Method, apparatus, and experimental results are presented from an investigation which is part of a major study of the low temperature compressibilities of pure gases

COMPRESSIBILITIES FOR HELIUM AT TEMPERATURES FROM 70 TO $120^{\circ} \mathrm{K}$ AND PRESSURES TO 690 atm

J. A. SULLIVAN and R. E. SONNTAG \dagger

A programme has been undertaken at the University of Michigan to extend the low temperature compressibility measurements of pure gases to higher pressures and to investigate the $P-v-T$ behaviour of various gas mixtures. The work presented here is a portion of this undertaking. The $P-v-T$ behaviour in the argon-nitrogen system has been investigated, ${ }^{1}$ as has that for neon, ${ }^{2}$ and work is currently in progress on the extension of neon data to temperatures below $70^{\circ} \mathrm{K}$.

The Burnett Method

The method used to collect the data in this work was originally proposed by Burnett ${ }^{3}$ in 1936. This technique makes it possible to obtain accurate compressibility data for pure gases and gas mixtures without having to determine the volume and mass of the test gas at each experimental point. The method has been used successfully in recent years by numerous investigators ${ }^{4-14}$ over wide ranges of temperature and pressure.

In using this method two volumes are placed in an accurately controlled temperature environment and the larger volume is charged with the test gas to some initial pressure P_{0}. With the smaller volume evacuated each time, the gas is expanded in a series of steps to a low pressure. The information generated by this procedure is thus a series of pressures

$$
\begin{equation*}
P_{0}, P_{1}, P_{2}, \ldots, P_{j-1}, P_{j} \tag{1}
\end{equation*}
$$

all measured for a single isotherm. An analysis of the method shows that the compressibility for each pressure point can be computed from the expression

$$
Z_{j}=\frac{P_{j} \prod_{i=1}^{j} N_{i}}{P_{0} / Z_{0}}
$$

where the N_{i} are defined by

$$
\begin{equation*}
N_{i}=N_{0} C_{i} \tag{3}
\end{equation*}
$$

The quantity N_{0} is called 'the equipment constant' and is defined as

$$
\begin{equation*}
N_{0}=\frac{V_{\mathrm{I}}+V_{\mathrm{II}}}{V_{\mathrm{I}}} \tag{4}
\end{equation*}
$$

where V_{I} is the volume of the larger cell and $V_{\text {II }}$ the volume of the smaller cell.

The C_{i} are correction terms for expansion of the cell volumes due to pressurization. The equipment constant is evaluated by extrapolating a plot of $P_{j_{-1}} / P_{j}$ versus P_{j} to zero pressure, and the fill constant $\left(P_{0} / Z_{0}\right)$ is evaluated by extrapolating a plot of

$$
P_{j} \prod_{i=1}^{j} N_{i} \text { versus } P_{j}
$$

to zero pressure.
For this research, where small volumes of the test gas were not at the test temperature (dead-space volumes), the expressions presented above must be modified as described in references 11 and 12. In addition, the values of N_{0} and P_{0} / Z_{0} can be adjusted by consideration of the non-linear behaviour of the experimental points on a plot of $v_{j}\left(Z_{j}-1\right)$ versus $1 / v_{j}$ as described in reference (5) or (15).

This experiment was designed and data collected with the intention of using the data reduction procedure of reference (5). In doing so, it was found that the results for helium in this range are extremely sensitive to the parameter P_{0} / Z_{0}, in addition to N_{0}. This led to the development of the double-optimization technique described in reference (15), which was then used to reduce the helium data. The experimental data-point coverage was not the optimum required for this new analytical technique; this has introduced some scatter into the second virial coefficient results, but has only a small effect on the values of compressibilities, the results of principal interest in this investigation.

[^0]
Experimental Apparatus

The Burnett cells used in this work were heavy-walled cylinders, machined end-to-end in a 3 in . o.d. $\times 12.375 \mathrm{in}$. bar of 347 stainless steel. The cell diameters were 1.5 in., with the volume of the larger cell $211.5 \mathrm{~cm}^{3}$ and that of the smaller cell $41 \cdot 1 \mathrm{~cm}^{3}$. The resulting value of N_{0} is about $1 \cdot 194$ for the temperature range of this investigation. The cell block was clad with 0.25 in . copper to aid in the attainment of temperature uniformity.

