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This note is intended as a sequel to [I], and consists of two parts. In 
Section 1 we consider a problem of approximation in a Cartesian product 
space, obtaining a result analogous to Theorem 1 of [l]. In Section 2 we 
consider certain configurations which play an important role in problems 
of best CebySev approximation (called in [2] “extremal signatures”), in the 
case that the approximating functions are ordinary polynomials of fixed 
degree in several variables. Our results here extend somewhat those of 
Collatz [3]. The present note may be read independently of [l], but some 
acquaintance with the general theory of best CebyHev approximation, as 
expounded in [2] or [4], will be helpful. 

1. APPROXIMATION IN A CARTESIAN PRODUCT SPACE 

In this section X denotes a compact Hausdorff and C(X) the Banach space 
of real-valued continuous functions on X normed by (1 f 11 = max ] f(x) I. 
Let F be an m-dimensional subspace of C(X) and fi(x), i = l,..., m a basis 
for F; similarly, Y denotes a compact Hausdorff space, G an n-dimensional 
subspace, and g,(y), j = l,..., n a basis for G. X x Y denotes the Cartesian 
product of X and Y with the usual product topology. 

THEOREM 1. Let P denote the set of functimts 

PCx, Y) = F fi(x)b4Y) + i udx)dY)~ (1) 
i-l i-1 

where q(x), b,(y) denote arbitrary functions of C(X), C(Y) re@ectiweZy. Let 

f(x) E C(X), g(y) E C(Y). Thw the expyess~orz llf(xlg(y> - P(X, Y) II, the mm 
being in the space C(X x Y), attains a minimum as p ranges over P. A 
minimizing element p* is given by 

p*(x,r) =f *w(Y) +fw*(Y> -f *(x)L?*(r), 
262 

(2) 
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and 

lIfeMY) -P*(%Y)ll = Ilf -f * II * I!g -g* II. (3) 

Here f *, g* denote closest elements to f, g in F, G respectively; the norms 
are with respect to the spaces C(X X Y), C(X), C(Y), respectively. 

PROOF. It is known from the general theory of CebySev approximation 
(see [2] or [4]) h t at t h ere is a measure da concentrated on a set of at most 
m + 1 points of X such that (i) s I do I = 1, (ii) J’fi(x) do = 0, i = I,..., m, 
and (iii) Jf da = 11 f-f * II. Similarly, a measure h exists, concentrated on 
a set of at most 12 + 1 points of Y, such that (i’) s 1 dh I = 1, 
(ii’) sg,(y) dA = 0, j = l,..., n, and (iii’) sg dh = I( g -g* (I. If then /I is the 
product measure a x h on X x Y we have s I d/? 1 = 1, and so for any p E P, 

IlfWb9 -P& Y) II 2 I/ Lf(~l&) -P& ~11 dB 1 

Now, sp(x, y) ffi = 0 since 

(4) 

by (ii) and 

by (ii’). Hence the right side of (4) equals 

1 lf(WVP 1 = 1 (j-f du)(j- &A) 1 = llf -f* II . II s -g* II. 

Since for the choice of p* given by (2), we have 

fM.Y) - p*@,r) = [fk> -f *@N&Y) -R*(Y)1 

this completes the proof of the theorem. 

REMARKS. For the proof of Theorem 1, the discreteness of the measures 
(I, X really is not needed, hence the proof could be based *simply on the 
Hahn-Banach theorem. On the other hand, the construction of discrete 
measures (in the present instance ,3) which annihilate all the admissible 
approximating functions is of importance for the solution of concrete problems 
of approximation. 

Theorem 1 extends to complex-valued functions. Also, we remark that 
theorem 1 possesses an obvious extension to Cartesian products of three or 
more spaces; we leave to the reader the task of formulating this in detail. 

409/I7/2-5 
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EXAMPLES. We give two simple examples to illustrate Theorem 1. 

