Spectra of Products and Numerical Ranges

JAMES P. WILLIAMS

Institute of Science and Technology, University of Michigan, Ann Arbor, Michigan

Submitted by Peter D. Lax

1. INTRODUCTION

If \(A \) is bounded linear transformation from a complex Hilbert space \(H \) into itself, then the numerical range of \(A \) is by definition the set

\[
W(A) = \{ \langle Ax, x \rangle : \| x \| = 1 \}.
\]

It is well-known and easy to prove that if \(\sigma(A) \) denotes the spectrum of \(A \), then

\[
\sigma(A) \subseteq \overline{W(A)},
\]

where the bar indicates closure.

The purpose of this paper is two-fold. We first present an extension of the foregoing relation and the proceed to indicate how the extension may be used in two other situations, namely bounded linear operators on a Banach space, and certain nonlinear transformations on a real or complex Hilbert space. The extension is mild, Specifically, we will show that if \(0 \notin \overline{W(A)} \), then

\[
\sigma(A^{-1}B) \subseteq \overline{W(B)}/\overline{W(A)}
\]

for any operator \(B \) on \(H \). Here the set on the right is by definition the set of quotients \(b/a \) with \(b \in \overline{W(B)} \) and \(a \in \overline{W(A)} \).

The extension has interesting consequences. For example it implies that if \(A \) is strictly positive and \(B \geq 0 \), then the product \(AB \) has a nonnegative spectrum. Also, if \(A \) is positive and \(B \) is self-adjoint then the product \(AB \) has real spectrum.

\(^1\) Research supported in part by the National Science Foundation under grant GP-524.
2. LINEAR OPERATORS ON A HILBERT SPACE

We begin with the proof of the extension.

Theorem 1. Let A and B operators on the complex Hilbert space H. If $0 \notin \overline{W(A)}$ then
\[\sigma(A^{-1}B) \subset \frac{\overline{W(B)}}{\overline{W(A)}}. \]

Proof. Observe first of all that since $\sigma(A) \subset \overline{W(A)}$, the hypothesis guarantees that A^{-1} exists (as a bounded linear operator on H). Secondly, the identity
\[A^{-1}B - \lambda = A^{-1}(B - \lambda A) \]
shows that if $\lambda \in \sigma(A^{-1}B)$, then $0 \in \sigma(B - \lambda A)$. This in turn implies that
\[0 \in \overline{W(B - \lambda A)} \subset \overline{W(B)} - \lambda \overline{W(A)}, \]
and this means that
\[\lambda \in \frac{\overline{W(A)}}{\overline{W(A)}}. \]

We indicated two corollaries above. To get another we recall that any operator A on H has a “polar decomposition”
\[A = UP, \]
and that if A is invertible, then U is unitary and P is strictly positive. Following Berberian [1] we call the unitary operator U cramped if its spectrum is contained in an arc of the unit circle with central angle $< \pi$.

Corollary (Berberian). If $0 \notin \overline{W(A)}$, then the unitary part of A is cramped.

Proof. Use the fact that $\overline{W(A)}$ is convex to see that if $0 \notin \overline{W(A)}$, then $\overline{W(A)}$ is contained in a sector
\[S = \{re^{i\theta} : r > 0 ; \theta_1 \leq \theta \leq \theta_2 \} \]
with $\theta_2 - \theta_1 < \pi$. Then write $U = A \cdot P^{-1}$ and apply the theorem to see that $\sigma(U)$ is a subset of the arc
\[\{e^{i\theta} : \theta_1 \leq \theta \leq \theta_2 \}. \]

Remark. (i) The inclusion $\sigma(A^{-1}B) \subset \overline{W(B)}/\overline{W(A)}$ is not valid with the
weaker assumption that \(A \) is merely invertible. Indeed if \(A \) and \(B \) are self-adjoint \(\sigma(AB) \) need not even be real. This follows from the computation

\[
\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}
\]

in two-dimensional Hilbert space.

(ii). The more symmetric statement

\[\sigma(AB) \subseteq W(A) \cdot W(B) \quad \text{if} \quad 0 \notin W(A) \cup W(B) \]

is also not valid. To see this let \(A \) be the operator

\[A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}. \]

Then \(W(A) = W(A^*) \) is the disk of radius 1/2 about 1 and so the set \(W(A) \cdot W(A^*) \) lies to the left of \(\text{Re} z = 9/4 \). On the other hand \(9/4 < 1/2(3 + \sqrt{5}) \in \sigma(AA^*) \).

Returning to the theorem, the reader will note that the proof really does not concern operators on a Hilbert space at all. Indeed, the essential ingredients are these: An algebra \(\mathcal{A} \) with unit, and two mappings \(A \rightarrow \sigma(A), \ A \rightarrow W(A) \) from \(\mathcal{A} \) to subsets of the complex plane which have the following properties:

1. \(W(A + B) \subseteq W(A) + W(B) \)
2. \(W(\lambda A) \subseteq \lambda W(A) \)
3. \(\sigma(A) \subseteq W(A) \)
4. \(\lambda \notin \sigma(A) \) if and only if \((A - \lambda)^{-1} \notin \mathcal{A} \).

