}
V= = = = —
(1) Pr{zn kIKn-l V-1 s} pr{U__=s[K _=h} °
n-1 n-1

By the arrival process of assumption A, one computes

(2) Prizi=io U =slKy )70} = ey oAy (o),
and
(3) Pr{Un_l=len_l=h} = 1-B, (s).

Substituting equations (2) and (3) into equation (1), one obtains
the first part of the desired result.
ii) u# 0or i # 0: in this case the system remains busy after t 1

and the next unit to be served is chosen with respect to assumption E.

Therefore, the type of the n-th output is Z; = r, where
r = min{c:duc+ic>0, c=1,2,...,b}.

Then, the éecond part of the desired result follows.
Q.E.D.
Now, one can state and prove the following important result.
Theorem 3.5. The output process {Yn’En’Kn’Un’on} is Markov renewal

over the state space

{0,1,...,b}x{0,1,2,...}°x{1,2,...,b}X[0,%).
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Proof: By definition, the range of the random variable Yn is
{0,1,...,b} and by considering the range of the other random variables,
one obtains the state space specified.

Whenever the n-th idle period In exists, the output interval‘

On can be written as

. e oD c _
I +8S if Zc(éuc+Nn_l) = 0,

S otherwise;

where u is the value taken by the random variable Yn-l'

The above relationship gives two cases;
i) ZE(SUC+N§_1) = 0: this case corresponds to the situation where
the (n-1)-st output departs from the system leaving the server idle.
Therefore, a unit of unknown type must arrive to initiate the service
period Sn' Let Zm be the type of this new arriving unit. This unit

will also be the n-th output; therefore Z& = Zm’ and one can derive

thé following:

;Kn_l,...;Un_l,...;

0 .}

< .
(1) pr{Yn,En,Kn,Un,0n~x|Yn_l,...,ﬁﬂ_l,...

n-1’""

X
b
= JC ZkPr{Yn]Yn_l,...;gn,...;Kn,...,Un,...;On_l,...;

< = '=‘
I 5 <x,S =y,2'=k}

-Pr{gn,Kn,UnJY N

n-1°°" " -1

0

.;Kn_l,...;Un_l,...;

. < = V=
e L ¥8 <x,8 =y,Z=k}
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. < . !
Pr{1n+sn_x|Yn_l,...,§n_l,..

-Pr{sn=y[Yn_l,...;gﬂ_l,...;K

. A
Uppreee30 _oe--32) =k}

Pri{z'=k|Y__ ... 5N 3K

No ook qseees

:0
U _qoeees n_l,...}dy.

Using assumption C, the first probability term on the right hand
. 3 . . . . = '=
side of equation (1) is simplified to Pr{YnlYn—l’En’gn—l’Sn y,Zn k}.

Together with propositions 3.1, 3.3, 3.4 and assumption B, equation

(1) becomes:

(2) Pr{Yn,gn,Kn,Un,on§x|Yn_l,...;gn_l,...,xn_l,...,Un_l,...;
; 0 _qs-++}
X b
0 ZkPr{YnlYn—l’En’—I\—In—l’sn y’Zn k}
*Pr{N_,K_,U_|S =y,z'=k}
n° n° n' n n
L] — = '=
Pr{l <x-y|K _,,U ;.S y»2!=k}
. = L.
Pr{s_ ylzn k}
. '=
Pr{zn k[Kn_l,Un_l}dy.
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Equation (2) can now be rewritten as

< . . . . .
(3) PriY ,N ,K ,U ,0 <x|Y _ ,...5N _;5...3K SU__1seees

0 s}

NETEEE

= < .
Pr{Yn,gn,Kn,Un,on_x|Yn_l,gn_l,Kn_l,Un_l}.

ii) 22(6UC+N§_1) > 0: in this case, there is no idle period and the

service immediately starts on a new unit of type Zé = r, where

r = min{c:§ #° . >0, ¢ =1,2,...,b}.
uc n-

1

One derives the following:

(4) Pr{¥ ,N ,K ,U ,0 <x[Y . ,...5N _;,...5K

X
=‘l; S T R 1 AP R R UNEPTRRS s £

N

Pr{N K U [Y ;see 5N _se

:.;Kn_l,...;on_l,...;

- '=
Sn y,Zn r}

'Pr{Sn=y|Yn_l,...;gn_l,...;Kn_l,...;Un_l,...;

-
0 _qseee3Z) rldy,

using the fact that On = Sn in this case. In the above equation, the

first probability term on the right hand side is simply
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= 1_ )
Pr{YnlY N NS =Y.z =r}, using assumption C. The second term
is simplified upon using proposition 3.1 and for the third term, one
notes that Sn depends only on Z; = r from assumption B.

Hence equation (4) becomes:

< .
(5) Pr{Y ,N ,K ,U ,0 <x[Y ... ;N

X
»=4/0‘Pr{Yn’Yn N 15N .S =y,Z -r}

L ] '—
Pr{gn’Kn’UnlYn-l’En—l’Kn l’ n- 1’S y,Z r}

° = ' = )
Pr{Sn yIZn r}dy.

Equation (5) can be rewritten as equation (3) above and one

concludes that {Y_,N ,K ,Y ,0 } has the Markov renewal property.
n’-n’ n’'n’ ' n

Q.E.D.

Corollary 3.6. The stationary transition probabilities for the

Markov renewal process {Yn,gn,Kn,Un,On} are given by
A [(h,8), (3K, 0)5x]

l’Kn—l

Un—l=$}’

= { = =7 = = < = = =
PriY =v,N =3,k =k,U =t,0 <x|Y _=u,N h,

where
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( X
b ) .
fZaPOV(;,a;y)fak(l,y—tIO)

0
{ﬁm@ﬂvw—ﬁmw)MH()
1-B, (s) aty
‘ if u=0 & i=0,
Auv[(_j;)hss))(iyk,t);x] = 0 if ec < 0 for some C,

X
jg puv(g,r;y)fhk(g,y-tIS)dHr(y),

otherwise;

with e = [e Jande =j +§_ -8 -i ; for r = min{c:§ +i > 0,
= c c c rc uc ¢ uc ‘¢
c=1,2,...,b}.
Proof: From theorem 3.5, there are two cases to consider;
i) 'u=0 & i=0: here equation (2) of theorem 3.5 can be applied and

after using assumption C, one finds

= = = =1 = LS = 1 *
Pr{Yn—len_l O,I_‘In_l _Q_,Bn J_asn Y,Zn a} pOV(J__’a’Y) .

From remark 3.2, it follows that
=4 = = = '= = 1.V~
Pr{N =j,K =k,U =t|s =y,2'=a} = £_ (i,y-t[0).

Furthermore, from proposition 3.3, one writes

i Aha(s+x-y)—Aha(S)

Pr{l <x-y|Z'=a,K__
o n n aha-Aha(S)

1=h,Un-_1=s}

’

and from assumption B, one denotes

= '= =
Pr{sn y[zn aldy dH_ () .
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Finally, from proposition 3.4,

a, - (s)
=h,U .=s} = _Eﬂ_éhﬁ_g_

‘=
Pr{Zn a!Kn— n-1 . l—Bh(s)

1

Then

X
. b . .
A L(0k,8) 5 (3,0, 8)5x] = j;Zap()v(;,a;y)fah(,w-tlo)

Aha(s+x-y)—Aha(S)

[ 1_Bh(s) ]dHa(y)-

ii) u>0 or i#0: here one computes
r= m?n{c:éuc+ic >0, c=1,2,...,bl},

for the type'of unit to be served and one can apply equation (5) of
theorem 3.5 to get
X

(1 Auv[(i,h,S),(j_,k,t);X] =[Opuv(g,r;y)fhk(g,y—tIS)dHr(y),

where e = [ec] with e.= jc+6u i representing the set of the

-5 -
c uc ¢
required number of arrivals. Notice that for the case where some
components jc+6rc_6uc—ic are negative, the transition probabilities

given by equation (1) are zero.

Q.E.D.

Proposition 3.7. The joint probability distribution of ZA and On

depends only on Yn—l’ ﬁn—l’ Kn—l’ Un—l’ and is given by
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1— = = - -
Pr{z'=k,0 <x|Y _ =u,N__, 1,k _,=h,U__ =s}
x A (s+x--y)--Ah (s)
hk k Lo ‘
[ [—3 Ol 1dH, (y) if u=0 & i=0,
0 h
= < . . v
8 (%) if u>0 or i#0;
where r = min{c:§ +i >0, ¢ = 1,2,...,b}.
uc ¢
Proof: Using theorem 3.5 and proposition 3;4, one can establish

the correct dependence. The explicit probability is found by using
corollary 3.6; note that in the case u=0 & i=0, a unit of type-k

must arrive.

Q.E.D.

Proposition 3.8. If b = 1, then the output process {Yn,Nn,Un,On}
is Markov renewal over the state space {0,1}X{0,1,2,...}X[0,®) with

stationary transition probabilities given by

A [(1,9),(3,0)5%]

(1

X
mfPov(j;Y)f(j,y-tlo)[A(S-i‘x—y)—A(s)]dH(y)
0 if u+i = 0,

=< 0 if j+l<uti # 0,

X .
J[ puv(j+l—u—i;y)f(j+l—u—i;y—t|s)dH(y) otherwise.
0

-

Proof: In the case where the Markov renewal arrival definod in
assumption A contain only one type, the arrival process becomes a
renewal process and the random variable Kn always takes the same
value. Hence, if one sets

Ax) = A, (0,
then

Bk(s) = A(s).
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Similarly, one could set
E(e,y-t|s) = £ (e,y-t|s).

Substituting these quantities in the transition probabilities of
corollary 3.6, the desired result is obtained.

Q.E.D.

Corollary 3.9. If b = 1 and there is no feedback, the output
process becomes the departure process of the GI/G/1 queue, denoted

by {Nn,Un,On}, with the stationary transition probabilities given by

A[(1,8),(3,t)5x] = Pr{N =j,U =t,0 <x|N__,=i,U _,=s}

where
Al (i,s),(3,t);x]
¢ 1 X
. £(3,y-t]|0) [A(s+xt+y)-A(s) 1dH(y) if i=0,
| 1-A(s) 0
= (0 if j+1 < if0,
X .
£ (j+1-i;y-t|s)dH(y) if j+1 > i#0.
v
Proof: To obtain the no feedback case, one sets
(1) p,(3Y) = 8y

for all u,v=0,1; j 0,1,...; and y > 0. Substituting equation (1)
in proposition 3.8, one gets the desired result.

Q.E.D.
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Note that corollary 3.9 gives the result found by Vlach [1969].
Rather than continuing the investigation along the line where there is
only one type of arrival, the particularization will be made where
the arrival process is composed of several independent Poisson streéms.

Some results concerning this arrival process are stated in section A.3.

Proposition 3.10. If MRb = Mb’ then

-(t=-s)ZX

éhké(y+s—t)e if e=0,

£ (ey-t]s) = ¢ -A (y-t) e -8 1
e e [h_(y-0)] |
e il if e#0;

k T (er-érk)! he

A

\

for e = [ec]'and e = 0,1,2,... . Hr denotes the product sign for
r =1 to b.
Proof: From remark 3.2, there are two cases to consider: for

=0, one uses proposition A.8 and obtains

£ (ey-t]s) = th6(t-s—y)e‘(t‘5>2>\.

Fro gfg, figure 3.3 applies. Therefore, one needs a set e = [ec] of

arrivals, where e, denotes the number of type-c arrivals. Using
lemma A.10, the number of arrivals of each type in an interval éf
length y-t is Poisson distributed, and since one wants a type-k
arriving at the end of the interval of length y-t and no arrival

for a length t, remark 3.2 gives
Ay e~ e e, -1

e T G-0] T A G-
=1 er! (ek—l)! € ’
r#k

£ (ey-t]s) =

[ oy

which is the desired result.

