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USTRACT: In this paper a linear plant with, variable characteristics is considered. It is 
assumed that the plant is driven optimally by an open-loop controller. For a particular task 
and a nominal plant characteristic the controller is assumed to have a surplus capacity (in the 
optimal sense). This surplus capacity is used to minimize the effects of Jluctuations in the 
plant characteristics about the nominal. 

Three criteria are formulated for optimally using the controller surplus capacity. Solu- 
tions to the three cases are derived and compared. Th,e analysis provides insight into pro&ms 
nf optimal co&r01 containing a parameter. 

Introduction 

The problem of system sensitivity takes many forms depending on the dis- 
turbances considered and the design constraints in effect. Several authors: 
Pagurek (1)) Witsenhausen (2), Holtzman and Horing (3) and Porter (4) 
consider sensitivity problems in optimal systems (or systems under optimal 
control). Rohrer and Sobral (5) , and Porter (6) consider the problem of de- 
fining a sensitivity measure. Perkins and Cruz (7), and Porter (8) investigate 
the reduction of sensitivity in multivariate systems. 

This paper is concerned with a mixture of sensitivity and optimality. We 
consider specifically linear systems under minimum energy control. The par- 
ticular problems discussed here do not appear to have been considered in any of 
the earlier analyses. 

Assume that for a nominal plant the controller capacity exceeds the control 
requirements. The investigation is concerned with the question: How can the 
surplus capacity be used to minimize the effects of fluctuations in the plant 
characteristics? 

It is well known that minimum energy problems in linear systems have a 
natural identification in terms of linear transformations between appropriate 
Hilbert spaces. Throughout the present analysis, Hr and Hz denotes Hilbert 
spaces and the bounded linear transformation T: HI -+ HP represents the nominal 
system map. We denote the system disturbance by the symbol 6T, which is also 
bounded and linear. 

Let { E Hz represent the system task. Assume that [ has a preimage under 
T with less than the available energy. How can the surplus energy be used to 
minimize the effects of 6T? 
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The problem just posed may be given scvcral diverse analytic interpreta- 
Cons. Attention is concentrated on two specific cases which reflect different 
approaches to the basic problem. The first and most direct of the two cases is 
as follows : 

Problem I. 

For fixed l E Hz such that 11 TfZ: 11 < k, find u E T-‘(E) which satisfied 
( 1 u 11 5 k while minimizing I I 6Tu I I. 

In the statement of this problem, T-l (E) denotes the set of all preimages of 
E under T and T+ denotes the pseudo inverse of T. First we note that if ut = Tfi 
happens to be in the null space of 6T this control is a solution to the problem. 
We assume that this uninteresting case does not occur. Secondly, if u E HI is 
a solution, then it may be decomposed in the form 

u = li + zL$, v C N(T), uc = T+( E N(T)I 

where N(T) is the null space of T and N(T) L its orthogonal complement. This 
decomposition follows easily from the fact that, N(T) is closed and that Ttt is 
the unique preimage of E in N(T)‘. Since 

II u II2 = II IJ II2 + II u II2 

it follows that an equivalent statement of Problem I is: Find an element v E N(T) 
which minimizes 11 6Tut: + 6Tv 11 while satisfying I/ v II2 I k2 - II UC l12. 

Let P denote the orthogonal projection of HI onto N(T) . Then if v is a solu- 
tion of Problem I, clearly 

GTPv = STv. 

Moreover, if w is any element satisfying II w II2 5 k2 - II UE II2 and minimizing 
II 6TuE + GTPw 1 I th en v = Pw is a solution to Problem I. Thus by introducing 
the transformation 1’ = 6TP the constraint v C N(T) will automatically be 
satisfied. 

Now let R(V) denote the closure of the range of V. If f’ is the orthogonal 
projection of < on R(V) and if F’ E R(V) then V-l( I’) is nonempty. If the mini- 
mum element of this set has norm I k2 - I I tit / I2 than a solution to Problem I 
is obtained by choosing v to be this minimum element. If the norm of this mini- 
mum element exceeds k2 - II ZL~ II2 or if .$’ f$ R(V) than any solution to the prob- 
lem must have II v II2 = k2 - II uf l12. It is this last case which merits further 
study. 