(We write \(B^{-1} \notin \mathcal{A} \) to mean that the element \(B \) of \(\mathcal{A} \) has an inverse and that this inverse in fact belongs to \(\mathcal{A} \).) In what follows we will indicate how this observation extends the theorem to two other situations.

3. Linear Operators on a Banach Space

For our first application we need a few facts about Banach spaces. First, if \(X \) is a Banach space then the Hahn-Banach theorem guarantees that for each \(x \in X \) there is an \(x^* \in X^* \) of norm 1 such that \(\langle x, x^* \rangle = \| x \| \). The space \(X \) (or more properly, the unit ball of \(X \)) is called smooth [2] if there is exactly one such \(x^* \) for each \(x \in X \). Thus in a smooth space there is a unique map \(\varphi \) form \(X \) to \(X^* \) such that

\[
\| \varphi(x) \| = \| x \|, \quad \langle x, \varphi(x) \rangle = \| x \|^2 \quad (x \in X).
\]
As an example the reader can easily verify that L^p is smooth for $1 < p < \infty$. The isometry φ sends $f \in L^p$ to
\[f \frac{|f|^{p-2}}{\|f\|^{p-2}}. \]

If X is smooth and φ is the indicated mapping, then it is easy to see that φ is conjugate homogeneous:
\[\varphi(\alpha x) = \bar{\alpha} \varphi(x), \quad \alpha \text{ complex}. \]
(However, if φ is additive, then the norm in X satisfies the parallelogram law and hence X is a Hilbert space.) Again, if X is smooth and $f \in X^*$ attains its supremum on the unit ball of X, then f belongs to the range of φ. Now a result of Bishop and Phelps [3] states that for any Banach space X the collection of bounded linear functionals on X which attain their suprema on the unit ball of X is always (norm) dense in X^*. By using this fact and the preceding remark it follows that if X is smooth, then the range of φ is dense in X^*.

Now using the function φ we can define a "semi-inner-product" on X by
\[[x, y] = \langle x, \varphi(y) \rangle \quad (x, y \in X). \]
It is readily verified that the following hold:
\[
\begin{align*}
[x, x] &= \|x\|^2 \\
[x_1 + x_2, y] &= [x_1, y] + [x_2, y] \\
[\lambda x, y] &= \lambda [x, y], \quad [x, \lambda y] = \bar{\lambda} [x, y] \\
\| [x, y] \| &\leq \| x \| \| y \|.
\end{align*}
\]

If now A is a bounded linear operator on X we can define the numerical range of A by setting
\[W(A) = \{ [Ax, x] : \| x \| = 1 \}. \]
Clearly we will have
\[W(A + B) \subseteq W(A) + W(B), \]
\[W(\lambda A) \subseteq \lambda W(A). \]
Lumer [4] also shows that the boundary of $\sigma(A)$ is a subset of $\overline{W(A)}$. We need the following stronger result:

Proposition. $\sigma(A) \subseteq \overline{W(A)}$.

Proof. The argument parallels the linear case: If λ is at a positive distance δ from $\overline{W(A)}$, then for unit vectors x
\[\| (A - \lambda)x \| \geq \| [(A - \lambda)x, x] \| - \| [Ax, x] - \lambda x \| \geq \delta - \delta \| x \|. \]
and

\[\| (A - \lambda)^* \varphi(x) \| \geq | \langle x, (A - \lambda)^* \varphi(x) \rangle | = | (A - \lambda)x, x \| \geq \delta = \delta \| \varphi(x) \| . \]

The first of these implies that \(A - \lambda \) is one-to-one with a closed range. The second implies that \((A - \lambda)^* \) is bounded below on the range of \(\varphi \) and since this is dense in \(X^* \), \((A - \lambda)^* \) is bounded below, hence one-to-one, and this means that \(A - \lambda \) has a dense range. It now follows from the Open Mapping Theorem that \(A - \lambda \) has a bounded inverse. Hence \(\lambda \notin W(A) \) implies \(\lambda \notin \sigma(A) \) as asserted.

We may summarize the preceding discussion as follows:

\textbf{Theorem 2.} Let \(X \) be a smooth Banach space and define \(W(A) \) as above. Then if \(0 \notin W(A) \) we have

\[\sigma(A^{-1}B) \subset \overline{W(B)W(A)} \]

for any operator \(B \) on \(X \).