The primary temperature measurement was made with a Leeds and Northrup Type 8164 platinum resistance thermometer completely inserted in a hole drilled into the cell material between the two chambers. The resistance was read on a type G-2 Mueller bridge. A copperconstantan difference thermocouple referenced to the thermometer was located inside each cell, and others were placed on the outside of the cell block to detect any possible temperature gradients. The e.m.f. values were read on a Leeds and Northrup Wenner potentiometer. Thus it was possible to detect cell gradients of the order of $\pm 0.005 \mathrm{degK}$. The absolute temperatures reported in this work are considered constant and accurate to $\pm 0.015 \mathrm{degK}$.
The Burnett cells were suspended on 0.040 in . diameter wires in the lower portion of a cryostat insulated with multilayer insulation as indicated in Figure 1. An automatically controlled resistance heater made from 28 gauge Chromel-A wire was located around the cells and an additional heater was placed in the upper portion of the cryostat. The cryostat was filled with liquid nitrogen for temperatures from 70 to $100^{\circ} \mathrm{K}$, and with liquid argon for the $120^{\circ} \mathrm{K}$ isotherm. The temperature was maintained constant by controlling the vapour pressure of the bath fluid. The bath was stirred by means of the magnetic stirring arrangement indicated in Figure 1. With this arrangement the bath temperature could be maintained within $\pm 0.005 \mathrm{degK}$ of the desired temperature for periods exceeding 30 min with only minor adjustments of the controls.
The Burnett cells were connected to an inlet valve, expansion valve, and exhaust valve that were located outside the cryostat. In addition, a differential pressure indicator and the capillary tubing used to connect it to the inlet line of the large cell were also located outside the cryostat. The small volumes in the connecting lines, valves, and DPI constituted 'dead-space volumes' which had to be taken into account in analysing the data. The temperatures of the dead space volumes were measured with copper-constantan thermocouples, two of which were located on the lines leading from the valves to the cells. Two additional thermocouples were used to measure the temperature of the DPI and the valves. The temperatures of the dead-space volumes were recorded for each test point and averaged to obtain the dead-space temperature used in the data reduction. The total deadspace volume in this apparatus was about $0.8 \mathrm{~cm}^{3}$.

The pressure was measured with a Ruska Type $2400 \cdot 1$ dead-weight gauge, with the oil side of the dead-weight gauge separated from the test gas by the Ruska Type $2416 \cdot 1$ differential pressure indicator. From an error analysis of the overall pressure measurement system, the absolute accuracy of the pressure measurement is considered to be

$$
\begin{equation*}
\Delta P=1.26 \times 10^{-4} P+0.004 \quad\left(\mathrm{lb} / \mathrm{in}^{2}\right) \tag{5}
\end{equation*}
$$

Figure 1. Schematic drawing of the cryostat

Experimental Procedure

After evacuating the smaller cell to $20-30 \mu \mathrm{Hg}$ and expanding the test gas from V_{I} to V_{II}, the temperature of the cells was frequently checked, and the vapour pressure controls and heater controls were manipulated so as to force the cells to remain at the desired temperature during the time required to take a point ($20-30$ min after expansion). The difference thermocouples were also monitored and when the difference thermocouples in the cells had indicated readings less than $0.25 \mu \mathrm{~V}$ for 5 min the expansion valve was closed and the final null of the DPI was carried out. The cell temperature reading and the temperatures of the dead-space volumes were then recorded. Following this, the barometer reading was recorded and the gas expanded from the smaller cell and evacuation initiated. The room temperature, oil temperature, and exact weight used on the dead-weight gauge were then recorded. The average total time for one data point was about 70 min .