If St = 6Tut = GTTt{ and E is a scalar such that k2 = (1 + E) Ij T+l 112 the11 
it suffices to minimize the functional 

subject to the constraint 11 v /I2 = c I j I’+$ /12. The Lagrange multiplier technique 
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is used. Forming t,he functional 

it is easily shown that 

.I(0 + 6v) - J(v) = 2(T’*@ + T’*T’c + xv, 6v). 

Hence, at the optimal v, the equation 

v*q + r*vv + xv = 0 

must hold. The optimal control must, obviously sat’isfy 

where the scalar X has yet t)o be determined. 
From Eq. 1 it follows that 

Ij v 112 = (& V(XI + v*v)-v*6[) = (g, (XI + vv*)-w~*s~) 

and hence that x must satisfy the condition 

(@, (Al + v1’*)-2vv*6~) = 6 )I T+f 112 (2) 

For St E R(V) * it is well-known that V*S2: = 0; hence Eq. 2 can be satisfied only 
if e = 0. This is the case where the control v = 0 is optimal for our problem. More- 
over, it is not difficult to show that R(V) and R(V) L are reducing subspaces for 
(XI + VV*)-2; hence, only the component of S[ in R(V) effects the right hand 
side of Eq. 2. Rather than taking projections we assume that 62: E R(V). 

To show that Eq. 2 can be satisfied consider first the case of very small A. 
Formally set X = 0 and interpret (VV*)-l as an operator densely defined in 
R(V). Now if S.$ E R(V), then St = Vp for some cp and we choose the (O of mini- 
mum norm which satisfies this equation. Than (since p = V*( VV*)-16{) the 
equality 

(6.$ (VV*)-2(r7r7*)S~) = (9, V*(VT’*)-‘L’$C) = I/ $c //2 

holds. However, the existence of a cp such that II q 11 < E II T+.$ II2 and Sk = VP 
is one of the special cases considered earlier and hence for small X the left hand 
side of Eq. 2 exceeds the right hand side. 

Now it can be shown that the left hand side of Eq. 2 is monotonic decreasing 
with increasing X and approaches zero as X -+ ~0. Thus, Eq. 2 is satisfied for a 
unique A. To illustrate, assume that V*V is compact with t,he spectral expansion 
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in terms of the orthonormal basis (ei) for Hz. Then if (pi) are the Fourier co- 
efficients of cp along this basis where &$ = Vv, we obtain 

which clearly exhibits the monotonic property. Thus Eqs. 1 and 2 determine 
the solution to Problem I under the assumption that 6f E R(V) and 11 I;+&$ 11 2 
e II T+f II. 

In the next two problems the functional J defined by 

plays an important role. Here the energy of a control and the system output 
disturbance corresponding to that control are weighted together to form the 
functional. 

Problem II. 

Assume for l E H:, that 11 T+.$ II < k. Find the largest LY for which a control 
u of norm k exists such that u minimizes J while satisfying f = Tu. 

In other words, we wish to determine the maximum weight that can be given 
to the output disturbance such that a control exists, which is optimal with 
respect to J and the constraint, while having acceptable energy. In analyzing 
this problem advantage is taken of the fact that the bilinear functional 

(x, Y) = (n, (I + aW*GT)y) 2, y E HI 

is an inner product on HI. Moreover, the norm induced by this inner product is 
precisely the functional J (this new norm is actually equivalent to the given 
norm). Thus, if T# denotes the pseudo inverse of T with respect to the norm J, 
Problem II may be rephrased as finding the largest (Y for which 11 T#[ I( = k. 

For convenience the positive self adjoint operator K = 6T*6T is introduced. 
Then it can be shown (see (9)) Chap. IV) that 

T# = (I + aK)-1 T*[T(I + aK)-1 T*]-’ (3) 

where T* and 6T* still denote adjoints with respect to the original norm. (Since 
T*, the adjoint of T with respect to the new norm, satisfies T* = (I + aK)-1 T* 
the familiar identification T# = T*( TT*)-l holds as usual.) 

In the following lemma, T is onto and P denotes the orthogonal projection 
of H onto N(T). 