If the Banach space \(X \) is not smooth then there will be many isometries \(\varphi_\alpha \) from \(X \) to \(x^* \) satisfying

\[\langle x, \varphi_\alpha(x) \rangle = \| x \|^2 \quad (x \in X). \]

Each of these maps defines a semi-inner product \([,]_\alpha\) on \(X \) and a bounded linear operator \(T \) on \(X \) has corresponding numerical ranges \(W_\alpha(T) \). It is natural to define the \textit{numerical range} of \(T \) on \(X \) by

\[W(T) = \bigcup \alpha W_\alpha(T). \]

The argument used for the smooth case is easily adapted to prove that \(\sigma(T) \subset \overline{W(T)} \) is still valid and so we can conclude that Theorem 2 holds without the hypothesis that \(X \) is smooth.

In this connection Lumer has shown [4] that \(W(T) \) is real (or positive) if and only if some \(W_\alpha(T) \) is real (or positive). Thus \(T = T^* \) (or \(T \geq 0 \)) has intrinsic meaning and with these conventions we can state the following corollary:

\textbf{Corollary.} If \(A > 0 \), \(B \geq 0 \) and \(C = C^* \), then \(\sigma(AB) \) is positive and \(\sigma(AC) \) is real.

4. \textbf{Nonlinear Operators on a Hilbert Space}

Our final application is more delicate. Here we let \(H \) be a real or complex Hilbert space and let \(\mathcal{A} \) be the collection of maps from \(H \) to itself which are
continuous and which send bounded sets into bounded sets. Clearly \mathcal{A} is an algebra with unit. We take the numerical range of $A \in \mathcal{A}$ to be

$$W(A) = \left\{ \frac{\langle Ax_1 - Ax_2, x_1 - x_2 \rangle}{\| x_1 - x_2 \|^2} : x_1 \neq x_2 \right\}.$$

There are two possible definitions of the spectrum of $A \in \mathcal{A}$, namely, $\sigma(A)$, and $\sigma_1(A)$ defined respectively as the complements of the sets

$$\rho(A) = \{ \lambda : (A - \lambda)^{-1} \notin \mathcal{A} \}$$

$$\rho_1(A) = \{ \lambda : (A - \lambda)^{-1} \text{ exists and is Lipschitzian} \}.$$

(By definition, B is Lipschitzian if

$$\| Bx_1 - Bx_2 \| \leq M \cdot \| x_1 - x_2 \|$$

for some constant $M > 0$ and all x_1, x_2.)

It is easy to see that $\sigma(A) \subset \sigma_1(A)$. Moreover, a theorem of Zarantonello [5] asserts that, with $W(A)$ as defined above, we have the inclusion

$$\sigma_1(A) \subset \overline{W(A)}.$$

Taking $\sigma(A)$ as the definition of the spectrum of A and applying Theorem 1, we get the following result:

Theorem 3. Let A and B be bounded and continuous on H. If $0 \notin \overline{W(A)}$, then for each $\lambda \notin \overline{W(B)} \setminus \overline{W(A)}$ the mapping $A^{-1}B - \lambda$ has a bounded, continuous inverse defined on H.

Taking $\sigma_1(A)$ as the definition of the spectrum of A we get:

Theorem 4. Let B be bounded and continuous, let A be Lipschitzian and suppose $0 \notin \overline{W(A)}$. Then for each λ outside the set $\overline{W(B)} \setminus \overline{W(A)}$ the transformation $A^{-1}B - \lambda$ has a Lipschitzian inverse defined on H.

Proof. If $0 \notin \sigma_1(B - \lambda A)$, then $(B - \lambda A)^{-1}$ exists and is Lipschitzian. Hence the product $(B - \lambda A)^{-1}A$ is also Lipschitzian. Since however

$$(A^{-1}B - \lambda)(B - \lambda A)^{-1}A = A^{-1}(B - \lambda A)(B - \lambda A)^{-1}A = I,$$

this implies that $A^{-1}B - \lambda$ has a Lipschitzian inverse and so $\lambda \notin \sigma_1(A^{-1}B)$. In other words,

$$\lambda \in \sigma_1(A^{-1}B) \Rightarrow 0 \in \sigma_1(B - \lambda A)$$

and the remainder of the proof is as before.
I am indebted to Professors William A. Porter and Richard A. Volz for stimulating discussions which led to the results of this paper. I am further indebted to Professor Lumer for his observations (a) that my proof of the inclusion \(\sigma(T) \subseteq \overline{W(T)} \) is valid in an arbitrary Banach space so that (b) the corollary of Theorem 2 does not require smoothness of \(X \). He has also informed me of the following elegant proof of that corollary for Hilbert spaces: \(\sigma(AB) = \sigma(BA) \pm (0) \) so that if \(A \succ 0 \), then \(\sigma(AB) = \sigma(A^{1/2}BA^{1/2}) \pm (0) \), and the operator \(A^{1/2}BA^{1/2} \) is self-adjoint (or positive) if \(R = R^* \) (or \(B \succ 0 \)).

REFERENCES