Q.E.D.
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Proposition 3.11. If MRb = Mb’ then the output process is charac-
terized by {Yn’En’On} and its stationary transition probabilities are
given by
s 2. = = =4 < = =1
Auv(i’lﬁx) Pr{Yn vy =1-’Orr—'XlYn-l Wl ik,
where
X e_xcy(k y)Jc
/|7 .o _~(x-y)IA c
fOZhOLhPOV(J,,h,Y)(_l € )HC jc!
cdHh(y) if U=O & i=_,
I = ¢ i <
Auv(l’l’x) ﬁ 0 if e. 0 for some c,
Ay
fx e T €
L Opuv(g,r;y)ﬂC e dH_(y)
otherwise;

with e = [ec], e, =] +§

-§ -i ; for r = min{c:§ +i > 0, ¢ = 1,2,..
c rc uc ¢ uc ¢

c=1,2,...b}.

Proof: | Since one has the forgetfulness property whenever the
arrival process is composed of independent Poisson streams (lemma
A.10), the information on the arrival process carried’by Kn and Un
becomes unnecessary and can be removed. Hence, in this case, the
output process {Yh,gn,Kn,Un,On} can be reduced to {Yn’ﬁn’on}' This

reduction is accomplished by computing the transition probabilities

D [(Lh,9) (3, )5%] = IS A [(Eh,8), (3K, ) x]de.

A
uv
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Considor two cases:

i) u=0 & i=0; from corollary 3.6, equation (1) becomes

X
Ceyix] = | gPsb i a; i y-
Ag,[0:8,8), (3,0, +)5x] = fz Lt Py (dsasy) £ (3,y-t|0)dt

0 k'a t

Aha(s+x-y)—Aha(S)
.‘[

1-B. (s) ]dHa(Y)'
h
From lemma A.10, one obtains
(stx-y)-A _(s) el
*ha fha's) o [1-e" G

l—Bh(s)

Also, from proposition 3.10, one finds

.

6 (y-t)e E2A i
b . _ J J
(2) L £ dsy-t]0) = - Acc .
Re y (Hdg"j)(Y't) J
L (]
where R = ij .
c c
Then
Ay, [(0sh,8),(0,°,°)5x]
b -(x-y)ZA, -yIA
= ) Bataoy ©ay) (e 7Ehe am (v,
and for i # Q,
Ap, [(Qh,8),(3,%,0)5x] =
Ay |
C C
X e (A y)
_ b . - (x-y)IA c
-j;zaaava(l’a’Y)(l_e )HC Jc!
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Since the right hand side does not depend on h and s, one can

write

(3) Bgy (0535%) .
ALY . )JC
X - e (Ay
- b C 2 (1oe (XY IA c
= jg Lo po, (3,259) (1-e )L, i dH_(y)..

ii) u > 0 or 1 # 0; again from cofollary 3.6, equation (1) becomes

X
. . vol = b . -
A LLs0,8),(3,0,0)5x] = JC LS Py (& T £, (e y-ths)dt

'dHr(y),

where r = min{e:§ +i > 0, ¢ = 1,2,...b};
uc ¢ .

using equation (2) and integrating out t, one obtains:

-y e,
fx e QY
(4) A LEh,8),(3,050)5x] = . Py (& T39I .. dH_(y)
since
-Ay e
ny ; e © Oy €
A thhk(g)y-tls)dt = HC ec! ,

for e = [e ] with e =§j +§_ -8 -i > 0. Since the right hand side
- ¢ ¢ “c rc uc ¢

of equation (4) does not depend on h and s, one can rewrite it as:
-Acy e,
J[x e T Oy T
(5) A E35%) = A Py (& Ty ! dH_(y) .

Equations (3) and (5) prove the proposition.

Q.E.D.
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Proposition 3.12. If MRb = Mb’ then the joint probability distri-

bution of Z; and On is given by

Pr{z'=k,0 <x|Y =u,N =i}
f
£ —(x-y)IA
o (1-e YdH. (y) if u=0 & i=0,
k k ==
= 0 |
Srka(x) if u>0 or i#Q;

\

where r = min{c:8§ +i >0, ¢ =1,2,...,b}.
uc (o]

Proof: Use prepositions A.8 and 3.7.
Q . E QD L]
= '
Corollary 3.13. If MRb Mb, then Zn depends only on Yn-l and gn_l
and its probability is given by
oy if u=0 & i=0,
pelz] 1, w710 =
PN .
Grk if u>0 or i#0,
where r = miﬁ{b:duc+ic >0, ¢ =1,2,...,b}.
Proof: Use limit as x goes to « in proposition 3.12.
Q.E.D.
PR - 1
Proposition 3.14. 1f MRb Mb’ then Yn’zn’En’on depend on Yn—l

and gn_l. Moreover, its joint probability distribution is given by
= = =4 = ="~
Pr{Y =v,z2'=k,N_ i’onilen—l u,N__,=i]
/ Ay A
X
- -(x-y) I\ P : c
ockL (1-e )Po, (LKL dH, (y)

if u=0 & i=0,

—ch’ e,
fo e (Acy) . '
6 . Puv(gjr;Y)Hc . dH_(y) if u>0 or i#0;

Cc
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where e = [e ] with e = j +
= c c

§ -6 -i and r = min{c:§ +i > 0,
¢ rc uc ¢ uc ¢

¢c=1,2,...,b}.
Proof: Using propositions 3.11 and 3.12, it follows that Yn’
1 .
Zn’ yn and On depends only on Yn—l and En—l' Depending whether or

not the system becomes idle just after t there are two cases to

n-1’
consider;
i) u=0 & ifgi here, one notices that to have Z; = k, the first
arrival after tn—l must be a type~k unit. Therefore, following the
development used in the proof of proposition 3.11, one obtains the
first part of the desired result.

ii) u>0 or i#0: here, the type of the next unit to serve is given by

Z' = r where .
n
r= mih{c:é}uc+ic >0, ¢ =1,2,...,b},

using assumption E. Similarly, one obtains the second part of the
desired result.
Q.E.D.

The above propositions enables us to find the stationary prob-
ability for the type of output and the stationary distribution of
output interval lengths.

In the case of no feedback, proposition 3.12 characterizes the
departure process for priority queues. This is a new dévelopment for
the queueing system studied by Miller [1960].

It is also worthwhile to note that in the case where there is
only one Poisson stream and no feedback, proposition 3.12 gives the

departure process from the M/G/1 queues.
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3.2. QUEUE LENGTH PROCESS AND GENERATING FUNCTIONS
From theorem 3.5 and its corollary, one obtains the following

theorem and corollary .3.16, using well-known results from Markov
|

renewal theory.

Theorem 3.15. The queue length process {Y ,N ,K ,U } is Markovian
n'—mn’ n’ n

over the state space
{0,1,...,b3x00,1, ... °x{1,2,...b}X[0,%).

Corollary 3.16. The stationary transition probabilities for the

Markov process {Yn’En’Kn’Un} are given by
Auv[(i)h,s),(i,k,t)]

- Pr {Yn=v,§n=l,Kn=k,Un=t}Yn_l=u,N_n_l=;L_,Kn_l=h,Un_l=s},

where
1-4,  (s)
i as s oyet ]| 0) [—2
Loy Gsasy) Ey (4oy tIO)[l_Bh(S) ]
'dHa(y) if u=0 & i=0,
Auv[(i,h,s),(l,k’t)] = < 0 ) if ec<0 some cC,

fypuv(g,r;y)fhk(g,y-tIS)dHr(y) ,

if eczp all c;
withe=[e ] fore =3 +§_ -8 -i,
c c c rc uc ‘¢

r = min{c:§ +i >0, ¢ =1,2,...,b},
uc ¢

and fhk(g3y—t|s) given in remark 3.2.
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Denote by P the matrix whose entries are the transition prob-
abilities given in corollary 3.16 and by T the row vector whose entries
are the stationary probabilities

|
m(v;j,k,t) = lim Pr{Y =v,N =j,K =k,U =t}.
n-o :
The conditional stationary probabilities are denoted by
m(3k,t) = lim PriN =j,K =k,U =t|Y =v},
N0
and in vector form U [ﬂv(ljk,t)].

Assume there exists stationary conditions under which the prob-

abilities given in the above equations exists and can be derived by

solving

m = TP.

In the second chapter of Cherry [1972], conditions for the
existencé of such stationary probabilities are discussed. Because
of the complexities caused by the general switching rules, we have
been unable to find simple conditions for these equations to be satis-
fied in general. Later on in this dissertation, the arrival process
is particularized and then explicit conditions for the existence of
stationary probabilities are found.

We are now in a position to prove theorem 2.4 of chapter 2.
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Proof of Theorem 2.4: As indicated in section 2.2; whenever the

operating process is either the queue length, the busy cycle or the
departure process, fed back units may be given service priority. ILet
Fm be the number of feedbacks associated with the m-th unit and Tm

be the total service time of the m-th unit. One can write
(1) Pr{T <x} = I Pr{T <x|F =k}Pr{F =k}.

m— k m ''m m
Furthermore, Pr{Fm=k} involves the transition probabilities
(2) 8,y = Pf {Yn=v]Yn_l=u},

for u,v = 0,1,...,b. Under stationary conditions, consider the
following two cases:
i) u=0: wupon introducing the random variables associated with output

epochs tn and tn in the probability of equation (2) and using

-1

remark 3.2 and corollary 3.6, one obtains

® Bov ~ Zzhfszafypgv(l: a;y)y(iy»a,0)dH_(y)

320
'Sa(hys)ﬂo(gah’s)ds

+ Z Z Ehfsfypo‘,(g,r;y)Y(g_;y,h,s)dHr(y)ﬂO(l,h,s)ds,
1>0 e20

where

Ba(h,s) = Pr{Zm=a]Kn_l=h,Un =s ],

Y(e;y,h,s) = Zkftfhk(g,y-tIS)dt,
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and the index r of the second term of equation (3) is given by
r = miﬁ{k:ik >0,k = 1,2,...,b}.

ii) u>0: again by introducing the same random variables and using

the same remark 3.2 and corollary 3.5, one obtains

(4) 8y = Z Z IS e Py (e tsy)Y(esy,h,s)dl (y)m (1,h,s)ds,

120 e20

where Y(e;y,h,s) is defined above and the index r is given by

r = min{k:§ . +i. >0, k =1,2,...,b}.
uk

k

Notice that Y(e;y,h,s) is independent of h and s, noted Y(esy),
if and only ifbthe arrival process has the forgetfulness property
stated in definition A.9. This is so, after considering proposition
A.8. Moreover, from lemma A.10, a necessary and sufficient condition
for the forgetfulness property is to have the arrival procéss Mb.

To prove the necessary part, there are two cases to consider:
a) If neither the service process nor the feedback mechanism depends
on the type of unit and if the arrival process is Mb for b > 1, then

equation (3) becomes

() egy = ) iRoy V) YEYEEE).
20

Similarly, equation (4) becomes

(6) By = Z S Py (139D V(35y) dB(Y) -
320
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The transition probabilities of equations (5) and (6) depend only
on known quantities; therefore, one computes Pr{Fm=k}. Moreover,

condition 1 implies that

Pr{T <s|F =k} = n{) (x) -
. m

Now, under stationary conditions, the sequence of total service
times {Tm} form a renewal process whose probability distribution is
given in equation (1). Therefore, using definition 2.2, one obtains
a G-server queue without feedback. Hence, one can characterize anyone
of the above three operating processes using the G-server queue and
then derive the corresponding operating process in the MRb/Gb/l queue
with feedBack. Then, from definition 2.3, one obtains the first part
of the desired result.

b) If conditions 1, 2, and 3a are satisfied, then similarly, equations

(3) and (4) becomes:

7 8oy = fyp()v(y)dH(y),
and
(8) By = fypuv(y)dH(y)

respectively. Again, the transition probabilities of equations 7N
and (8) depend only on known quantities and one obtains the same
conclusions as in part a) above.