Example 1. X = Y = [- 1, I]; F: polynomials in x of degree m - 1, G: 
polynomials in y of degree n - 1. Choosing f(x) = xm, g(y) = y” we get 

Ii 
m-1 

xmy" - T bi(y)xi - 7 ai(x)yj 1 > I/ T,(x)T,(y) /I = 2-(m+n-2), (5) 

where the norm on the left denotes the maximum over the unit square. 
T,, denotes the nth Ceby.?iev polynomial, normalized so that the leading 
coefficient is one. Specializing bi and ai in (5) we see in particular that xmyn 
cannot be approximated closer than 2-(m+n-2) on the unit square by poly- 
nomials of degree less than m + 7~ in x and y. 

Example 2. We shall prove: f(x) = xix2 . . . xg admits, on the sphere S: 
C: xi2 = 1, 0 as a best approximation among all polynomials h(x, ,..., xk) 
of degree not greater than k - 1. This fact was mentioned, without proof, 
in [5], p. 217. 

Indeed, by the arithmetic-geometric mean inequality we have, for x E S, 

I x1 ,a*., 
xk 12 < (-1” = k-k, 

hence If(x) 1 attains its maximum k- kJ2 at 2” distinct points of S, namely 
the Cartesian product S, of the sets xi = &k-li2 (i = l,..., k). By using 
Theorem 1 (extended to a product of k spaces) the result follows at once; 
indeed, we obtain a sharper result in which S is replaced by S, , and the class 
of admissible approximating functions is extended to sums & hi , where hi 
is any function not containing the variable xi . 

2. POLYNOMIAL APPROXIMATION IN SEVERAL VARIABLES 

In attempting to extend the classical alternation criterion of Cebygev to 
polynomial approximation in more than one variable, one encounters the 
complication that there is no one simple class of sign patterns (signatures) 
which plays the role of the alternating sign patterns in the one variable case. 
For approximation by linear polynomials in a plane region, Collatz [3] found 
that there are three basic types of patterns. These are illustrated in Fig. 1. 

The significance of these patterns is as follows. Suppose p*(x, y) is a best 
linear approximation tof(x, y) on some compact set K in the plane. To avoid 
degenerate cases we suppose m = 11 f - p* 1) > 0. Then it is possible to find 
a subset of K of one of the three types illustrated in figure 1 such that f - p* 
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takes the value +m on the “black” points, and -m on the “white” points 
(or vice versa). Conversely, if for any linear polynomial p, f - p = &II f - p I] 
on such a configuration, p is a best linear approximation to f on K. The 
distinguishing characteristic of the patterns illustrated in figure 1 is that the 
convex hull of the black points intersects the convex hull of the white points; 
and the patterns are minimal with respect to this property. The analogous 
property also characterizes the relevant patterns (let us for simplicity call 
them &e!@ev patterns) for linear approximation in more variables. For 
approximation by higher degree polynomials to characterize the Cebygev 
patterns seems very difficult-it is easy to do so in terms of a notion of 
polynomial convexity, but this is little more than a restatement of the problem. 

C 
la lc 

FIG. 1 

To our knowledge, the only study of Cebygev patterns for polynomials 
of degree higher than one is that of Collatz [3]; a method for constructing 
special patterns was obtained incidentally in [l]; for another, related, study 
see also [6]. All the results are quite fragmentary. 

We propose in this section to give a new method for constructing CebyHev 
patterns. Actually our “method” is little more than the observation that 
a certain classical formula of Euler and Jacobi has relevance to the problem, 
but it does furnish a large variety of new configurations. 

THEOREM 2. Let P,(t), P,(t) ,..., Pk([) denote polynomials of degrees 
ml , m2 ,..., mk respectively in 5 = (x1, x2 ,..., xk) such that 

(i) the system of equations 

pI(‘!) = p,(t) = *** pk(t) = 0 

has precisely M = m1m2 ,..., mk distinct roots E’ in real Euclidean k-space 
(ii) the numbers J7(r = 1,2,..., M) are all different from zero, where JV 

denotes the value of the Jacobian (aP,/axj) at f = I’. 