Experimental Results

Compressibilities

The isotherms for helium were investigated using high purity helium supplied by the U.S. Bureau of Mines helium plant at Amarillo, Texas. The purity of the helium conformed to the specifications listed in Table 1. The experimentally determined values of the compressibilities for helium are listed in Table 2 along with the computed values of the specific volumes. The number of experimental points for each isotherm is composed of the points for a complete run from 690 atm down to about 17 atm and the points for a partial run ($6-8$ points) at high pressures. The compressibilities for the data points of a partial run were obtained by fitting the reduced data for the full run to a fifth or sixth order polynomial in pressure and computing the compressibility factor for the last measured pressure of the partial run. By making the assumption that N_{0} is the same for the partial run as for

TABLE 1. HELIUM PURITY

Contaminant	Amount (p.p.m.)
Hydrogen	<0.4
Methane	0.0
Water	<0.5
Neon	<14.0
Nitrogen	<4.0
Oxygen	<0.8
Argon	Trace
Carbon dioxide	<0.1

the full run, the value of the fill constant for the partial run can be determined from

$$
\begin{equation*}
P_{0} / Z_{0}=\frac{P_{l}}{Z_{l}} \prod_{i=1}^{\prime} N_{i} \tag{6}
\end{equation*}
$$

Knowing P_{0} / Z_{0} and N_{0} for the partial run permits the computation of the compressibilities for the run.
Table 3 is a comparison of the experimental compressibilities for helium with published values for selected values of pressure. The values of compressibility listed from the work of Holborn and Otto ${ }^{16-18}$ were obtained by interpolating between their isotherms. The values published by Mann ${ }^{19}$ were calculated from the Strobridge equation of state, based on existing data in the temperature range $3-300^{\circ} \mathrm{K}$. The values of compressibility listed for this work were obtained by fitting each isotherm to the Berlin expansion and computing the values of compressibility for the even pressures listed in Table 3.

It is seen that in the range $0-100 \mathrm{~atm}$ the compressibilities from this work agree with the results of Holborn and Otto to within 0.3 per cent, while the agreement with the calculated results of Mann is somewhat better than 0.15 per cent.

Second Virial Coefficients

Second virial coefficients obtained from the experimental compressibility data at the four isotherms are shown in Figure 2, and compared with those of previous investigators. Although these values exhibit some scatter, the overall agreement with previous work, especially the recent values of White, is satisfactory. As