To establish the sufficiency, one notes that if any one of
conditions 1, 2 or 3 is not satisfied, then the transition probabilities

guv'found in equations (3) and (4) would depend on the stationary
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probabilities ﬂo(i,k,s). From definition 2.2, oné is then unable

to obtain a G-server queue without feedback in this case. Thus

the MRb/Gb/l queues with feedback which do not satisfy conditions

1, 2 and 3 are never equivalent to G-server queues without feedback;

Q.E.D.

Notiqe that in the case where there is only one type of arrivals,

that is b = 1, theorem 3.15 together with its corollary gives a

characterization of the queue length process for the GI/G/1 queue

with state-dependent feedback. Instead of particularizing along

that direction, we will keep several types of arrival, but assume

a Poisson stream for each type. Hence, proposition 3.11 gives directly

Proposition 3.17. If MRb = Mb’ then the queue length process
{Yn’En} is Markovian and its stationary transition probabilities

are given by

A (Es3) = PriY =v,N =j|Y _ =u,N__ =i},
where
-Ay j
b e © (Ay) c
, thyothp()v(;_,h;y)HC 7! dH, (y)
if u=0 & i=0,
PR = < .
Auv(i,l) 0 if e <0 for some c,
-Ay e
k k
e (Ay)
fyPuv(ggr;Y)Hk ek! dHr(y) otherwise;

\

withe=[e ], e =3+ -8 -i for r = min{c:§ +i >0,c = 1,2,...,b}.
= c c c rc uc ¢ uc ¢
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Corollary 3.18. The Markov chain {Yn,gn} is aperiodic and
irreducible.
Proof: Considering the stationary transition probabilities given

in proposition 3.17 and the conditions on puv(g,r;y) given in assump-
tion C, one obtains the desired result.

Q.E.D.
Remark 3.19. Consider the matrix P whose entries are the trénsi—
tion probabilities Auv(ifi) given in proposition 3.17 and 7 the
stationary probability vector whose entries are

D) = Lin Pelt =v,N =},

for v = 0,1,...,b and j = (3,35 3, = 0,1,..., and ¢ = 1,2,...,b.
Using corollary 3.18, the states of the Markov chaiﬁ {Yn,gn} are

ergodic if and only if there exists a stationary probability vector

T to the matrix equation
(1) m = TE.
Introduce the generating functions

v,© =) s,
320

and
-\ y i
i _ e K A K
(2) Guv(i;r) = z & fypw(J_,r;y)Hk o dH_(y)

320 k

for u,v = 0,1,..,b and r = 1,2,...,b. The notation g;-would denote
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§lJl'§ZJ2'...'§be with l§c|§} for ¢ = 1,2,...,b. Later on, it will
be necessary to consider states where there is no type-k unit in the
system just after an output, for k < r. Thus, one defines the fol-

lowing generating functions:

r _ i »
(3) V(5 = Z 57T mvii),
' i 20
A
where
Er = [l,l,...,l,§r,§r+l,...,§b] §k <1
(&) ir = [0’0""’O’ir’ir+1""’ib]'

Notice that in equation (3) the index r takes value in the
set {1,2,...,b+1}. TFor r = 1, the vectors §1 and 11 are the usual

§ and i, therefore one can write
1 -
Vo) =V (D).

For r = b+l, the vectors §b+l and i become the vector of ones

and the vector of zeros respectively, thus

Vb+l(§-

v Cpyp) = T:0).

For v =1,2,...,r-1, if one considers states of the form given
in equation (4), the generating functions Vi(gr) do not exist since
these generating functions are defined whenever.there is no type-k
unit in the system (k < f). Therefore, the range of the index v

depends on the value of r; in fact v = 0,r,r+l,...,b.
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Now, section A.1l can be used to find the system of generating

functions:

utl .

b
(5) @ =) G, le 1004 WG ) L))

u=1

Lt

k+1

Lrvkes y-v
u

u-1
* §u E:: Guv@-;k)glz [ u(gk (§k+l)]+cuv(§3u)vﬁ(§u)J’
k=1
for v = 0,1,...,b.
There are still unknown generating functions in equation (5);
these are defined in equation (3). For every r = 2,3,..},b, one
finds Vi(ér) as follows: consider the embedding of a new Markov chain
1 2 Nr—l=

{Ym,N =0,N =0, ...,N_

O,Nr,...,Nb} in the original Markov chain
m m m

{Yn,yﬂ}. One then finds the transition probabilities of this new
Markov chain, which involve only the busy period of type-k units,
for k = 1,2,...,r-1. Then, one can find explicitly the generating
functions given by equation (3).

The determination of the generating functions Vi(gr) is done
for the case where b = 2 and a restricted feedback mechaﬁism in
chapter 4. As it will be seen, finding these generating functions
involves computational difficulties. Thus, it is assumed that given
a specific feedback mechanism, one can find the generating functions
Vi(éf) for v = O,r,r+l,...,b and r = 2,3,...,b.

Substituting these generating functions in equation (5), one

obtains a system of b + 1 equations and b + 1 unknown generating
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functions VV(E). This system is then studied for the possibility
of finding solutions VV(E)(V = 0,1,...,b), for fixed § such that
Oi%il(c=LL””M.

Using the fact that
. b
lim [V.(8) + ZV (8)] = 1,
5+ 0= vV V=
274
where u is the vector whose entries are all one; together with
L'Hospital's rule, it is believed that an expression for N(O;Q)
could be found, whenever it exists. Necessary and sufficient con-

ditions for the states to be ergodic would be
m(0;0) > 0.

The above relation would impose conditions on the arrival
process, the service process and the feedback mechanism such that
the states of queue length process are ergodic. These are sta-

tionary conditions.

3.3. THE BUSY CYCLE

In this section, the occupation of the server is analyzed.
This occupation alternates between busy and idle periods. A busy
period followed by an idle period constitutes a busy cycle. If
Im denotes the length of the m-th idle period, ome can recall that
the sequence {Im} was characterized by proposition 3.3. Here, two

corollaries can be derived from that proposition.
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Corollary 3.20. If b = 1, then the idle period Im depends'only
on Um—l' Furthermore, the probability distribution of Im given
Um—l is given by

} = A(s+x)-A(s)

Pril <x|U__ =s OE

where A(*) is the probability distribution associated with the
arrival process.

Notice that the above result is independent of the feedback
mechanism. This is not surprising, since the length of an idle
period depends only on the arrival process. Moreover, corollary
3.20 agrees with results from Vlach [1969].

Corollary 3.21. If MR =M , then the idle period process {Im}

is Poisson with parameter IA.
Proof: This is immediate upon using lemma A.10.
Q.E.D.
vNow, turning éur attention to the busy period process, let
Bm be the length of the m-th busy period length and G(°*) its prob-
ability distribution under stationary conditionms.

Theorem 3.22. If MRb = Mb’ then, under stationary conditions, the

probability distribution of busy period lengths is given by:

b

% b L. b
G (s) = Zrar[LOO(s,r) + Euzv

Loy (831 (T=3(8) 2L (8391,
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where
Ay j
k * k
_sy . e (A YC ()
Luv(s,r) = E: fye Py (BT i di_(y);
320

and J(s) is the matrix [Luv(s;u)] from which the first row and the
first column has been removed.

Proof: The busy period is independent of the service discipline
stated in assumption E. Moreover, the order of service is immaterial
to the busy period as long as it does not increase the time spent in
service. Hence, one can give priority to a fed back unit; that is a
‘unit is given successive period of service until it departs from the
system. If one calls the originator, the unit which initiates the

busy period, the busy period of the system can be written as follows:

1 K
(1) B = Sn+sn+1+°"+Sn+Fm+Bm+"'+Bm ,
where Sn+i = the (i+l)-th service period of the originator,

Fm = number of feedbacks of the originator,

b k . .
K = Zan+Fm = number of units in the system when the

originator departs,

N§+i = queue length of type-k units just after the

(i+l)-th service completion of the originator,

Bi = busy period initiated by the j-th arrival during the

service periods of the originator.
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The index n refers to a count on the number of services by the

server. The service period Sn+i depends only on the type Zé for

+i

i= 1,2,...,Fm which in turn depends on Y Hence given the

nt+i-1°

output type Y the service periods Sn+i's are independent.

n+i-1’°
Furthermore, during the total period of service of the originator,

S +S , .+...+S , there has been K arrivals divided among b different
n nt+l n+Fm

types. Since the arrival process is Mb’ the sequence of types of these
K arrivals consitutes an independent process. Moreover, each of

these K arrivals will be the originator of the busy period Bi for

some j = 1,2,...,K. Therefore, all Bi's are independent and have

the same probability distribution that Bm has, G(*). Moreover, each
busy period Bi is independent of the above service periods, Sn+l'
If Zm denotes the type of the originator, then the probability

distribution of the busy period Bm is derived as follows:

G (x) Pr{Bmgx}

]

b |7 =
ZraerPr{Bmfx,Fm—k|Zm—r}

b

(2) = ZraerGk(x;r).
Using equation (1), the probability term for k = 0 in equation

(2) is:

(3) G, (x;r) = Pr{s w8l K<, Y =0|Y .=0,N .=0,Z =r}

0’ n m " m’n n-1 ’-n-1 —""m
AN
fo () e (Aky)
. G (x—y)poo(;;r;y)Hk——~fi:r————— di_(y);

20

.
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where h = Zijk. Considering the Laplace-Stieltjes transform of

the probability distribution given in equation (3), one gets
4 G -1
( ) O(S’r) - OO(S:r)’

using an appropriate change of variables and the notation

-A y * |

e K Oe N "
. ] dH (Y),
3! r

: vy = -sy .o
(5) Luv(s,r) }:: fye puv(;,r,y)ﬂk
320

for u,v = 0,1,...,b.

For the case k = 1, the term on the right hand side of equation

(2) is:

b 1 K
: = < =
Gl(x,r) ZVPr{Sn+Sn+ +B .. 4B <x,Y =v,Y 0] 0,

1 n+1= Yn--l=

vﬁn—lég’zm=r}

X [ X~y
b.(h . .
= JE .j; ZVG( )(X‘Y‘Z)on(lf};V;Y)

- =A y i
k k k

2% 1! di_(2)pq, (1,13y)1

it
k

'dHr(y),

where h = Zij Now, taking the Laplace-Stieltjes transform of the

K

above distribution, and by an appropriate change of variables, one finds
6 ¢ (s;r) = I°L, (s 5L (s3v);
( ) l(s’r) = v OV 83t vO S,;V)s

using notation given in equation (5).
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Now, for k = 2, one could find

* oy = yDyb . .
Gz(s,r) = ZUZVLOU(s,r)JuV(s)LVO(s,v),

where J(s) is the matrix [Luv(s;u)] from which the first row and

the first column has been removed. It also follows that for k > 1
(7) : C*(S'r) = ZbeL (s’r)(J (s)) L (s;v).
k7 uvou’ v0

For fixed s with Re{s} > 0, the matrix J(s) is such that
] b _ . P _
0 ﬁ_Luv(s,u) <1 and ZVLuv(s,u) < 1, using the definition of Luv(s,u)
and condition 1 of assumption C. Thus, all the eigenvalues of J(s)
have moduli less than 1, using a result from Lancaster [1969]. There-
fore, Zka(s) converges and is equal to (I—J(s))_l. Hence, summing

equation (7) over k from 1 to ®, one obtains

Gy (837) = IPEOL (550 ([1-0(8)1 ™) Ly (s59),

together with equation (4), equation (2) gives the desired result.
Q.E.D.
Notice that when the arrival process MRb is considered, the busy

periods B; and Bg for j # h are no longer independent.