Lemma Z. Whenever the indicated inverse exists 

holds. 
T# = (I + aPK)-’ T+ (4) 
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Prof?f: Consider first> the identity ch:Lill 

T(I + aK)-’ T* = T(I + cYK)-’ T* 
= T[(I + aK)-‘(I + CYK - cfK)]T* 
= T[I - a(I + aK)-‘KIT* 
= TT* - aT(1 + aK)-l KT*. 

Since T is onto TT* has a bounded inverse and T* is one to one on all of H. 
Using these facts with the above equality establishes the identity 

T*(TT*)-‘[T(I + aK)-’ T*] = T*[I - a(TT*)-l T(I + aK)-l KT*] 
= T* - aT*(TT*)-‘T(1 + aK)-I KT*. 

Recognizing now that Tt = T*( TT*)-1 and (1 - P) = T*( TT*)-l T this 
becomes 

T+[T(I + aK)-’ T*] = T* - a(1 - P) (I + aK)-‘KT” 
= [I - a(1 - P) (I + crK)-‘KIT* 
= [I - a(1 - P)K(I + aK)-‘IT* 
= [(I + aK) - a(1 - P)K](I + aK)-‘T* 
= (I + aPK) (I + aK)-’ T* 

which by using inverses establishes the lemma. 
Before proceeding with the solution to Problem II, a related problem is 

considered. 

Problem III: 

In Problem II set k2 = (1 + e) 11 Ttl /I2 and determine o( from the equality 

J(T*t) = (1 + E) II T+E l12. 

Problem III evidently reduces to a study of t,he scalar equation 

I] T*( II2 + a 11 6TT*.$ II2 = (1 + ~1 11 T+i l12e (5) 

Recalling that 6T*6T = K this equation becomes 

(Ty, (I + aK)T*i) = (1 + E)(T+E, T+t>. 

Using the above lemma we have 

(T+.$, [(IT + aKP)-‘(I + aK) (I + aPK)-’ - (1 + e>I]T+,o = 0 

which may be rewritten as 

(<, (T+)*W(a)T+E) - E((, (T+)*T+i) = 0 
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where 
W(cx) = (I + c&P)-‘(I + CYK) (I + aPK)-’ - I. (6) 

Thus a Corollary of Lemma I follows: 

Corollary. The dependence between Q and t is determined by 

(E, (T+)*W (a) T+t> = 45 (T+)*T+t). (7) 

Lemma II. Whenever I + aPK has a bounded inverse: 

(a) I + aKP has a bounded inverse. 
(b) I - (I + aKP)-’ = aKP(I + aKP)-‘. 
(c) (I + aKP)-‘(I + aPK)-’ - (I + aPK)-’ - (I + aKP)-’ + I = 

a2KPK(I + aPK)-2. 

Proof: Part (a) follows easily from the identity 

(I + aKP)-’ = Z - aK(I + aPK)-‘P 

where first the right hand side defines the left; then it is shown that the left 
hand side is the inverse of I + aKP. Similarily part (b) follows by clearing 
fractions. To prove (c) , first rewrite the left hand side of this identity to obtain 

[Z - (I + aKP)-‘][I - (I + aPK)-‘1 = dKPK(I + aPK)-2. 

Then by using part (b) this becomes 

aKP(I + aKP)-‘aPK(I + aPK)-’ = a2KPK(I + aPK)-2 

which is equivalent to 

(I + aKP)-‘KPK = KPK(I + aPK)-‘. 

This last equality is easily verified and completes the proof. 

Corollary. 

(T+)*W(a)T+ = a(T+)*[K(I + aPK)-‘IT+. 

Proof: Using the definition (Eq. 6) of II’(OC) and some elementary opera- 
tions, the equality chain 

W(u) = (I + aKP)-‘(I + aK)(I + aPK)-’ - Z 
= (I + aKP)-‘(I + aPK)-’ - (I + aKP)-’ - (I + aPK)-’ + Z 

+ (I + aKP)--’ + (I + aPK)-’ + cuK(I + aPK)-2 - 2Z 
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is established. Using part (c) of the lemma, we obtain 

W(a) = ct?KPK(I + aPK)-2 + aK(I + aPK)-” + (I + aKP)-1 
+ (I + crPK)-’ - 21 

= &(I + aPK) (I + aPK)-2 + (I + C-&P)-’ + (I + cYPK)-’ - 21 
= c&(1 + C&X)-’ + (I + C&P)-’ + (1 + aPK)-1 - 21. 