Figure 2. Second virial coefficients

TABLE 2. EXPERIMENTAL RESULTS

$T(K)$	$P(a t m)$	$Z=P v / R T$	$v\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$T\left({ }^{\circ} \mathrm{K}\right)$	$P(a t m)$	$Z=P_{v} / R T$	$v\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$T\left({ }^{\circ} \mathrm{K}\right)$	$P(a t m)$	$Z=P v / R T$	$v\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$
70	684.8179	$2 \cdot 38703$	5.00180	80	212.1853	1.37949	10.6620	100	$78 \cdot 6122$	1.11376	29.0434
	575.2362	$2 \cdot 17780$	5.43269		192.5948	1.34369	11.4417		64.5923	1.09325	34.6964
	477.0025	1.98494	5.97132		166.9379	1.29679	12.7394		53.2492	1.07670	41.4500
	408.8116	1.84789	6.48630		$152 \cdot 3615$	1.27013	13.6712		44.0156	1.06324	49.5186
	346.0660	1.71950	7.12996		133.0322	1.23480	15.2221		36.4623	1.05223	59.1580
	301.4177	1.62691	7.74528		121.9451	1.21469	16.3356		30.2599	1.04324	70.6741
	259.2827	1.53844	8.51432		107.0731	1.18756	18.1890		$25 \cdot 1502$	10.3587	84.4323
	228.6351	1.47372	9.24944		86.8495	1.15102	21.7345		20.9281	1.02978	$100 \cdot 869$
	199.1316	1.41104	10.1682		70.8718	1.12237	25.9715		17.4326	1.02477	$120 \cdot 506$
	177.2556	$1 \cdot 36451$	11.0463		58.1439	1.09975	31.0348				
	155.8527	$1 \cdot 31895$	$12 \cdot 1438$		47.8305	1.08162	37.0854				
	139.7372	1.28472	$13 \cdot 1928$		39.4923	1.06718	44.3159	120	692.8584	1.81597	6.44750
	123.7492	1.25079	14.5038		32.6789	1.05524	52.9565		518.3546	1.62214	7.69817
	111.5619	1.22502	15.7569		27.0986	1.04566	63.2819		396.7062	1.48243	9.19245
	99.3449	1.19934	17.3229		22.5058	1.03777	75.6209		309.0784	1.37927	10.9776
	89.9440	1.17961	18.8196		18.7183	1.03142	$90 \cdot 3659$		244.2293	1.30160	$13 \cdot 1101$
	80.4433	1.15988	20.6902						$195 \cdot 1435$	1.24208	$15 \cdot 6575$
	65.5593	1.12903	24.7123						157.3013	1.19579	$18 \cdot 7003$
	53.7108	1.10481	29.5167	100	685.9706	1.96335	5.86729		127.6941	1.15939	22.3350
	$44 \cdot 1820$	1.08549	$35 \cdot 2552$		596.0191	1.84474	6.34483		104.2411	1.13043	26.67652
	36.4628	1.07001	42.1097		503.0904	1.71951	7.00653		99.1653	1.12411	27.8852
	30.1718	1.05755	50.2972		442.7845	1.63667	7.57728		85.4788	$1 \cdot 10716$	31.8624
	25.0185	1.04743	60.0767		379.2859	1.54826	$8 \cdot 36801$		81.3971	$1 \cdot 10206$	$33 \cdot 3059$
	20.7789	1.03908	71.7578		337.2588	1.48891	9.05005		70.3492	1.08834	38.0568
	17.2845	1.03240	85.7105		292.2335	1.42483	9.99488		67.0455	1.08422	39.7808
					261.9459	1.38129	10.8098		58.0692	1.07302	$45 \cdot 4557$
					228.9879	1.33360	11.9387		55.3808	1.06970	47.5147
80	693.3695	$2 \cdot 21331$	5.23494		206.5452	1.30100	12.9125		45.8487	1.05776	56.7526
	601-2871	2.05939	$5 \cdot 61682$		181.8324	1.26498	14.2612		38.0308	1.04798	67.7868
	$492 \cdot 1884$	1.87656	6.25266		$164 \cdot 8037$	1.24004	15.4246		31.5946	1.03990	80.9666
	433.8434	1.77490	6.70927		145.8905	1.21241	17.0360		26.2807	1.03319	96.7094
	$362 \cdot 1074$	1.64925	7.46938		132.7315	$1 \cdot 19305$	18.4259		21.8844	1.02764	115.513
	$323 \cdot 3245$	1.58022	8.01520		118.0002	1.17145	20.3510		18.2393	1.02301	137.974
	274.2133	1.49211	8.92375		107.6887	1.15632	22.0117		15.2130	1.01918	164.802
	247.1254	1.44302	9.57613		96.0702	1.13935	24.3116		$12 \cdot 6974$	1.01605	196.847

TABLE 3. COMPARISON OF SELECTED VALUES OF COMPRESSIBILITY WITH PREVIOUSLY PUBLISHED VALUES

T(${ }^{\circ} \mathrm{K}$)	70			80			100			120		
$P(\mathrm{~atm})$	20	50	100	20	50	100	20	50	100	20	50	100
This work	1.03788	1.09700	1.20060	1.03440	1.08472	1.17445	1.02841	1.07198				
Holborn and Otto ${ }^{18-18}$	1.03520	1.09383	$1 \cdot 19690$	1.03199	1.08423	1.17654	1.02682	1.06938	$1 \cdot 14460$	1.02294	1.05906	1.12182
Mann ${ }^{19}$ (Compilation)	1.03653	1.09619	1.20002	1.03381	1.08771	1.18051	1.02938	1.07489	$1 \cdot 15172$	1.02579	1.06506	1-13092

was discussed earlier, the experimental data were collected prior to, and in fact necessitated, the development of the modified data reduction technique. ${ }^{15}$ Thus it was not possible to run a data-point coverage to permit optimum use of the analytical reduction procedure. The scatter seen in Figure 2 is the result of small uncertainties in the lower-pressure compressibilities-well within the limits of accuracy to be discussed in the final section of this paper.