3.4, DECOMPOSITION OF THE OUTPUT PROCESS

The output process is decomposed by the feedback switch into
two types of processes: the feedback processes and the deparﬁure
process. The feedback switch acts like a filter on the state space

of the output process.
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If one filters the states with Yn = vy for fixed v = 0,1,...,b,
the resulting process is either the feedback stream going into the
type-v units whenever v = 1,2,...,b or the departure stream whenever
v = 0. Using results from Cherry [1972], one can state without proof.
Theorem 3.23. The decomposed process {Yn=v,§n,Kn,Un,On} is Markov

renewal for every v = 0,1,...,b over the state space

{o,1,. ..}bX{l,Z, ...,b}X[0,%).

In the above process, the index n no longer represents a count
on the number of services but a count on the number of jumps into
states with output status equal v. To remove ambiguity, note by
{Ym=v,§m,Km,Um,Om} the decomposed process for every v = 0,1,2,...b.
Hence, the length Om represents the interval length between two conse-
cutive outputs with Yn=v. It is also worthwhile to note that the
decomposed process is a kind of first passage time. Therefore, one
could, in theory, find the stationary transition probabilities for
every decomposed process.

Now, let us turn our attention to one particular decomposed
process, the departure process. In fact when v = 0, the corresponding
output leaves the‘system. If one denotes by t& the epoch of the m-th
departure; by Dm the interval length between the (m—l);st and the
m~-th departure; by gm the queue length at t$+0; by K& the type of
the lasp arrival prior to té and by U& the time since the last arrival
measured from té, then the process {Qm,K%,Ué,Dm} represents the departure

process and is Markov renewal, using theorem 3.23.
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3.5. CONCLUSIONS

In this chapter it was shown that the output process from the
MRb/Gb/l queues with feedback is Markov renewal on a state space
which is thé cross product of denumerable sets and the non-negative
real numbers.. Theorem 3.5 and corollary 3.6 characterize the
structure of the output process. This characterization of the
output process was used to derive the queue length process as well
as the departure process. The busy cycle of such a queueing system

was also analyzed.

In the next chapter, the formulation considered above will be
illustrated in the case of two Poisson streams forming the arrival
process with a feedback mechanism deb;nding on the typevonly.
Explicit stationary coﬁditions will be found and then applied to

two computer time-sharing models.



CHAPTER 4

PARTICULAR QUEUEING SYSTEM WITH FEEDBACK

In chapter 2 the problem of queueing systems with feedback
was introduced. One thing proved there was that if the feedback
mechanism depends on the type of unit then the queueing system with
feedback cannot be transformed into an equivalent system without
feedback. The content of chapter 3 enabled us to analyze directly
a queueing system with a general feedback rule.

It is the object of this chapter to illustrate the analysis of
the preceding chapter using a particulér queueing system with feedback.
Specifically, the system to be considered assumes two independent
- Poisson streams as the arrival process and the feedback mechanism

depends only on the type of unit.

4.1. SPECIFIC ASSUMPTIGNS

The queueing system with feedback considered in this chapter is
a particular model of the one stated ih section 2.1. Therefore, we
will partiCularize the appropriate assumptions, namely A and C and
leave unchanged the others.

Whenever the arrival process {Zm,Xm} is composed of two indepen-

dent Poisson streams of parameters A _ and Kz respectively; proposition

1

71
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A.8 with b = 2 gives the transition probabilities

AL () = o (1,

for h,k=1,2 and x > 0.

Here, the feedback mechanism is assumed to depend only on the
type of the unit being directed and furthermore whenever there is
feedback, the unit joins the queue of type-2 units. Therefore,
associated with the n-th output, the random vaiable Yn is defined

as follow:

0 if the n-th output departs,

2 if the n-th output feeds back.

Thus, assumption C concerning the probabilistic structure of

the feedback mechanism is particularized to
Pr{Y =v|Y _,...;N,...;S ;2'=r} = Pr{Y =v|z'=r},
n n-1""" "= n’ n n n
for v=0,2 and r = 1,2. Therefore,
Py {dsT3y) = (6u0+6u2)pv(r),

for u,v=0,1,2;

and without loss of generality, it can be written that
=p 6 +(1-p )¢
p,(r) =p 0, +(1-p )0 ,

where Py and p, vary in the interval [0,1).
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The above queueing system with feedback is best visualized by

figure 4.1 below.

Queue of type-2 Ly Hy ()

one server

Queue of type-1

NOR )

l-pl

Figure 4.1. Particular queueing system with feedback

4.2, STATIONARY CONDITIONS

In this section, we study in detail the queue length process

1

2 . . . e . .o
n’Nn} and determines its stationary conditions. Using proposition

1

n’

{y ,N
n
3.17 the queue length process {Yn,N Ni} is Markovian over the state
space {0,2}x{0,1,...}x{0,1,...}. Furthermore, one has the following

result:.

Proposition 4.1. The stationary transition probabilities for the

. 1.2 .
Markov chain {Yn,Nn,Nn} are given by

AUV[(il,iz),(jl’jz)] =

1. 2. 12
Pr{Yn—v,Nn-Jl,Nn-JzIYn_l—u,Nn_l—ll,Nn_l—lz},

with
220 p (K)g (i.,i.) if uti.+i.=0
- O By N LA N R D 1 ’
A [(1,,1i,),(,,i,)] =
v 1272 (1)g_ (346 =i 3,48 =6 -i.)
A N e RV AR Y B

otherwise;
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where r = min{c:§ +i >0,c=1,2},
uc ¢

Ay )
e © (Acy)JC
gk(Jl’JZ) = fync—————“gzj———'dﬂk(Y) ,

and set gk(i,j) = 0 whenever i or j is negative.

Furthermore, from proposition 3.14, another result is obtained.

Proposition 4.2. The joint probability distribution of Yn, Z;, N&,

and Ni is given by

1 2 }

1 2
= = =1 =1 = =1 =1
Pr{Yn V,Zn k,Nn Jl’Nn J2|Yn-l u,Nn_l ?l’Nn—l i,

a.p (K)g, (3;53,) if uhi +,=0,
érkpv(r)gr(Jl+6rl—ll’32+5r2-6u2_12) otherWISe;

where r = min{c:éuc+ic>0,c=l,2} and gk(i,j) is given in proposition 4.1.

From proposition 4.1 and the feedback switch defined in section
4.1, the Markov chain {Yn’Ni’Ni} is irreducible and aperiodic.

We are now ready to make use of the method stated in remark 3.19
to find explicitly the stationary conditions for the particular queueing
system with feedback. 1In the process of doing so, we need several
additionai results; which are given in section A.2.

Theorem 4.3. The states of the queue length process {Yn’Ni’Ni}

are ergodic if and only if

pl+pz+p2(l-pl)+plklsz < l’

where pr = Arsr for r = 1,2.
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Proof: Using equation (5) of remark 3.19 with b = 2, V (§l 2) =
V ( ) and V (0,0) = 7(0;0,0), one obtains
= . . _l - 2
4% V(815 8p) = Gy (5158,5 1) [0m(030, 00481 (V) (5,,5,)-V2(0,5,))]
6, (5.,5,52) [0,1(050,0)+5. - (v2(0,5.)-1(030,0))]
OV 1’ 2’ 2 b bl 2 0 b 2 b b
2

+§2G2 (8 1’ 2,l)§ (V2(§ ) V (0,8 ))+G (§l 2,2)V2(0,§2),

for v = 0,2. For this particular model V (8.,8,.) = 0, since v cannot

1'71°72
take the value 1.

One needs to evaluate Vi(0,§2). As mentioned in remark 3.19,
the probabilities m(v;0,i) can be found by embedding a second Markov
chain within the original one, {Yn,Ni,Ni}. This has been done in
section A.2 and the generating function RV(§) = Ziﬂ(v;O,i)§i has been
found and evaluated for § = 1. Since the second Markov chain is to
be viewed as embedded within the first, one can use proposition A.7

and write
v2(0,5.) = R (5.)
v 272 v 27

for v = 0,2.
Also, from equation (2) of remark 3.19 and the specific assump-

tions of section 4.1, it follows that

(2) G (8

*
av®128250) = B (OH (A =5, A, +2,-8

272 2)
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If one denotes by Ar(§1’§2) the coefficient of pv(r) on the
right hand side of equation (2); and if one uses the above substitutions,

equation (1) can be rewritten as
— . 2 - -1
(3) v (5),5,) = m(030,0)[Toa p (1A (5,,5,)-p (2)5, A, (5,,5,)]
AR (5.3 [p (25 A, (5. .8.)-p (1) LA (5.,5.9]
0 22/ Py 8039 Bol3153,)7P )31 815743,
S | :
+p ()5 LA (5.,5.)V.(5.,5.)
P itldy 818315390%913153,
+p (15716 A (5.,5.)V.(5.,5.)
s Tt s R RAPYAL SRR T

fpr v = 0,2.

Denoting by bv(§l,§2) the first three terms of equation (3) and
by Bv(§1,§2) and.YV(§l,§2) the coefficients of VO(§1,§2) and V2(§l,§2)
respectively, one can solved equation (3) with respect to VO(§1’§2)

and V2(§1,§2); it is verified that

(4) V. (8.,8) = _ - ’
0'°1°°2 1 B0(§l,§2) Y2(§l,§2)+c(§l,§2)

and

. iy - (1-By(5,,5,))b,(5,,8,)+B,(5,,5,) b0(§l,§2),
2°71°72 l_BO(gl’§2)—Y2(§1’§2)+C(§1’§2)

where C(§l,§2) = Y2(§1’§2)B0(§1’§2)—Y0(§1’§2)B2(§l’§2).

Using proposition A.7, there exist a function XV(§2) such that

) R,(5,) = m(0;0,00X (5,),
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for v = 0,2; therefore, it is verified that
_ . 2 ) -1
(7) bv(§l,§2) = m(0;0,0) {Zrarpv(r)Ar(§l,§2) pv(2)§2 A2(§1’§2)
F X (5.)Ip (2)5 A, (5. ,8.)-p (1)§ 1A, (5.,5.)]
09/ IPRe) 39 Byl3139) 7Py Rts31 B115159,
-1
+ X2(§2)[pV(Z)A2(§l,§2)-Pv(l)§l §2A1(§1,§2)]} s

for v = 0,2. If one denotes by fv(§l,§2) the coefficient of m(0;0,0).
on the right hand side of equation (7), equations (4) and (5) become

1B, (§,15,) Y, (5,,5,)#C (51 ,5,)

(® Vo (51,5,) = m(0:0,0)

(1—B0(§1,§2))f2(§1,§2)+B2(§1,§2)f0(§1,§2)

9) V2(§ §2) = 1(0;0,0)

l’

Now, using the fact that Vv(§1,§2) are monotone énd bounded

functions, one can set

lim V (§.,8,) = 1lim 1lim V (8_,8,).