The corollary now follows from this equation and the fact that 

(I + aKP)-1 ‘I’+ = T+. 

To verify this latter assertion recall that P projects on N(T) while the range 
of Tt is in N(T) A, Therefore PT+ = 0 and hence I 

I’+ = (1 + (rKP)-‘(1 + cxKP)T+ = (1 + (rK~)-’ T+. 

Since K and P are self-adjoint this equality implies also that 

(T+)* = (T+)*(l + (rPK)-’ 

and hence 

(T+)*[(I + (YKP)-’ + (I + aPK)-1 - 21]T+ = 0 

which completes the proof of the corollary. An immediate consequence is that 
in Problem III the dependence of (Y on E is expressed by 

cu(T+<, K(1 + (rPK)-’ T+t) = E 11 T+.$ j15. (8) 

Consider now Problem II with k” = (1 + e) jj T+4 11”. Evidently it suffices to 
study the equation 

(T+[, (I + cxKP)-](I + aPK)-’ T+t) = (1 + E)(T+& T+{). 

Since 

(I + aKP)-‘(I + aPK)-’ - 1 = W(a) - cxK(I + cYPK)-’ 

it follows from the corollary to Lemma II that 

(T’<, [(I + olKP)-‘(I + SK)- - I]T+E) 

= (T+& [aK(I + arPK)-’ - arK(I + CXPK)-~]T#~) 
= cr2(T+,$, KPK(I + CYPK)-~ T+.$ 
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Thus in Problem II the dependence of LY on E is determined by 

a2(T+& KPK(I + CIPK)-~ T+E) = e I( T+.$ Ij2. (9) 

Compurison of the Solutions 

In comparing the solutions of the preceding three problems it is helpful t,o 
rework the results of Problem I. Recall first that St = 6Tui = 6TT+.$ and that 
V = STP. Thus it follows that 

V*V = P6T*6TP = PKP 

and that Eq. 1 may be rewritten as 

v = -(AI + PKP)-‘(P6T*) (6TT’i) 
= -(XI + PKP)-‘PKT+l 
= -PK(XI + PK)-’ T+& 

Let Tf denote the mapping of Z: (for every {) to the solution of Problem I. Since 
T*t = T+[ + v it follows that 

Tf = [I - PK(xI + PK)-‘IT+. 

If X = l//3 observe that (XI + PK)-’ = @(I + ,f3PK)-’ and that the ident,ity 

(I + PPK)-’ = I - /?PK(I + BPK)--’ 

holds. Thus Tf may be identified as in the equality 

Tf = (I + @PK)-’ T+. (10) 

Consider now Eq. 2. By direct substitution and some elementary rearrange- 
ments the equality chain 

(6.$, V(I + V*V)-2 V*@) = (T+.$, 6T*6TP(I + PKP)-2 PsT*sTT+Q 
= P2(T+f, KPK(I .+ ,BPK)-2 T+[). 

It therefore follows that 0 must satisfy t,he equality 

P2(T+& KPK(I + fiPK)-2 T+i> = e 11 T+4 11”. (11) 

In view of Eqs. 3 and 10 it is obvious that both T# and T’ have the form 
(I + -yPK)-’ T+. In view of Eqs. 9 and 11 it is obvious that the solutions to 
Problems I and II are identical. The form of the optimal control in Problem III 
is the same as in Problems I and II. The value of y, however, is different being 
determined by Eq. 8. 
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It is also of interest to compute the norm of Et which is the actual miss dis- 
tance. Recalling that P has range in N(T) it follows that 

T(I + yPK)-1 = T 

holds for all y. This, together with the identity TT+t = E, establishes the equality 
chain 

Et: = .$ - (T + 6T) (I + $I’K)-’ T+f 
= 6T(I + -/PK)--’ T+.$. 

Hence, we obtain 
]I & /I2 = 1]6T(I + rPK)-’ T+t ]I” 

= (T+.$, K(I + TPK)-~ TIE). 

Thus, in all three problems the system errors have the same form differing only 
in the value of the scalar y. 