Fit of the Experimental Data to the Berlin Expansion

Each isotherm of helium was least-squares fitted to the Berlin expansion of compressibility in terms of a polynomial in pressure. The coefficients which were obtained for each isotherm are listed in Table 4 along with the standard deviation of the experimental values of compressibility from those computed from the polynomial. For all of the isotherms the fit is well within the expected error in the compressibilities. The coefficients listed in Table 4 were used to compute values of the compressibility and specific volume of helium for even values of pressure. The results of these computations are presented in Table 5.

Estimate of Errors

For the j th expansion, the compressibility factor Z_{j} is given by equation (2). It is possible to represent the error in this value as

$$
\begin{equation*}
\frac{\Delta Z_{j}}{Z_{j}}=\frac{\Delta P_{j}}{P_{j}}+E_{N o, P o / Z o}+E_{T}+E_{E} \tag{7}
\end{equation*}
$$

which includes error in pressure measurement, the interrelated errors associated with the data reduction constants N_{0} and P_{0} / Z_{0}, error in temperature measurement, and that due to incomplete evacuation of the small cell between expansions.

A set of typical values for these errors at $80^{\circ} \mathrm{K}$ indicates the estimated accuracy of the experimental results. The first term in equation (7) is approximately 1.26×10^{-4} in the range of this investigation, and the last term, E_{E}, is 0.04×10^{-4}. Since the remaining two terms are strongly pressure dependent, values will be considered at about $20,100,300$, and 600 atm . The error $E_{N o, P_{0} / Z_{0}}$ can be expressed analytically, but is not conveniently separated due to the interrelation between errors in N_{0} and P_{0} / Z_{0}. From the data reduction procedure, ${ }^{12,15}$ it is estimated that N_{0} is accurate to ± 0.00005 and P_{0} / Z_{0} to $\pm 0.02 \mathrm{~atm}$. By a series of perturbations, the maximum value of $E_{N o, P o / Z o}$ is found to be $4 \cdot 1,7.6,9.7,10.6 \times 10^{-4}$ at about 20, 100, 300, and 600 atm , respectively. The remaining term, E_{T}, depends on

$$
\frac{\left(\partial Z_{j} / \partial T\right)_{P_{j}}}{Z_{j}}
$$

and is found from the results to be $0.05,0.2,0 \cdot 7,1 \cdot 1 \times 10^{-4}$ at these same pressures.
Consequently, the maximum errors in compressibility at $80^{\circ} \mathrm{K}$ are estimated to be 0.055 per cent at 20 atm , 0.091 per cent at $100 \mathrm{~atm}, 0.117$ per cent at 300 atm , 0.13 per cent at 600 atm . This accuracy is felt to be quite acceptable for compressibility data and subsequent computation of thermodynamic properties.

The authors gratefully acknowledge the support of the National Science Foundation, Grant GP-2737, in this investigation; and also the valuable assistance of the U.S. Bureau of Mines Helium Research Center; the Linde Division of Union Carbide Corporation; and the Department of Mechanical Engineering, University of Michigan.