§ +1 v'"1’72 § 51 § 1 v 1’72
o1 1 2

§2+1

Furthermore, adding equations (8) and (9) and setting §2 =1,

one obtains

'fo(§1,1)+f2(§l,1)
(10) VO(§1,1)+V2(§1,1) = 1(0;0,0) l—BO(gl’l)—YZ(gl’l) ,
where
_ _ -1
3V(§l,l) = Yv(§l,l) = pv(l)§1 Al(§l,l),
- 2 - ' '
_fv(§l,l) = Zrurpv(r)Ar(ﬁl,l) pv(Z)A2(§l,l)

-1
+ X (DK, (D) Hp_(2)4,(5,,1)-p_(1)5] 4 (5,1},

for v = 0,2.
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Now letting §l+l in equation (10) and using L'Hospital's rule;
it follows that

(k152+1-pl)[XO(1)+X2(1)—al]+a

(11)  V.(1,1)+V.(1,1) = 1(030,0) 1,
v 0 2 l-pl
wheré pl = Xlgi. From equation (6) and proposition A.7,
A +p A
1 2711
(12) X (D)X, ()-a, = [ —— =].
0 2 1 Al+A2 (1 pz)(l pl) pz.plkls2

Using equation (12) together with the fact that Vo(l,l) + Vz(l,l) =1,
equation (11) gives

(A1+k2)[(l—p2)(1-01)-02—plk182]
Al(l+pl—p2)+A2

(13) m(050,0) =
A necessary and sufficient condition for the states to be
ergodic is m(0;0,0) > 0, or
- AS, <1,
P10, %P, (1-p ) 4P A S,

which proves the theoren.

Q.E.D.

Proposition 4.4. Under stationary conditions, the joint probability

[ .
of Yn and Zn is given by
= L = N - -
PriY =v,Z =k}=m(0;0,0) {0, p (K)+A(S, p (2)-8, P (1))-8, p (2)}
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where m(0;0,0) is given by equation (13) of theorem 4.3 and

2_..
A (10105 7Py 7Py (10 )4y 1y S5 )

1
A=
My (1=py) (1=01)=0,7P1 445,
Proof: Under stationary conditions, one can write
= 1= = ’ o 1
1) Pr{Yn v,Zn k} E: Zi Zi ﬂ(u,ll,lz)

u=0,2 172
1 2

. = 7'= - _ _
Pr{Yn v,Z! len_l w, N, ll’Nn-l 12},

now, using proposition 4.2, equation (1) becomes

(2) Pr{Yn=v,Z;=k}=n(0;0,0)ukpv(k)+ L Zi ﬂ(u;il,iz)érkpv(r);

w0,2 2

u+11+12>0

where r = min{c:duc+ic>0,c=l,2}. Evaluating the second term on the

right hand side of equation (2), it follows that
= 7 '=k l= . . -
Pr{Yn v,Z k} m(050,0)0 p_(k)+8,, p_(2)7(0;0,0) (X, (1)+X, (1)-1)
+ 81,0 (1) [1- (%, (14K, (1))7(0;0,0) ],

where xv(§) has been introduced in the proof of theorem 4.3. Now,
using propositioﬁ A.7, one obtains the desired result.
0.E.D.
From the above joint probability, one can find the marginal with
respect to Yn. In particulaf, the probability that the n-th output
departs is given by the following

Corollary 4.5. Under stationary conditions,

(O +1,) (1-p,)
)xl(l+pl—p2)+)\2

Pr{Yn=0} =
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Corollary 4.6. Under stationary conditions, the probability of an

idle system is

Lo, - P11 5,
1 l-p2

. 1
Proof: The system becomes idle whenever Nn = 0 and Ni = 0, knowing that

the n-th output departs. Hence,

. . |
Pr{idle system} = Pr{N =O,N2=OIY =0}
n ’n ''n

m(0;0,0) / Pr{Yn=o},

and then use corollary 4.5 and theorem 4.3.
Q.E.D.
Theorem 4.3 specifies stationary conditions for the MZ/GZ/l
queueing system with the feedback mechanism stated in section 4.1. Under
stationary conditions, the means queue lengths are found as follow:

First, for the mean queue lengths of type-1 units, one derives

1 o
E[Nn] = E: ZjZkJﬂ(u,J,k)
u=0,2
_ . ) )
= élfl[vo(§l’l)+v2(§l’l)]'
1

where V;(§l,l) can be evaluated by equations (8) and (9) of theorem 4.3.
Second, for the mean queue lengths of type-2 units, one also

derives

2 2
E[Yn+Nn] = E[Yn] + E[Nn],
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for E[Y ] = Pr{Y =2},
n n

and

E[Ni] Lin (V) (1,6,)4V)(1,8,)];

§1+l
where V&(l,§2) can be evaluated by equations (8) and (9) of theorenm
4.3.
Theorem 4.7; Under stationary conditions, the probability that there
is no type-1l units in the system is

M (1P =Py Py 7Py (1701 )+, 7Py 1y 5y
M 1Py Py,

Proof: Consider the following for large value of n;

(1) Pr{Ni=0} = Z 7 (u30,k).
u=0,2

Using proposition A.7 and theorem 4.3, equation (1) becomes

(2) Pr{erl=O} Ro(l) + Rz(l)

2_._.
_ m(050,0) (A1 (1=, -0,4p1 Py (1= ) +hypy 1y S
My | A0y S, ]

Finally, making use of equation (13) of theorem 4.3, equation (2)
gives the desired result.

Q.E.D.
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Notice that for Xz =Py = p2 = 0, theorems 4.3-4.7 give the
corresponding results for M/G/1 queues without feedback. Moreover, if

one sets Py =Py = 0 in the above theorems, results on priority queues

2
by Miller [1960] follow.
If Al = 0 in the above model, one obtains the M/G/1 queue with

Bernoulli feedback. In fact, theorem 4.3 gives p, < 1 - p2 as station-

2
ary conditions. This result has been first found by Takacs [1963] and
can also be derived from proposition 2.11 using the method of

transformation.

4.3, THE BUSY PERIOD PROCESS
Here, the distributions of idle periods and busy periods are
immediately found from corollary 3.21 and theorem 3.22 respectively.

Proposition 4.8. The idle periods Im's are exponentially distributed

with parameter Al + Az.

Proposition 4.9. Under stationary conditions the probability

distribution of busy periods is given by
*
*(s) = tfa_[1 H, ()
G (s) = Lo [1-p ~(p,=p )H,(e)] ra
1-p,H, (e)

*
where e = s+Al+A2—(Al+X2)G (s).

Proof: Using theorem 3.22 and the specific assumptions of section

4.1, one obtains
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*
I CHI N (8 018 2P, (PH_(e),
for u,v = 0,1,2. Therefore

0 0
J(s) = *
0 P2H2(e)

*
Substituting in the expression for G (s), one gets

*
p.(1-p,)H, (e)
¢"(s) = 520 | 1-p_+——2—" )H:(e) ;

and then the desired result follow.
Q.E.D.
Notice that in the case of no feedback, one could obtain Miller
[1960]'s results. Furthermore, if there is only one arrival stream
(Al=0), one obtains results in the case of Bernoulli . feedback, which
are extensions of Takacs [1963]'s results and can be also found from
proposition 2.16.

Corollary 4.10. Under stationary conditions, the mean of busy

period lengths is

eip ] = <L Py*Py*P1 59 PoPy |
L e P S S
Proof: In the usual way, one differentiates the Laplace-Stieltjes

transform given in proposition 4.9, then set s = 0 and note that
*!
G (0) = - E[Bm].

Q.E.D.
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4.4, THE OUTPUT PROCESS

For the particular queueing system stated in section 4.1,
several properties of the output process are now derived. From pro-
position 3.11, one states

Propositidn 4.11. The output process {Yn,Ni,Ni,

On} is Markov renewal

and its stationary transition probabilities are given by

Auv[(ll,lz),(Jl,Jz);X]

) o1 2. 12
= Pr{Y mVoN =N =0y Oy y=E N =ty b

where
(2 “ZA (x-y)
Zko‘kpv(k) (l_e )
0 -Ay j
e T €
T dt ()
if u+1l+12=0,
Auvl(llalz),(Jl,Jz);X]= 0 if e, < 0 some k,
Ay e
X e © (Acy) ¢
C
0
if ekzp all k;

i =] = -1 = sr=mi : +i >0,c=1,2;.
with e, Jc+6rc 6uc 1c(c 1,2);r=min{c Guc i 0.c 1,2}
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Furthermore, from proposition 3.14, one states

Proposition 4.12. The random variables Yn,Z;,Ni,Ni and On depends
1 2 » . . . o . .
only on Yn—l’ Nn—l’ and anl. Moreover, its joint probability distri-

bution is given by

=:. = l:' 2:' < = 1 =1 2 =4
PriY =v,z =k,N =i, ,N =3,,0 <x|Y _ =u,N LN =i}

-ACY()\ )JC

X e y

-~ (x-y)ZA c !

f o, (k) (1-e ) ER dH_(y)
0

if u+il+12=0,

e
X e SO €
!P 5rkPV(I)HC ~ dHr(y) otherwise;

where r=min{c:§ +i >0,c=1,2} and e =j +§ -§ -i .
uc ¢ c “c rc uc ¢

Proposition 4.13. Under stationary conditions, output interval

lengths Oﬁ's are identically distributed.
Proof: Using conditional probabilities, the distribution of output

interval lengths can be written as

(1) Pr{0n+l§x}= 2: ZiZjPr{On+r§dYn=u,Ni=i,Ni=j}nhw(u;i,j),
u=0,2

where one defined the state probability just after the n-th output to

be
(€:) I o Nl n2es
(2) T (u3i,3) Pr{Yn u, N =1, N jt.

When n tends to infinity and under stationary conditions, the

state probability defined in equation (2) become
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(3) r(esi, i) = lim 7™ (u3d,d),

n—>v
and is independent of n. Now, from proposition 4.12 the conditional

probability in equation (1) is independent of n and is found to be

Ve

X
2 =LA (x-y)
Jr Zkak(l-e )de(y)
0 if utitj=0,
= l—-' 2:' =
(4) Pr{o_, <x|Y =u,N =i,N =j}= ¢
Hr(x) if uti+i>0;

where r=1 whenever i>0 and r=2 otherwise. Then, the probability distri-
bution of On given in equatioq (1) is independent of n.
Q.E.D.
Considering proposition 4. i3 and the output process {Yn N i On}

one can state without proof the following property.

Proposition 4.14. The sequence {On} of output interval lengths forms-

a collection‘of mutually conditionally independent random variables

. 1 1.2 2
given {Yn—l’Yn’Nn—l’Nn’Nn—l’ n}'

Theorem 4.15. Under stationary conditions, the probability distri-

bution of output interval lengths is

A

F (S)"H &) e SHA +)\
2

)ﬂ(0;030)+l—Aﬂ(O;OsO)]
* >\2 . .
+ Hz(s) [ ('é;—x;*__xg)ﬂ(o’0a0)+(A_l)TT(O,OaO)]9

where m(0;0,0) is given by equation (13) of theorem 4.3 and A by

proposition 4.4.
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Proof: From proposition 4.13, one can write
(1) F_(x)= £.2.Pr{0_, <x|Y =u N=1, 8= (u31,5)
0 i7j ntl=''n n ’'n 2T
u=0,2

after the notation
F.(x) = lim Pr{o <x}.
0 oo n—
Taking the Laplace-Stieltjes transform of the probability distribution
given in equation (1) and using equation (4) of proposition 4.13, one
obtains, as a first step,

A1+A2 9

X * * .
(2) FO(S)=TI(O;O,0) (W)Zrakﬁk(s‘)*‘u; ZZiZjHr(S)ﬂ(U;l’J)

uti+ji>0

where r=1 whenever i>0 and r=2 otherwise. The second term on the

right hand side of equation (2) is evaluated as follow:
*
E: ZiZjHr(s)ﬂ(u;l,J)
u=0,2
uti+i>0
—H (s)2.T(030, j+1)+H. (s),Z,m(031+1,3
X ()D,m(2;0,5) . () T, I,m(23i+L,]
iy (8)2,M(250,1)+, (s) 2y 2,M(254+1,3)
K
=H2(S){Zj(ﬂ(O;O,j)+ﬂ(2;O,j))—ﬂ(O;O,O)}
*
+Hl(s){2i2j(ﬂ(O;i+l,j)+ﬂ(2;i+l,j))}

* *
=H2(s){RO(1)+R2(1)—n(0;0,0)}+H1(s){1-RO(1)-R2(1)}

using theorem 4.3. Now using proposition A.7, one obtains
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* *
=H,(s) {a-1}m(0;0,0)+11, (s){1-7(0;0,0)Al,

where 7(0;0,0) is given by equation (13) of théorem 4.3 and A by pro-
position 4.4. Then, from equation (2), one finally obtains the desired
result.
Q.E.D.
Notice that in the case where the service periods have the same
probability distribution regardless of the type of unit being served,
one can state from theorem 4.15,

Corollary 4.16. If Hl(x) = Hz(x), then the probability distri-

bution of output interval lengths is

A_+A

* — * l 2 . .
FO(S) = H (S) (W)W(O’O,O)-*.l_’”(()’o,()) ’

where T(0;0,0) is given by equation (13) of theorem 4.3.