Since the distinction of the three problems hinges on the two scalars in- 
volved, a comparison of Eqs. 8 and 11 is of interest. Since K = 6T*6T Eqs. 8 
and 11 may be rewritten as 

Ma> = a(r), (1 + ~&PI) = e II T+E 11’ 
f,W = P2h QU + BQF2~) = 6 II T+f II2 

respectively, where 77 = S.$ = GTT+f and Q = 6TP6T*. In the Appendix it is 
shown that both fi and A are monotone increasing (or monotone nondecreasing) 
functions on [0, co ). Further, it is shown that fi(r) 1 f2(-y) holds for y E [0, cc1 ) . 
Consequently, if LY, /3 are solutions to the equations 

&(a) = e (I T+E iI2 = fl(P) 

for any e >_ 0 then a < 0. The Appendix also shows t,hat 

(I hi II2 = (7, (1 + Y&)-~v) = f?(a) 

is a monotone decreasing function with respect to y. Therefore, the common 
solution to Problems I and II is always better than or at least equal to the solu- 
tion of Problems III as far as system errors are concerned. 

Example I. 

We examine two degenerate cases. First consider the case where the system 
disturbance takes the form of a pure gain constant change. That is, 6T = pT 
for some scalar p_ # 0. Then K = p2T*T and since P annihilates T* it follows 
that PK = 0 and hence Tt = T* = T+. This result verifies the obvious fact 
that the constraint Tu = I: fixes SE = 6Tu = pTu = I(; hence, no minimizing 
of sensitivity is possible. More generally, if 6T is a distortion (6, 10) then PK = 0 
and the same conclusion holds. 

374 Journal of The Franklin Institute 



systema sensitivity via Surplus controller capacity 

As a second specific case assume that P and K commute. Then 

T* = Tf = (I + rPK)-‘T+ = (I + -yKP)-‘T+ = T+ 

holds for any y. Also 

11 EE II” = 11 6T(I + rPK)-‘T+5 11” = II sTT+S II = 11 84 11’ 

holds for all y and again it is impossible to reduce the nominal disturbance. If 
N(T) L C N(6T) then KP = PK. To verify this assertion note that N(T) 1. C 
N(6T) implies R(I - P) C N(6T) which implies K(I - P) = 0. Taking ad- 
joints shows that (I - P) K = 0; hence by subtracting we have 

0 = K(I - P) - (I - P)K = PK - KP 

which verifies the assertion. It was noted earlier that when N(T) L C N (6T) 
then St = GTT+t = 0 which cannot be improved upon. 

Example II. 

Another case relatively easy to analyze is where T and 6T are functionals. 
Then 

P = I - 11 T/l-2 T*T and 

Q = 6TP6T* = 6T6T* - 11 T 1j-2 6TT*T6T* 
= II 6~’ II2 - II T II-” I (T, W I2 
= ll 6T [I2 sin2 0 

where o is the angle between T and 6T (i.e. cos0 = (T, ST)//] T Ij.jI 6T II). 
Consequently, 

f2(a) = a(1 + (Y II6T II2 sin2 0)-l II St II2 
f,(P) = p2(1 + P II 6~’ l12sin2@-2 II St II2 

II Et II2 = (1 + Y II 62” II2 sin* e)-2 II 66 II’. 

Using these equations II Et II2 may be explicitly determined as a function of e. 
For instance, for Problem III the equation ~z(cx>. = e II T+l: II2 provides the re- 
lationships 

LY = (11 @ 11” - a II T+[ II”* 11 6T II2 sin2 e)-‘r II T+E 11” 
(1 +~I16T~~2sin20) = CYIISEII~/EII T+tj12 

from which it follows that 

(1 + LY II 6T II2 sin2 0) = II 6: 112(11 65 II2 - a II T+.$ j12*ll 6T I I2 sin2 e)-l 

and consequently 

jj ~r:~ 11 = (11 SE 112 - E Ij Ttt 112-11 6T II2 sin2 @ill St II. 
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This equation, or the inequality 

II&II/I1~Ell 5 1 - asin2f9 

(which follows easily from it) establishes a simple relationship between controller 
surplus capacity and the potential percentage reduction in disturbance. 

Example III. 