REFERENCES

1. Crain, R. W., Jr., and Sonntag, R. E. Advances in Cryogenic Engineering, Vol. 11, p. 379 (Plenum, New York, 1966)
2. Sullivan, J. A., and Sonntag, R. E. Paper T-5 presented at the Cryogenic Engineering Conference, June, 1966
3. Burnett, E. S. J. appl. Mech. 58, A136 (1936)
4. Schneider, W. G. Can. J. Res. B27, 339-52 (1949)
5. Canfield, F. D., Leland, T. W., and Kobayaski, R. Advances in Cryogenic Engineering, Vol. 8, p. 146 (Plenum, New York, 1963)
6. Mueller, W. H., Leland, T. W., Jr., and Kobayaski, R. Am. Inst. chem. Engrs. J. 7, 267 (1961)
7. Silberberg, I. H., Kobe, K. A., and McKetta, J. J. J. chem. engng Data 4, 314 (1959)
8. Cook, D. Can. J. Chem. 35, 268 (1957)
9. Schneider, W. G., and Duffie, J. A. H. J. chem. Phys. 17, 751 (1949)
10. Kramer, G. M., and Miller, J. G. J. phys. Chem. 61, 758 (1957)
11. Crain, R. W., Jr. 'P-v-T Behavior in the Argon-Nitrogen System.' Ph.D. Dissertation (University of Michigan, 1965)
12. Sullivan, J. A. ' $P-v-T$ Data for Neon and Helium at Temperatures from $70^{\circ} \mathrm{K}$ to $120^{\circ} \mathrm{K}$ and Pressures to 690 Atmospheres.' Ph.D Dissertation (University of Michigan, 1966)
13. Harper, R. C., Jr. 'An Investigation of Compressibility Factors of Gaseous Mixtures of Carbon Dioxide and Helium.' Ph.D. Dissertation (University of Pennsylvania, 1956)
14. Pfefferle, W. C., Jr. Ph.D. Dissertation (University of Pennsylvania, 1952)
15. Sullivan, J. A., and Sonntag, R. E. 'A New Approach for Analyzing Compressibility Data Collected Using the Burnett Method.' To be published
16. Holborn, L., and Otto, J. Z. Phys. 30, 320 (1924)
17. Holborn, L., and Otro, J. Z. Phys. 33, 1 (1925)
18. Holborn, L., and Otto, J. Z. Phys. 38, 359 (1926)
19. Mann, D. B. NBS Tech. Note 154 (1962)
20. Nifhoff, G. P., Keesom, W. H., and Illiin, B. Comm. Phys. Lab. Univ. Leiden. 188 b,c (1927)
21. Onnes, H. K., and Boks, J. D. A. Comm. Phys. Lab. Univ. Leiden $170 \mathrm{a}, \mathrm{b}$ (1924)
22. White, D., Rubin, T., Camky, P., and Johnston, H. L. J. phys. Chem. 64, 1607 (1960)

TABLE 4. BERLIN COEFFICIENTS
$Z \doteq A^{\prime}+B^{\prime} P+C^{\prime} P^{2}+D^{\prime} P^{\mathbf{s}}+E^{\prime} P^{6}+F^{\prime} P^{s}+G^{\prime} P^{0}$ (Pressure in atmospheres)

Temperature $\left(^{\circ} K\right)$	Standard deviation	A^{\prime}	$B^{\prime} \times 10^{3}$	$C^{\prime} \times 10^{8}$	$D^{\prime} \times 10^{9}$	$E^{\prime} \times 10^{12}$	$F^{\prime} \times 10^{15}$	$G^{\prime} \times 10^{18}$
70	0.265×10^{-3}	1.00061	1.80897	2.96340	-13.2222	30.1403	-35.1756	16.2242
80	0.601×10^{-3}	1.00360	1.46855	3.96361	-20.0961	50.4692	-62.0908	
100	0.396×10^{-4}	0.99954	1.43890	0.234588	-0.726644	0.216244	0.818254	-0.6834837
120	0.316×10^{-4}	1.00001	1.26602	-0.161639	0.240920	-0.512839	0.340978	

TABLE 5. VALUES OF COMPRESSIBILITY FOR EVEN VALUES OF PRESSURE (v in $\mathrm{cm}^{3} / \mathrm{g}$)