Theorem 4.17. Under stationary conditions, the mean of the output

interval lengths is

l+pl+p2 . o .
"E[0] = T_;')\—““ - 32+A(82—Sl) 7T(0;0,0)+Sl,
12
where A and 7(0;0,0) are given in theorem 4.15.
Proof: From theorem 4.15, using standard techniques, one obtains
the desired result.

Q.EID'

Corollary 4.18. If Hl(x) = Hz(x), then the mean of output interval

lengths is
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l+pl+p2 i _
E[0] = DS S}TT(O;0,0)+S,
1 2

where m(0;0,0) is given in corollary 4.16.
Notice that in the case of only one Poisson stream (Al=0),
corollary 4.16 characterizes the output interval lengths for the M/G/1

queue with Bernoulli feedback. This result is new for the model first

studied by Takdcs [1963].

4.5. THE DEPARTURE PROCESS

Once the output process is known, it is a matter of filtering %he
state space to get the departure process. If one notes by Dm the |
interval length between the (m-1)-st and the m-th departure, and by

Qﬁ the queue length of type-k units just after the m-th departure, the

sequence {Qi,Qi,Dm} would be the departure process. By definition, it

is the process {Yn=O,Ni,Ni,On}, obtained by filtering the states
(YnfO,Ni=i,Ni#j) for i,3=0,1,... . Results from Anderson [1967] on

filtered Markov renewal process, enable us to state
Theorem 4.19. The departure process {Qi’Qi’Dm} is Markov renewal
over the state space {0,1,...}x{0,1,...}.

%
Proposition 4.20. Under stationary conditions; if Zm denotes the

' %
type of the m-th departure, then the probability of Zm is given by
Pr{z =k} = —={5_ A (1-p.)+5, (A+p, 1)}
iz =kl = o 0t ()40 (gtpg A )

for k=1,2.
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Proof: . Under stationary conditions, one derives

Pr{Yy =0,2'=2}
n n
Pri{Y =0} ’
n

X
(1) Pr{zm=2} =

for some n.

The terms on the right hand side of equation (1) are given in
proposition 4.4 and in corollary 4.5. Furthermore, one obtains
Pr{Z:=l} from l—Pr{Z;=2}.

Q.E.D.

*
Notice that the random process {Zm,Dm} could also be characterized.

One would need to filter the process {Yn,Z;,Ni,Ni,On} and then convolve
the probability distribution given in proposition 4.12. Since the
convolution involves a random number of terms, one would expect the

result to be messy.

4.6. APPLICATIONS TO COMPUTER MODELLING
In this section, the queueing system with feedback is particu-
larized further to a specific application: the modelling of computer
time-sharing systems. Basically, there are two kinds of models:
round-robin (RR) and foreground—baékground (FB). Each kind of model
will be described -and theorems from above will be used to derive results
concerning these models. These results will be found identical to
those previously published, whenever they could be found in literature.
Notice that the emphasié in this dissertation was on building a

probabilistic structure for feedback problems rather than on specific
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results that could be obtained from RR and FB models. It so happened
that our structure also fits the one used in computer modelling. More-
over, the waiting time process has been disregarded at the end of chapter
2, hence no attempt is made here to characterize the waiting time
process related to these computer models; although, this constitutes
one of the main interestsfih computer modéllingi

In the round-robin model (figure 4.2), jobs are taken from the
queue on a first-come first-served basis and are provided with a quantum
q of service. If a specific job is completed within the time interval
allocated, then it is simply released from the system. On the other
hand, if the specific job requires more time than the quantum, then it
is removed from the service and returned to the end of the queue. In
the latter case, this job waits until all the jobs in front of it get
through the processor before it gets another quantum of service. The

process continues this way for all jobs.

Service incomplete

Service completed
q Processor ~ -

Figure 4.2. Round-robin model
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Assume that jobs arrive according to a Poisson process with
parameter A and that the sequence of service times form a renewal
process with the partial probability distribution H(x)=1-Exp(-ux).
Furthermore, there is a quantum of size q>0. Here, there is only one
type of unit, therefore the model of figure 4.1 can be used with X1=O.
Since services are exponential, the probability for a unit to feed

back is given by »

pé = Pr{S>q} = e M,

For this simple model, proposition 4.1 is applied and the queue
length process {Yn.Nn} is Markovian. Furthermore the states are ergodic
if and only if p < 1-Exp(-uq), using theorem 4.3. These results were
previously obtained by Coffman [1968] for the M/M/1 queue with RR
diScipline.

Notice that the model developed in this dissertation enables us
to find much more t%an the results from Coffman [1968]. On one hand,
one could obtain also the characterization of busy period process as
well as output process for these RR model. On the other hand, one could
analyze system where service times are represented by a general
distribution.

It is also worthwhile to note that such a RR model could be

analyzed by the method of transformation illustrated in section 2.3.
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In the foreground-background model (figure 4.3), jobs to be
processed form two queues. First, the arriving jobs form a line on a
first-come first-served basis and then, one at a time, they are given
a quantum 9 of service. Again, if a specific job is completed within
this period of time, it leaves the system. If, on the other hand, the
specific job requires additional time, it is placed at the end of the
second queue where it must wait, aloﬁg with all similar jobs, for
another quantum 4, of service. After this quantum is exhausted, if
the job needs more time, it is put at the end of the second queue in
a round-robin fashion. In such a model, priority is given to the
first queue. Moreover, this model can be generalized to allow any
number of queues, where at the end of a quantum the unfinished job
is placed at the end of the next lower priority queue. In fact, this
generalization has been done by Schrage [1967] where he allows a count:

able number of these queues.

Service incomplete

Lo Background queue 1 q,

Service
Processor"[———é -

completed

Jobs arrival

Foreground queue 9

Figure 4.3. Foreground-background model



Assume that jobs arrive according to a Poisson process with
parameter A. Moreover, suppose thaﬁ the service times given to arriving
jobs is exponentially distributed with parameter,u1 and quantum size
qq5 while the service times given to the background jobs is expo-
nentially digtributed with parameter uz and quantum size qye Since
all arrivals are of the same type, one can use the model of figure 4.1

with A2=0. The probabilities for units to feed back are
= > = -
p, = Pris,>q.} = Exp(-iyq,),

for i=1,2. Again for this model, proposition 4.1 can be used and the
queue length process {Yn’Ni’Ni} is a Markov chain. Furthermore, the

states are ergodic if and only if
- < - - -
Au, Exp (=M, q;) “2(“1 M) [1-Exp(-U,q,) 1,
after using theorem 4.3.

4.7. CONCLUSIONS

In this chapter, a queueing model with two Poisson streams as
arrival and a particular feedback mechanism was analyzed. The queue
length process was completely characterized and stationary conditiens
explicitly found from theorems of chapter 3. As a by-product, results
from Miller [1960] were obtained by considering the no feedback case.
Moreover, the results of this chapter can be particularized to obtain

those already known for the M/G/1 queue. The probability distribution
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of busy period lengths found in this chapter can be simplified, by
considering the no feedback case, to the results found by Miller [1960].
Moreover, the treatment of the output process is completely new as

far as priority queues are cogcerned and therefore can be viewed as

an extension of results from Miller [1960]. As expected, the departure
process is proved to be Markov renewal.

In section 4.6, results were further particularized to the RR
and FB models of computer time-sharing systems. For the RR feedback,
theorem 4.3 gave the same stationary conditions previously found by
Coffman [1968]. For the FB feedback, stationary conditions are also

derived; these results are new as far as the author could find out.



CHAPTER 5

DISCUSSION

This dissertation was concerned with the analysis of queueing
systems with feedback. ‘A literature survey revealed very few research
reports in that area. In chapter 2, such systems were analyzed with a
view to finding an equivalent queueing system without feedback. 1In
chapter 3, é more general model was introduced and several properties
derived. The model was then particularized in chapter 4 to the case

where the arrival process is formed by two independent Poisson streams.

5.1. SUMMARY

The primary contributioﬁ of this dissertation consists in the
establishment of a model capable of analyzinquueueing sYstems with
feedback. The class of queueing systems is characterized by the
MRb/Gb/l queues; that is Markov renewal arrivals over a finite state
space and renewal-type service process with one server. The feedback
mechanism depends stochastically on the increment in queue length, the
amount of service the unit has just received, the type of unit and
whether or not the previous unit has fed back.

In chapter 2, we derived necessary and sufficient conditions
for the existence of an equivalence between a queueing system with

feedback and a G-server queue without feedback. In the case where

96
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such an equivalence exists, one can transform certain operating pro-
cesses for queueing systems with feedback into corresponding operating
processes for G-server queues without feedback. It was then found
that in the class of all MRb/Gb/l queues with feedback, systems with
one type of unit and Poisson arrivals are equivalent to some G-server
queues without feedback. Therefore, if one studies the queue length
process, the busy cycle process or the departure process for the M/G/1
queues with feedback and one type of unit, then one could use known
results and make the appropriate transformation.

Chapter 3 developed a model to analyze directly queueing systems
with feedback. We consider the sequence of output epochs as embedding
points. The queue length process was charactefized by a Markov chain
over a many-dimensional state space. The output process together with
the departure process were proved to be Markov remewal. It turns
out that this model is rich enough to genefate a large number of known
results for single-server queueing systems.

Thus the model of chapter 3 permits us to derive results obtained
by Vlach [1969] on the departure process from GI/G/1 queues; results
by Miller [1960] on priority queues and finally results by Takdcs [1963]
on the M/G/1 queue with Bernoulli feedback. In addition, the model
of chapter 3 pérmits some extensions for the queueing systems studied
by the above authors: the departure process from MZ/GZ/l queues with

priority and M/G/1 queues with state-dependent feédback.
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A secondary objective is to relate queueing systems with feed-
back to some applications. One area of applications that uses queueing
systems with feedback is the computer time-sharing modelling. The
main two models used, the RR and FB models, turned out to be special
cases of the model developed in chapter 4. In section 4.6, a particular
case for each model is worked out, results are obtained and are shown
to be the same as those previously published, whenever they already

appeared in the literature.

5.2. FUTURE STUDIES

The most significant assumption made in this investigation is
that there is no delay for a unit to feed back. This assumption makes
possible, when there is only one unit in the system, for the unit to
receive two consecutive periods of service without having the server
idle between the two periods. It will be a significant contribution
to analyze several of the random processes introduced in this disser-
tation, taking into account a delay. This delay could be deterministic
as well as stochastic. Moreover, it could depend on the type of unit
and might affect the order of units in the feedback process.