Consider the linear dynamic system satisfying the vector differential equation 
2(t) = A(t)z(t) + B(t)u(t), z(t) = i. This system is to perform a fixed-time 
state transfer (to, x0) ---f (tf, d) with minimum energy. The transformation T 
is identified by the equation 

J 
ff 

Tu = w,, s)B(s)u(s) ds 
10 

while t = X’ - O(tf, tG)zo. Similarly T* and T+ can be directly computed. The 
matrix B is assumed to depend on a parameter ~1 and by using a linearization 
this dependence can be expressed in the form 

B(t, Co = h(t) + d%(t) 

where B1 and B2 are fixed (known) matrices. The values T and 6T are both de- 
fined as above with B = B1 and B = B2 in the two respective cases. 

For any control u, 

11 st II2 = p2 II 1” Wb, s)Bz(s)u(s) ds l12. 
to 

holds. When CL is a random variable with zero mean SE is a random vector with 
zero mean. The standard deviation up of P and Z;t the expectation of I] S.$ ]j2, 
are related by 

2s = up2 /I 1” @(L,, s)Bz(s)u(s) ds II”. 
10 

If the controller has surplus capacity it is natural to attempt a partial minimiza- 
tion of 2~. It is obvious that such a problem falls within the framework of the 
present analysis. To complete the example the necessary computations are 
outlined. 

If u and z are m and n tuples respectively the Hilbert spaces H1 = [L2(to, tr)lTfL 
and Hz = E” are the natural setting for the problem. It can be easily shown (see 
(Q), sec. 3.3) that T* is computed by the equation 

(T*X) (t) = BI*(t)(P*(t,, t)X, t c [to, t,], x E I?’ 
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while 6T* has the same form with Bz replacing B1. Since P = I - T+T and as- 
suming that the scalar y is small it follows that 

(I + rPK)-‘T+ = (I - ?PK)T+ = T+ - yKTt + rTtTKTt. 

Letting N and M denote the matrices 

/ 

tt 
N = T6T* = *(t,, s)B~(s)Bz*(.s)@*(~,, 8) ds 

to 

/ 

tt 
M = TT* = * (t.f, 

fo 

respectively (where M is assumed 
(I + yPK)-lT+ may be identified as 

s)&(s)&*(s)**(tj, s) ds 

to be nonsingular) the components of 

(T+t) (t) = Bl*(t)@*(t,, t)M-‘[ t E cto, t/1 
(KT+[) (2) = Bz*(t)9*(tr, t)N*M-lt t E [tot t/1 

(T+TKT+) (t) = B1*(t)(P*(tf, t)M-lNN*M-‘I t E [to, t,]. 

The specification of the open-loop controller is complete once y is determined. 
The only distinction here with the usual case is that ~ZQ (respectively u,,“p) 
must be used in place of (Y (respectively /3) in the determining equations. 

Remark. When x and u are scalar valued functions Examples II and III 
may be combined (similar results hold for all single input angle output systems) . 
Using the results of Example II it follows that 

- 2 (1 - asin20) 
II ):;I =, 

reflects the statistical improvement in the system performance. 

Discussion 

The fact that Problems I and II are equivalent may also be established as 
follows: For 5 E Hz consider the solution to Problem II, namely 

T*t = (I - P) Ty + PTy = ut: + vt. 

Obviously UC E N(T)’ and vt E N(T) and since E = TT#.$ it follows that UE = T+& 
It remains only to be shown that vf minimizes 11 St + 6Tv 11 over the set 

Iv E N(T): II vt II2 = e II Ttt II”}. 
Assume that v. # v( is the miniium element and that 
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Since ut, vo E N( 2’) and have equal norms it is clear that 

Moreover, 

J(UE + UE) = 11 UE + VE II’ + Q II St + 6% II" 
> 11 UE + vo II” + a II St + GTvo II” = J(UE + vo> 

which violates the definition of T*, namely, that T+E minimizes J over the set 

{u E T-Q): ll u II2 I (1 + 4 II T+t Il”I- 

A sin&x contradiction may be constructed for establishing the equivalence in 
the opposite direction. 