$P($ atm $)$		$70^{\circ} \mathrm{K}$	$80^{\circ} \mathrm{K}$	$100^{\circ} \mathrm{K}$	$120^{\circ} \mathrm{K}$	$P($ atm $)$		$70^{\circ} \mathrm{K}$	$80^{\circ} \mathrm{K}$	$100^{\circ} \mathrm{K}$	$120^{\circ} \mathrm{K}$
10	v	146.22155	167.05729	207.85583	249.10711	350	v	7.08152	7.62285	8.82666	10.03474
	Z	1.01899	1.01866	1.01395	1.01265		Z	1.72724	1.62686	1.50702	1.42774
20	v	74.46615	84.81940	$105 \cdot 40945$	126.10496	360	v	6.96705	7.49226	8.66184	9.83647
	Z	1.03788	1.03440	1.02841	1.02526		Z	1.74787	1.64468	1.52114	1.43951
30	v	50.56913	57.43824	71.26328	85.10180	370	v	6.85861	7.36869	8.50574	9.64872
	2	1.05722	1.05072	1.04290	1.03785		Z	1.76846	1.66248	1.53521	1.45126
40	v	38.63447	43.76747	54.19194	64.59847	380	v	6.75572	7.25157	8.35766	9.47068
	2	1.07694	1.06752	1.05743	1.05040		z	1.78901	1.68028	1.54926	$1 \cdot 46298$
50	v	31.48312	35.57814	43.95036	52.29512	390	v	6.65794	7.14038	8.21700	9.30158
	2	1.09700	1.08472	1.07198	1.06293		Z	1.80951	1.69805	1.56327	1.47467
60	v	26.72221	30.12752	37.12354	44.09180	400	v	6.56488	7.03466	8.08320	9.14076
	7	1.11733	1.10225	1.08657	1.07543		Z	1.82997	1.71581	1.57724	1.48633
70	v	23.32633	26.24037	32.24788	38.23138	410	v	6.47619	6.93399	7.95575	8.98761
	Z	1.13789	1.12004	$1 \cdot 10117$	1.08791		Z	1.85038	1.73353	1.59118	1.49797
80	v	20.78287	23.32922	28.59160	33.83529	420	v	6.39153	6.83798	7.83422	8.84157
	Z	1.15865	1.13803	1.11579	$1 \cdot 10036$		Z	1.87073	1.75123	1.60509	1.50957
90	v	18.80710	21.06784	25.74815	30.41545	430	v	6.31063	6.74628	7.71817	8.70216
	7	1.17956	1.15619	1.13043	1.11278		Z	1.89103	1.76888	1.61897	1.52114
100	v	17.22827	19.26060	23.47362	27.67899	440	v	6.23320	6.65857	7.60725	8.56892
	Z	1.20060	1.17445	1.14508	$1 \cdot 12519$		z	1.91126	1.78648	1.63281	1.53268
110	v	15.93775	17.78311	21.61278	25.43955	450	v	6.15901	6.57455	7.50112	8-44144
	Z	1.22173	1.19279	1.15973	1.13756		Z	1.93144	1.80403	1.64662	1.54420
120	v	14.86316	16.55251	20.06214	23.57287	460	v	6.08783	6.49396	7.39946	8.31935
	Z	1.24294	1.21118	1.17439	1.14992		2	1.95154	1.82151	1.66040	1.55568
130	v	13.95446	15.51152	18.75008	21.99295	470	v	6.01946	6.41654	7.30198	8.20229
	Z	1.26419	1.22960	1.18905	1.16225		2	1.97157	1.83892	1.67415	1.56714
140	v	13.17589	14.61926	17.62542	20.63833	480	v	5.95372	6.34207	7.20844	8 -08996 .
	Z	1.28548	1.24801	1.20371	1.17456		Z	1.99153	1.85625	1.68786	1.57856
150	v	12.50130	13.84580	16.65064	19.46397	490	v	5.89043	6.27035	7.11858	7.98207
	Z	1.30678	1.26641	1.21836	1.18685		2	2.01141	1.87350	1.70155	1.58996
160	v	11.91107	13.16874	15.79760	18.43606	500	v	5.82943	6.20119	7.03220	7.87835
	2	1.32809	¢. 28478	1.23301	1.19912		Z	2.03120	1.89065	1.71521	1.60132
170	v	11.39021	12.57099	15.04479	17.52876	510	v	5.77060	6.13443	6.94909	7.77856
	Z	1.34939	1.30312	1.24764	1.21136		Z	2.05092	1.90770	1.72883	1.61266