In section’2.4, it was shown that any priority rule of the kind
"feedback at entry R" affects the waiting time procegs. In this disser-
tation, the waiting time process for a particular queueing system has
been analyzed with R=1. In some applications, it would be advantageous
to characterize the waiting time process in a queueing system with
feedback for all positive values of R. Such a waiting time process

might be used in the RR and RB models.
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The busy period process analyzed in section 3.3 considered the
arrival process Mb only. When the arrival process MRb is considered,
the busy periods generated by arrivals during the service periods of
the originator become dependent. Consequently, the analysis of the
busy period process in MRb/Gb/l queues has to take into account these
dependencies. Nevertheless, it is believed that such anbanalysis can
be carried out. ;

The‘random process {Yn’zé’ﬁn’on} was characterized in proposi—
tion 3.14 for the arrival process Mb. In the case where the arrival
process is MRb’ we conjecture that Yn,Z;,gn,Kn,Un and 0n depend only

on Furthermore, the process {Y ,2',N ,K ,U ,0 }
n’n’n’n’ n’ n

Yn—l’ﬂn—l’Kn—l’Un—l'
can be used to characterize the sequence of types and the time between
types in the departure stream.

The sequence {On} was characterized in theorem 4.15 for the

arrival process M We conjecture that a necessary condition for {On}

9"
to be a renewal process is to have only one Poisson arrival stream.
Then, one can use results from Disney, Farrell and DeMorais [1973] to
characterize completely the departure process.

In section A.3 the arrival process Mb was introduced as a
particular case forAthe arrival'process MRb. An arrival process more
general than Mb but still a particular case of MRb is obtained when the
arrival process is compbsed of b dependent Poisson streams. The

dependence is such that the type of an arrival depends only on the

type of the previous arrival and the time between the two arrivals
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is exponentially distributed. We conjecture that proposition A.8
and lemma A.10 can be generalized to that arrival process. As pointed
out earlier, the analysis of the busy period process will be more

complicated for this new arrival process.

5.3. RELATED TOPICS

vThe distribution of service times was assumed to depend only
on the type of unit to be served, throughout the dissertation. A
possible generalization would be to make the sequence of service times
Markov renewal over the étate spéce formed by all types of units to
be served. We conjecture that most of the results will still hold"
with minor modifications. These modifications might bevapplied to
set-up time problems.

The arrival process assumed here was a Markov renewal process
over a finite state space. A possible extension would be to consider
a countable state space or even arbitrary state spaces ({inlar [1969]).

At present, very little is known about queueing systems with
feedback in which there are more than one server. The model introduced
in chapter 3 uses the embedding at output epochs. It is not yet known
to the author how this model can be adapted to the study of queueing
systems with feedback which contain several servers.

A queueing system such as the one defined in section 1.1 might
contain a decomposition switch, located after a service facility,
which may either feed back units to aprevious service facility or feed

forward units to some further service facility. At present, it is not
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known if a technique such as the one introduced in chapter 3 could be
used to analyze either case. Nevertheless, it is believed that it will
be preferable to separate the queueing network and analyze each com-
ponent separately. Otherwise, the main difficulty would be to handle
two or more service facilities simultaneously.

Again in section 1.1, the technique of separation of queueing
network into components was introduced. If we try to use this method
in the analysis of queueing systems with feedback, another problem will
appear. The input process in figure 1.1 is formed by the superposition
of the arrival process and the feedback process. A preliminary inves-
tigation showed that these twb processes are in general dependent.
Therefore, one needs to study ﬁhe superposition of two dependent Markov
renewal processes. The analysis of the superposition of twobindependent
Markov renewal processes has been carried out (Cherry [1972]) and proved
to be complicated. Hence, it is not obvious how one should model the
superposition of Markov renewal processes related by the feedback méch-

anism of assumption C.

5.4. CONCLUDING COMMENTS

Having characterized several operating processes for queueing
systems with feedback, two observations are appropriate. First, the
framework ﬁnderlying this dissertation suggests many more investigationms.
A few of these investigations are mentioned in section 5.2. Second,
the basic structure assumed in section 2.1 can be generalized. Some

of these generalizations are introduced in section 5.3.
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A detailed analysis, involving particular éases, could have
been done in chapter 3, but the desire for generality and the disser-
tation's main stream of development prevailed. There are many investi-
gations that could be pushed further for the different random processes
introduced in chapter 3. Thus, this dissertation presents only the
beginning of several research topics, which hopefully will be continued.

If one measures the challenge of a topic by the number of new
developments which it generates, the '"queueing netwofk" topic has

certainly achieved a very high score--for the author at least!



APPENDIX

SOME DERIVATIONS

A.1l, SYSTEM OF GENERATING FUNCTIONS
Lemma A.l. The generating functions for the queue length process

are given by the following system:

_ . . -1, u _yutl
v (5)= ﬁi[cov(é,u)[auﬂ(0,9)+§u (Vo8- (8 0]

u=ly-1

-1..k k+1 u
+ §u'kzi 6y GO T IV ) Ve (8 D146, (G5 Va(S,)

for v = 0,1,...,b.
Proof: Using the definition of generating function VV(§) and pro-

position 3.17, equation (1) of remark 3.19 becomes

(1) v, ©O=0:0 Y sy @p+ ) mwn ) s @D,
| o 2 i

for v =0,1,...,b. The index set A is defined to be

b={(u;1)#(0;0) :u=0,1,..,b,i=[1 1,1 =0,1,...5¢=1,2,..,b}.

Let A and B be the first and the second term respectively of
equation(l). Using generating functions GOV(§3h), defined in equation

(2) of remark 3.19, one can write

2) A = 1(0;0)%0

hGOv(éjh)'
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In the evaluation of the term B, one first partitions the index
set into sets representing the different value of u. Hence, the term

B can take the form

(3) B=B +3I°B.
0 uu

On one hand, one recalls

- v - i i .
(4) By }: TT(O,_l_)~Z 5, (13D -
: i>0 320

The above summation can be further partitioned into b terms with respect

to ik >0, for k =1,2,...,b. Let BOk denote each of the terms, with

the meaning that for the term i, > 0, one also has i, =i,=...=i, .=0.

k 172 k-1

Thus, one can rewrite equation (4) as

b

(5) BO = ZkBOk;
where
- Loy el ..
(6) BOk E: Zi ...Zi ”(O’Ek) E_AOV(}k,;),
50 i =1 k+1 b
NESUE
for i = [O,...,O,1k,1k+l,...,1b].

From assumption E, the type of the unit to be served is found

from
r=min{c:ic>0,c=l,2, ...,bl},

therefore r = k and the number of arrivals of each type is given by:
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3. for ¢=1,2,...,k-1;
e, = X JC+1—1c for c=k;
NP for c=k+l,...,b.

Now, using the expression for on(ik,i) given in proposition

3.17, equation (6) becomes

_ B Rt
Bo = Coy(E5K) 5, (Vo (B -Vg " (5 1))

where the generating functions VS(ﬁk) are defined in remark 3.19.

Hence equation (5) becomes

_ b NP D
©) By = LGy, (5105, (Vo(8 )=V, ¢

0 §k+1))’

On the other hand, for u=1,2,...,b; the term Bu of equation

(3) can be written as

(8) B = Z'av(u;i%z Ha @1
u uv
130 k2
Again, the above summation can be partitioned into two groups of terms.

A first group contains u-1 terms and are identified with respect to

i >0 for k = 1,2,...,u-1. Use Bu to denote each of these terms,

k

with the meaning that for the term with i

k

K > 0, one also has

il="'=ik—l=0' The second group contains only one term and is denoted‘
. . . L3 . = . = = . = . . , t 2
by Buu, it is characterized by i 12 cee lu—l 0, 1u30 Thus, equation

(8) can be rewritten as

_ ou
(9 Bu - ZkBuk’
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where
(10) B = }: I, eeeeol m(wsi) A (4 ,5)
uk L Ll iy %k uv —k
320 1, =a
with a = 1-6uk.
Similarly to the logic used in evaluating equation (6), it follows
that
( -1, .k k+1
. - i <
6 GOES (LEDVT 6y k<,
Buk =9
. u i =
Guv(g,u)Vu(gu) if k = u.

\

Therefore, equation (9) is found to be

-1
_ ! k _gk+l coagd
(11) B, = Zlcw(g,mk 8L VeV (B 46 (v (s),

for u = 1,2,...,b. Combining equations (2), (3), (7) and (11) into

equation (1), one obtains the desired result.

Q.E.D.

A.2, THE EMBEDDED MARKOV CHAIN

Definition A.2. If B(*;°) denotes the joint probability distribution

of the number of service completions and the length of the busy period

of type-1 units, one defines its transform to be
* ; -
B (§;s) = Zi§1+1fye SV (it+1;y),

with |§]<1 and Re{s}>0.
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Lemma A.3. For k > 1,
. -9 < k%
Xi*‘tfyc Yap® iy = 58 @00

with |§]<1 and Re{s}>0.
Proof: For k=1, this is simply a restatement of definition A.2
above. Here, we will show the statement for k=2; for k>3 the proof

is similar. = Recall

5 Vit
B( )(2+i;y) = Ezi B(2+i-j;y-t)dB(j;t).
0 J° |

Hence, one is able to write

i, ~-sy. (2),, ...
Zi§ fye dB“’ (k+i;y)
o j4]

[o 0]

. y o

=z z 51-ff e SYdB(2+i-j;y-t)dB(j;t),
070 |

i=0 j=1
now with an appropriate change of variables and change of summation

indexes, one obtains the desired results.
Q.E.D.
Lemma A.4. Whenever the length of the busy period is finite; if
* — —
= — . — = ) = —
F(8) = B (§pl+l pl,kz §K2), then F(1)=1 and F’(1) (p1+A281)/(l XlSl).
* ,
Proof: From the definition of B (*;*), it is immediate that F(1)=1.

Now, using the change of variable u = §pl+1--pl and v = A2-§X2, the

derivative of F(*) becomes

) S N U A DS
M P16 = st (usn) = A B (wm).
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Note that when §->1 then u»l and v>0; therefore, one computes

2) lim ig-— BY (u3v) = T, (k+1)B(kl;).
u k
url
v>0
and
1in & B ay) =
(3) im 5;-B (u3v) = —fy y-deB(k+l,y).
u>l
v>0

If one denotes by B1 the length of busy period of type-1
units and by A the number of services during Bl’ then the right hand
side of equation (2) become E[A], while the right hand side of equation

(3) is —E[Bi]. Consequently, equation (1) is rewritten into
, =
(4) F'(1) plE[A] + AZE[Bl].

The busy period can be written as
(5) B, - Z s,
i=1
where Si represents the length of the i-th service of type-1 units.
Since {Sn} forms the renewal process introduced in assumption B,

Wald's theorem can be used to transform equation (5) into

6) B(B,] = E[A]*S ;

E[A]<», since the length of busy periods are finite under stationary

conditions.
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Using equation (6), the quantity given in equation (4) becomes
, _ _
) F'(1) = (p,/5+))E[B 1.

Since type-1 units cannot feed back into type-l units in this

particular case, E[B.] can be evaluated from known results of M/G/1

1

queues; that is,
‘ =g -Ag
(8) E(B,] = 5,/(1-A;5)).

Substituting the expression of equation (8) into equation (7),

one obtains the desired result.

Q.E.D.
Lemma A.5. The stationary transition probabilities of the Markov
. 2.1 .
chain {Ym,Nm|Nm=0} are given by
CoaN 2, [ N S
qu(l’J) = Pr{Ym‘V,Nm—JIYm_l—u,Nm-O,Nm_l—l}’
where
o, p (1)A(3,1,0)+a,D (0,5) if ut+i=0,
Q (i,j) =
uv D_(d,3) if u+i>0;

with d = i+6u2—l{ In addition,

Dv(d’j)=pv(2)g2(09j_d)

£

+) @) Z g, (k,h=d)p_ (DA(E,k,h),
e=0,2 k=1 h=d
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ALK, h)= }Ej ii (k+2—l)p;(1_p1)k+a—l-c
a=0 c=0
—Xzy j-h-c
e (Ay)
of e 2 a3 (erasy)

such that f=j—6€2. Moreover, the above transitions are defined for
u,v=0,2 and i,j=0,1,.... The quantity gz(-,‘) is given in proposition 4.1.