Then, no polynomial f (4) of degree not exceeding m, + m2 + . . . mL - k - I 
is positive at those e where Jr > 0 and negative at those e where J,. < 0. 
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PROOF. According to a formula of Euler and Jacobi (for a proof see [7] 
p. 135), under the hypotheses of Theorem 2 we have 

for every f of degree < mr i- ... m, - k - 1, and this implies the stated 
result (indeed, in the stronger form that if f is non-negative where J,. > 0 
and non-positive where J7 < 0 then f vanishes at all the 5’). 

EXAMPLES. We confine ourselves to the case k = 2, and write x1 = X, 
x2 =y. 

(a) We can construct a large class of examples by choosing for Pi(x, y) 
a product of mi linear polynomials (i = 1,2). We thus obtain a figure where 
1111 “red” lines intersect m2 “black” lines in mlm2 points. To determine the 
sign of the Jacobian at each of these points no calculation is required. For, 
thinking of the pair of functions PI , P, as defining a transformation we have 
only to determine whether at each point where a black line meets a red line 
the sense of rotation is preserved or reversed by this transformation. For 
this purpose, consider the regions into which the m, + m2 lines dissect the 
plane. Choose one of these at random, and suppose the Pi so normalized that 
each is positive in this region. Write in this region + + and now continue 
to mark the remaining regions with the four signatures + +, + -, - +, 
-- according to the scheme: if two regions meet along a red line, their 
signatures differ in the first position; if they meet along a black line, their 
signatures differ in the second position. When all the regions have been so 
marked, consider any point where a black line meets a red line. Draw a circle 

FIG. 2 

2b 
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around this point which passes from the + + region to the + - region. 
According as the sense of rotation of this circle is clockwise or counter- 
clockwise, we divide the points into two classes. The points of these two 
classes may be then taken as the “black” and “white” points of a configuration 
such that no polynomial of degree not greater than ml + m, - 3 is positive 
on the black points and negative on the white points. For two illustrations 
this procedure in the case ml = 3, ma = 2, see Fig. 2 (these simple cases 
could of course be readily verified without Theorem 2). 

The construction just outlined can obviously be carried out for curves 
of any degree, providing they intersect in the prescribed number of points; 
and with suitable modifications to surfaces in 3 space, etc. 

(b) As an application of the preceding ideas we show: Let K be an ellipse; 
the configuration formed by 2n points of K, marked alternately “black” and 
“white,” is a Cebygev pattern for polynomials of degree 71 - 1. 

Indeed, divide the 2n points into pairs in any fashion whatever, and pass 
a line through each of these point pairs. The system of lines, of degree n, 
has 2n distinct intersections with the ellipse, hence Theorem 2 is applicable. 
Simple considerations as in the preceding paragraph show that the sign of 
the Jacobian alternates as we travel around the ellipse. The situation is 
illustrated in Fig. 3, for n = 2. That the configuration is minimal is readily 
proved by induction. 

\ 
f \ 

f \ 

/ 
\ 

FIG. 3 

In conclusion, we remark some points we have not been able to settle: 
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(i) are the configurations obtained from Theorem 2 always minimal ? (ii) are 
there CebySev patterns not accessible to the method of Theorem 2 ? Con- 
cerning this point, we note that for K = 1, as well as for degree one when 
K = 2, the method does give all CebyHev patterns, That it could give all in 
the general case seems unlikely since, for example, in the case of degree 2, 
k = 2 we must have m, + m2 - 2 = 2 hence ml = 4, m2 = 1 or m = 3, 
ms = 2 are essentially the only possibilities, i.e. only configurations with 
four or six points are obtainable. 

Note added in proof. See also the recent paper of Bruno Brosowki, Uber Extremal- 
signaturen linearen Polynome in n Veranderlichen. Numer. Math. 7 (1965), 396-405. 
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