180	v	10.92711	12.03926	14.37548	16.72197	520	v	5.71379	6.06990	6.86905	7.68247
	2	1.37068	1.32141	1.26226	1.22358		Z	2.07054	1.92464	1.74243	1.62397
190	v	10.51258	11.56309	13.77644	15.99981	530	v	5.65889	6.00749	6.79192	7.58988
	Z	1.39194	1.33965	1.27687	1.23578		Z	2.09009	1.94148	1.75600	1.63525
200	v	10.13931	11.13415	13.23713	15.34960	540	v	5.60580	5.94706	6.71754	7.50060
	2	1.41317	1.35785	1.29145	1.24796		Z	2.10954	1.95822	1.76953	1.64651
210	v	9.80136	10.74568	12.74899	14.76104	550	v	5.55442	5.88853	6.64575	7.41445
	Z	1.43438	1.37600	1.30602	1.26012		Z	2.12891	1.97485	1.78304	1.65774
220	v	9.49391	10.39218	$12 \cdot 30501$	'14.22574	560	v	5.50466	5.83179	6.57641	7.33126
	Z	1.45554	1.39410	1.32057	1.27225		2	$2 \cdot 14821$	1.99138	1.79652	1.66894
230	v	9.21296	10.06910	11.89943	13.73674	570	v	5.45647	5.77678	6.50940	7.25088
	2	1.47667	1.41216	1.33509	1.28436		Z	2.16742	2.00783	1.80997	1.68012
240	v	8.95520	9.77267	11.52743	13.28825	580	v	$5 \cdot 40977$	5.72344	6.44459	7.17318
	Z	1.49776	1.43018	1.34958	1.29644		z	2.18657	2.02419	1.82338	1.69127
250	v	8.71783	9.49971	11.18497	12.87540	590	v	$5 \cdot 36450$	5.67174	6.38187	7.09801
	Z	1.51882	1.44816	1.36405	1.30850		Z	$2 \cdot 20566$	2.04048	1.83677	1.70240
260	v	8.49851	9.24755	10.86863	12.49409	600	v	$5 \cdot 32063$	5.62164	6.32112	7.02527
	2	1.53983	1.46611	1.37849	1.32054		Z	2.22470	2.05674	1.85012	1.71352
270	v	8.29522	9.01391	10.57550	$12 \cdot 14079$	610	v	5.27811	5.57313	6.26226	6.95483
	z	1.56081	1.48403	1.39290	1.33255		Z	$2 \cdot 24370$	2.07298	1.86344	1.72461
280	v	8.10625	8.79681	10.30309	11.81252	620	v	$5 \cdot 23693$	5.52622	6.20518	6.88659
	z	1.58174	1.50193	1.40728	1.34454		Z	2.26269	2.08922	1.87673	1.73568
290	v	7.93013	8.59459	10.04923	11.50667	630	v	5.19706	5.48093	6.14979	6.82045
	Z	1.60264	1.51981	1.42163	1.35651		Z	2.28168	2.10552	1.88997	1.74674
300	v	7.76557	8.40576	9.81209	11.22101	640	v	5.15850	5.43729	6.09601	6.75632
	Z	1.62350	1.53767	1.43594	1.36844		Z	2.30070	2.12191	1.90318	1.75778
310	v	7.61145	8.22906	9.59002	10.95356	650	v	5.12124	5.39536	6.04375	6.69411
	2	1.64432	1.55553	1.45023	1.38036		Z	2.31977	2.13845	1.91635	1.76881
320	v	7.46680	8.06335	$9 \cdot 38162$	10.70263	660	v	5.08529	5.35520	5.99294	6.63375
	2	1.66511	1.57337	1.46448	1.39224		Z	2.33893	2.15519	1.92947	1.77982
330	v	7.33076	7.90765	9.18563	10.46671	670	v	5.05068	5.31691	5.94351	6.57515
	7	1.68585	1.59121	1.47869	1.40410		Z	2.35821	2.17220	1.94255	1.79083
340	v	7.20255	7.76108	9.00097	10.24447	680	v	5.01743	5-28057	5.89538	6.51826
	2	1.70656	1.60904	1.49288	1.41593		Z	2.37765	$\mathbf{2} \cdot 18955$	1.95558	1.80183

[^0]: \dagger University of Michigan, Ann Arbor, Michigan, U.S.A. Received 8 August 1966. J.A.S. is now at Colorado State University, Fort Collins, Colorado, U.S.A.

