A rapid, preparative separation of methionine sulfoximine from methionine sulfoxide

In studies to determine quantitative relationships regulating the inhibition1,2 and the inactivation3 of cerebral glutamine synthetase by the convulsant DL-methionine-DL-sulfoximine (MSO), it became necessary to prepare radioactive MSO free of traces of methionine sulfoxide (MSI). Since in the synthesis of MSO4, the final step consists in the reaction of the sulfoxide with sodium azide to yield the sulfoximine (35–45\% conversion), a major problem has been the purification of the final product. A procedure for the rapid, chromatographic separation of the two compounds on a preparative scale is described in the present note.

On the basis of the behavior of MSI and MSO on an analytical column5, use has been made of Dowex 50 in the ammonium form, the stepwise elution of MSI and MSO being effectively accomplished with ammonium formate buffers6.

Experimental

Separation of MSI and MSO. A glass column 20 × 1 cm with a teflon stopcock was loosely packed with a small amount of pyrex glass wool above the constriction to support the resin. A slurry of Dowex-50W-X8 (200–400 mesh) prepared in the ammonium form and equilibrated with 0.2 \(M \) ammonium formate, pH 3–4 in 40\% ethanol, was poured into the column to a height after compaction of 10 cm. A solution of 100 mg each of MSO and MSI (Nutritional Biochemicals, Cleveland, Ohio) in 2 ml of 2 \(M \) HCOOH (pH 1.9) was allowed to percolate into the resin. Elution was started with 0.2 \(M \) ammonium formate, pH 3.4 (40\% ethanol) in the reservoir at a level 25 cm above the resin to maintain a flow rate of 0.8 ml/min. Fractions (5 ml) were collected and starting at tube 9, the buffer in the reservoir was changed to 0.5 \(M \) ammonium formate, pH 7.0 (40\% ethanol). Separation was complete after a total of 13 fractions had been collected.

Isolation of MSO and MSI. The fractions containing MSI (tubes 3–7) and MSO (tubes 9–11) were reduced in volume to approximately 2 ml at 50\°C in vacuo. Each

Fig. 1. Elution profile of a mixture of (A) MSI-\(^{14}\)C and (B) MSO-\(^{14}\)C after passage on Dowex 50W \(\text{NH}_4^+ \) (200–400 mesh). Column: 10 × 1 cm; temperature: 25\°C; elution rate: 0.8 ml/min; fraction volume: 5 ml. The radioactivity was counted as described in the text.
fraction was then mixed with 40 ml absolute ethanol to precipitate the desired compound in 80% yield for MS1 and 70% for MSO. The compounds were chromatographically pure compared to authentic samples of MSO and MS1 run on Whatman No. 1 paper, descending, for 15 h in the following solvents: tert.-butanol–formic acid–water (70:15:15), \(R_F \text{MS1} = 0.45, R_F \text{MS0} = 0.35, R_F \text{methionine} = 0.51 \); \(n \)-propanol–acetic acid–water (60:15:25), \(R_F \text{MS1} = 0.51, R_F \text{MS0} = 0.44, R_F \text{methionine} = 0.70 \). Fig. 1 illustrates the separation of \(^{14} \text{C}-\text{MSO} \) from \(^{14} \text{C}-\text{MS1} \) in a typical experiment in which 200 mg (5.2 \(\times 10^6 \) c.p.m.) of a mixture (53% MS1, 47% MSO) of these two compounds was applied to the column. The total weight recovery was 150 mg (75%), 80 mg of which was in tubes 3–6 (MS1) and the remainder in tubes 8–11 (MSO). The radioactivity was determined in a Packard room temperature liquid scintillation counter (Model 2211) with counting fluid of the following composition: 300 ml ethyl cellosolve, 300 ml of dioxane, 100 ml of xylene, 7 g of 2,5-diphenyloxazole, 0.35 g of 1,4-bis[2-(4-methyl-5-phenyloxazolyl)]benzene and 30 g of naphthalene.

This work was supported by grant No. NB-06294-01 from the United States Public Health Service.

Mental Health Research Institute, University of Michigan
Medical Center, Ann Arbor, Mich. 48104 (U.S.A.)

J. J. BRINK*
O. Z. SELLINGER**

Received August 16th, 1966

* Present address: Department of Biology, Clark University, Worcester, Mass. (U.S.A.).
** To whom all inquiries should be addressed.

J. Chromatog., 27 (1967) 269-270