Proof: The random process {Ym,Ni|Ni=O} is a second Markov chain

1

2 .
n’Nn}’ where one considers the states

embedded in the original one, {Yn,N
(u;q,i) such that Ni=0, that is, whenever there is no type-l unit in

the system just after a service completion. Thus, the one-step tran-

sition probabilities can be denoted by

N -y ol 2
(1) QW<1,J)—Pr{Ym-v,Nm—JIYm_l w, N =0,N__ =i},

for u,v=0,2 and i,j=0,1,... . In finding these transition probabilities

there are two cases to consider;

i)  u+i=0: In this case, the system becomes idle just after some

output epoch t;_ Let Z_ be the type of the first arrival after

1°

t&—l’ thus equation (1) becomes
Nl 02 o 2o —0.N =0 .N% _=0.7 =
(2) Qp,(0,3)= Zio PriY =v,N =jY ,=0,N =0,N ,=0,Z =r}.
type-1
£ . e = = - - Y |
l‘ B i
|
} : $.9.0.0.90.9.0.9.9.9.0,.9.0.9.0.9.0.90.90.9.90.0.90.90.9,0.0,.0.0,.9.0,0,0.0,0.4 ; o
£ t!'
m-1 m
(050,0) (v30,3)

Figure A.1. Busy period of type-l units
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In the case of an arrival of type-1l, one needs only to consider
the busy period of type-1 units, denoted by Bl’ with an appropriate

number of arrivals of type-2 during Bl; thus from figure A.1, it is

readily verified that

2o o wden w2 op o =
(3) Pri{Y =v,N =j|Y _,=0,N =0,N'_ =0,z =1}

-Xzy j-c

© e Toy
=p, (1) Z i (®py A-p) ™Y G Bty
a=0 c=0

where B(*;°*) represents the joint probability distribution of the
number of service completions and the length of the busy period of

type-1 units introduced in definition A.2.

type-2 .
<---~Sz-—--;§< ------ B{k)----—-—-——ai
Jl | EYXYXYYYXXXXXYYXXYYYYYXX}%‘ o
t' t t'
m-1 n m
(0;0,0) + (esk,h) (v;0,3)

Figure A.2. Service time preceding the busy period

In the event that an arrival of type-2 comes first, one needs
to consider its service time 82 and then possibly the busy period
generated by the k arrivals of type-1 during 82. Then, from figure

A.2, it follows that

1 2

2
D = =1 = = = =9
(4) Ir{Ym voN JIYm_l o,Nm O,Nm_ o,zm 2}

o f

2, 8,034, (0) " 2 @) ) g WA,
e=0,2 k=1 h=0

1
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where

+a l c k+a~1-c
pl(l pl)

uM",“

A(f,k,h)= 5?

—X f-h-c

y F=h=0) dB(k)(k+a;y)

.J

with f=j—5e2 and gr(',') was introduced in proposition 4.1.

ii) uti>0: In this case, a unit of type-2 enters into service
facility immediately after t;-l’ therefore, a service time S2 is
first considered; the situation can be illustrated in figure A.3

below.

! I k I

|(--—-Sz-—---)é —————————— ()--——--———---“..)'

i

i :YYYX’YYXYYXXXXYXYYYXXYYYYXY'XYY’(YY'XYX (

T T

t 1 1

m-1 th tm
(u;0,1) (e;k,h) (v;0,3)

Figure A.3. Busy period without idle period

This case is similar to the one in figure A.2 with no idle

period; therefore, one can use equation (4), to write

(5) Q (1,5)=p(2)8,(0,3-d)
uv - ¢
o, () ) b (2)) Z o (kh-dACE, Kb,
e=0,2 k=1 h=d

where d=1+6u2—l and f=j—6e2; this is for Jz;+6u2—l
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For j<i+6u2-1, qu(i,j)=0 since both terms on the right hand
side of equation (5) becomes zero. Now, combining equations (3), (4)
and (5) th;ough equation (2), equation (1) gives the desired result.
Q.E.D.
Lemma A.6. For the embedded Markov chain {Ym,NiINi=O}, the generating
functions Gv(§) = Zjﬂb(v;j)§j([§|§} and v=0,2) are such that

2—

Gy (146, (1) =

where pk=kk§£ for k=1,2. ﬂb(v;j) denotes the stationary probabilities
for this Markov chain.
Proof: Associated with the embedded Markov chain {Ym’NilNi=O}’ let
the stationary probabilities be
’ﬂo(v;j) = lim Pr{Y =V,N2=j]Nl=0},
n n n

n->o
which are such that

T Liy = T s ..
(1) S = ) LT e (),

u=0,2

where the transition probabilities qu(i,j) are given in lemma A.5.
Now, multiplying equation (1) by §9 and summing over for

j=0,l,...,vone obtains

) HOEAUDMELMCR TSI NCIIDA ICH

u=0,2 i=0
u+i>0
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Using lemma A.5, the first term of equation (2) can be rewritten as

i = ot L
* -1, % *
+ oy (p, (2)H (@)+p (1)dyd] (Hy (b)-H) (2))

and the last term of equation (2) is evaluated by the following two

|

equations:

(4) 3Ty (03 1) I, 590y (3#41,3)=87 (6(8)=1,(0:0))  (2)H, (2)
+ p (1) dydT () (b)-H, (a)) },

() Mo (2502,500,, (1,026, () (o (Ey @)

+ p, (D) d,d7 () (b) -y (2)) ]

Collecting equations (3), (4) and (5) together, equation (2)

- becomes

(6 6, (5) = Ty(0;0)A (557 (6q(8)=T(030))46, () 1B, (5),

for v=0,2, where Av(§) is the right hand side of equation (3) and
Bv(§) is the coefficient of G2(§) on the right hand side of equation

(5); while

) - §X2, c = A2 - §A2,

Qo
]

Xl + A

o
L1}

* == —
a - MB (d;50), d, = 5 + 1Py,

*
for k = 1,2; B (*;°*) has been introduced in definition A.2.
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Solving equation (6) for GO(§) and G2(§), it is readily verified
that

: -1
(1-B, (8))A,(5)+(A, (8)-§ )B,(5)

1]

’

G0(§) WO(O;O)

-1
l—B2(§)-§ BO(§)

-1
A, (5)=5 7B, (§)+A, (88 (5)-4 (5)B, (5)]

G2(§) WO(O;O)

-1
l—B2(§)-§ BO(§)
Adding GO(§) and‘G2(§); using L'Hospital's rule with §+1, and
finally substituting the expression found in lemma A.4, one obtains the
desired result.

Q.E.D.

Proposition A.7. For the embedded Markov chain {Ym,Nl=0,Ni}, the

m
generating functions Rv(§) = Zjﬂ(v;O,j)§J(|§]§} and v=0,2) are such that

) -
1(030,0) | 11 17P17Pp PPy (1-01))+A9-p A S,

R (1)+R, (1) ~ ~ . T s
0 2 A1+A2 (1 pz)(l pl) p2 pleS2

where pk=l£§k for k=0,2. 7(v;0,j) denotes the stationary probabilities

for this Markov chain.

Proof: Consider the two embedded Markov chains {Ym,N;=O,Ni} and
{Ym,NiiNi=0}. On one hand, if states (v;0,j) are filtered from the

process {Ym,Nl,Ni}, on obtains the filtered Markov chain {Ym,Nl

=0,N2}.
m m m

On the other hand, if one conditions the process {Yn,Ni,Ni} by the

event Ni = 0, the Markov chain {Ym’NilNi=0} is obtained. Consequently,
' 1, .2 2, 1

the sets of sample paths generated by {Ym,Nm—O,Nm} and {Ym,NmINm—O}

are identical. Therefore, the stationary probabilities of these

Markov chains are the same; thus
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TrO(V;j) = H(V;O’j)a
for v=0,2 and j=0,1,... . Then, from lemma A.6, it follows that
R () = Gv(§),

for v=0,2; and one obtains the desired result.

Q.E.D.

A.3. A SUB-CLASS OF ARRIVAL PROCESSES

Proposition A.8. MRb = Mb if and only if the arrival process
stated in assumption A has the stationary transition probability

distributions given by

Ahk(x) = ak(l"e—XZA)9

where a = kk/Zk for h,k = 1,2,...,b and x>0. IA represents the sum-
mation of Ak for k going from 1 to b.

Proof: The necessary part is easily obtained by considering results
from McFadden [1962] and Cherry [1972]. The sufficiency is first
proved for b=2; let Tk be the time interval between two arrivals of
type-k units for k=1,2. If N denotes the number of arrivals necessary
to obfain a second type-k unit, then N is a random variable with the

range {1,2,...}.

Now, the probability distribution of Tl is derived as follow:

(oo}

]

(1) F o (%)

< =
T Pr{T <x,N n},

1 n=
00

F_ (x;n).
T
I; l

]
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Assumption A is used to find

*

(2)

F* (5im) - All (s) if n=1,
T A () AN ()1M 2T (s) i n=2,3,...;
12818y, 21 335003
where
A
N
(3) A (s) = X FApts

for h,k=1,2.

Thus, using equations (2) and (3) into equation (1), one

obtains
A

* 1

F. (s) = ;

Tl Xl+s
that is, Tl is exponentially distributed with parameter Xl. Similarly,
one can show that T2 is also exponentially distributed with parameter
Az.

Since the stationary transition probability distribution,
Ahk(°) does not depend on h, the types of two consecutive arrivals
are independent. Also, since Tk(k=l,2) has the usual forgetfulness

property, the arrival process is MZ'

For the cése b>2, one can form two groups: A, and AE =

1

Az + Az + .00t Xb and use the method above to show that Tk(k=l,2...,b)

has the usual forgetfulness property. Therefore, the arrival process

is Mb'

Q.E.D.
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The forgetfulness property is well-defined in the context of
renewal processes. Since the arrival process considered in this
paper is Markov renewal, let us extend the forgetfulness‘property
to more general random processes.

Definition A.9. A Markov renewal process {Zn,Sn} such that

Pr{ z_=k,X <xty | z__;=h, Xn>x}=Pr{Zn=k,Xn_<_y} ,

is said to have the forgetfulness property.

Remark that whenever the Markov renewal process {Zm,Xm} has
only one type, definition A.9 becomes the usual forgetfulness property.
Lemma A.10. A Markov renewal process {Zn,Xn}béver the finite
ergodic state space {1,2,...,b} has the forgetfulness property if and

only if the transition probabilities are given by

A () = o (e,

for h,k=1,2,...,b.
Proof:  On one hand, if the transition probabilities of {Zn,Xn}
is the one specified above, the equation of definition A.9 is obviously
satified and one obtains the forgetfulness property.
On the other hand, if {Zn’Xn} satisfies the forgetfulness pro-

perty, then from definition A.9, one obtains

A 1Y) A ()
(D 1—Bh(x) - ZrurArk(Y)’

where u. is the stationary probability associated with the Markov

chain {Zm} given in assumption A.
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From assumption A, the transition probabilities satisfy

Ahk(0+)=0, hence equation (1) can be rewritten as

Ahk(x+y)—Ahk(X)
y

Ark(y)—Ark(0+)
y

b
= (l—Bh(x))Zrur

By taking the limit as y goes to 0+ in the above equation, one

gets
2) ALGO = (158 (0)Eou Al (04),

these derivatives exist from assumption A. Notice that a particular
solution of the differential equation given by equation (2) is

precisely

Ahk(x) = ak(l—e—ZX) .

The boundary condition Ahk(0+)=0 is satisfied by the above
solution; therefore, this solution is unique and one obtains the

desired result.

Q.E.D.
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