The comparison of Problems I and II with Problem III is a priori biased in 
favor of Problems I and II. Indeed, in the first two cases the energy constraint 
is of the form 

II T+E II” = (1 + 4 II T’E II’ 
while in the latter case 

11 T+( 112 + a 11 6TTq 11” = (1 + d II Tit 11” 

must hold. Clearly, the second constraint is more restrictive than the first; hence 
the first case should be expected to result in a smaller system error. Thus these 
comparisons should be viewed as comparing the properties of the different con- 
straints and not as a comparison of alternatives to the same problem. 

Except in Example II when T and 6T axe functionals the functional depend- 
ence of a! on t is left in implicit form. Due to the monotonic behavior and the 
differentiability of the functions fi and f~, it appears that the computational 
problem involved is only mildly difhcult. For small e, (Y, B and y the first-order 
approximations 

fi(4 = a! 11 XYi’+,$ iI2 = 6 11 T+5 11’ 
f,(P) = p” II PKT+l II2 = 6 II T+E II” 

II & II2 = II GTT+t 11’ - 27 II PKT+S 11’ 

hold. Combining these equations, there results 

11 EE II2 = ll 8 11’ - 24 II T+E II.11 PKT+I 11 

for Problems I and II, and 

for Problem III. These two system error equations show an obvious difference 
in the dependence between II EE II2 and e. 
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Appendix 

In the following, H denotes an abstract Banach space. The principal tool 
to be used in this Appendix is supplied by the following theorem (see (11) , 
p. 164). 

Theorem. Let A and X be bounded linear operators on H. If 11 A 11 < 1 
then I - A has a bounded inverse and 

(I-A)-‘=I+A+A2+A3+.*. 

If S commutes with A and if 11 (I - A)-‘S I/ < 1 then I - S - A has a 
bounded inverse and 

(T _ s _ A)--1 = (1 - A)-‘{z + (I - A)-‘,~ + (I - A)-2S2 + **.I. 

Both series converging with respect to the operator norm. 

Corollary I. Let Q be a self adjoint operator on H then the functions 

h(r) = Y%, &(I + Y&)-~T) 
f2(~) = oh, U + Y&)-'11) 

are monotone nondecreasing with respect to y. 

Proof: Let 6 be a small scalar. Then letting A = -rQ and S = -SQ the 
above theorem provides the identity 

[I + (Y + Q&l-' = (1 + Y&I-' 
x (I - 6(1 + rQ)-‘Q + cS2(1 + TQ)-~Q~ - --- 1. 

from which it follows that 

(a, [r + (Y + Q&-J-‘7) = (17, (1 + Y&I-'7) - 6(rl, QU + ~Q)-~rl) + 1(62) 

and therefore 

f h, (1 + Y&I-%) = -h Q(I + Y&)-~v). 

It then follows that 

&r) = (7, (1 + rQ>-'?I) - rh Q, U + Y&)-~v). 

Using the identity (I + y&)-l - r&(1 + Y&)-~ = (I + Y&I-~ it follows easily 
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that 

Since term-wise multiplicat,ion of two absolutely convergent series is permis- 
sible, the identity 

CI + (Y + 6)Q1-2 = (1 + T&>-~ 
X {I - 26(1 + rQ)-‘Q + 3a2(1 + rQ)+Q2 - . ..). (A.2) 

follows from Eq. A.1. As a consequence 

$ (7, &(I + rQF2rl) = -2h Q2U + r&F%) 

holds; hence 

; h(r) = Wrl, QU + vQV2rl) - 2r2h Q2U + r&l-%> 

= 2rh QU + r&F*v) 2 0 

which completes the proof. 

Corollary II. If Q is a self-adjoint operator on H then 

f3(~) = h U + r&)-f) 

is a nonincreasing function of y. Moreover, 

f4(Y) = f2C-Y) - h(r) 

is a nonnegative function of y. 

Proof: Using Eq. A.2 it follows that 

-$a(~) = --2h QU + r&F%) I 0 

which proves the first assertion. From the identity 

r(I + r&>-l - -,,“&(I + r&F2 = rU + -r&F2 
it follows that 

f4(7) = rh, (1 + -Y&F%) 2 0. 

which completes the proof. 
Note from the proofs of Corollaries I and II that if Q is strictly positive then 
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fi and fi are strictly monotonically increasing, f3 is strictly monotonically de- 
creasing, and f4 is strictly positive on the domain 0 < y < co. 

* * * 
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