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INTRODUCTION

A pseudocompact ring A is a complete Hausdorff topological ring which
admits a system of open neighborhoods of 0 consisting of two sided ideals 7
for which A/I is an Artin ring. A complete Hausdorff topological A-module
M is said to be pseudocompact if it has a system of open neighborhoods of 0
consisting of submodules N for which M/N has finite length. The category
€ , of pseudocompact /-modules is an Abelian category with exact inverse
limits and enough projectives. Such generalities, which are more or less well
known, are gathered in the first section for the convenience of the reader.

To get more interesting results, we must introduce some commutativity
by assuming that, in addition, 4 is a pseudocompact algebra over a com-
mutative pseudocompact ring £ (see definition in Section 2). We may then
define a tensor product on €, and introduce its derived functor 4. The
category & , of discrete /-modules, which is dual to € 4 by Proposition 2.3,
also plays an important role through the bifunctor Hom : ¢, X 2, — 2 and
its derived functor &=¢. We then have the proper setting for doing homological
algebra. This is done in Section 3 which generalizes the elementary results
on homological dimension in complete Noetherian semilocal rings. As an
immediate application we find that if £{{x,}} is the algebra of noncommutative
formal power series in {x;} over £, then gl dim Q{{x,}} =gldimQ + 1
(Theorem 3.9).

We recall that a profinite group is a compact totally disconnected topological
group, i.e., an inverse limit of finite groups. We define the complete group

* This paper was written while the author was T. H. Hildebrandt Instructor at
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algebra ©[G] as the inverse limit of the ordinary group algebras 2[G/U]
as U runs through the open normal subgroups of G. Then £[G] is a pseudo-
compact £2-algebra which can be expected to play an important role in the
study of profinite groups. For instance &z/gq; (2, 4) is simply the coho-
mology group H™(G, A) so that it is not too surprising that

gl dim Q[G] = gl dim 2 + ¢d,G,

where ¢d ;G is the sup of the cohomological p-dimension of G over all primes p
which are not units in 2 (Theorem 4.9). In particular if G is a pro-p-group
of finite cohomological dimension and £ is a complete regular local ring in
which p is not a unit, then £2[G] is a complete noncommutative local ring
of finite global dimension. Does it behave like a regular local ring ? In the
special case where G is free and £2 is a field, the work of Cohn [5] implies
that 2[G] can be embedded in a division algebra and that it is a unique
factorization domain.

In Section 5, we obtain criteria for determining the cohomological dimen-
sion of a profinite group G represented as a quotient F/N of a free profinite
group. The most striking is given by Proposition 5.7: sedG = 2 if and only
if N/[N, N] is a projective 2[G]-module and N N[V, V] =[N, V] for
every open subgroup V of F containing N, where Z is the total completion
of the integers in the ideal topology.

As a consequence of much deeper considerations, Tate has shown that the
Galois groups of the formations of local and global class field theory have
strict cohomological dimension 2 (this is not quite true for number fields;
cf. Section 6). It is possible to unify these results in the following general
theorem on class formations: if the kernel and co-kernel of the reciprocity
map are cohomologically trivial then the strict cohomological dimension
of the Galois group of the formation is equal to 2 (Theorem 6.1).

In the appendix we have included a number of simple technical lemmas on
limits which could not find their way into the body of the paper.

1. GENERALITIES ON PseupocompacT Rings

Let A be a pseudocompact ring, then a A-module is pseudocompact if and
only if it is the inverse limit of A-modules of finite length. It follows that the
category € of pseudocompact A-modules is an Abelian category with exact
inverse limits (cf. [7], [10], [11], [17]).

LemMA 1.1. Let f: A— B be an epimorphism in €. Then there is a con-
tinuous section s : B — A such that fs(b) = b for all b in B.

The proof is left to the reader who may imitate that of Proposition 1
in Reference [14].
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Let I be any index set and let L(X) be the free -module on a set X indexed
by I. Let S be the collection of all submodules N of L(X) which contain all
but a finite number of elements of X and such that L{X)/N has finite length.
Then F(X) = lim L(X)/N where N runs through S, is a pseudocompact
A-module called the free pseudocompact A-module on X or simply the free
A-module on X if no confusion ensues. We note that F(X) = A, where 4!
is given the product topology.

LemMA 1.2.  The morphisms of F(X) into a pseudocompact A-module A
are in one-to-one correspondence with sequences {a};.; tn A which tend to zero
on the filter of complements of finite subsets.

In fact, we associate to the morphism f the sequence { f(x,)};c; -

CoroLLARY 1.3. F(X) is projective in €.
Proof. Given a diagram in ¢

F(X)

¢

4 5 B > 0

we can find a continuous section s : B — 4 passing through 0 by Lemma 1.1.
The sequence a; = sf (x,) satisfies the hypothesis of Lemma 1.2 so there is
a morphism g : F(X) — A such that g(x;) = sf (x;). The morphism g makes
the diagram commutative and thus F(X) is projective.

We denote by R the radical of 4, i.e.,, R is the intersection of all open
maximal two sided ideals of 4. Thus R is a closed two sided ideal which is
in fact the Jacobson radical of A. The following will play the role of the
Nakayama lemma.

Levma 1.4. Let A be an object of €. Suppose that MA = A for all open
maximal ideals M of A. Then A = O and in particular RA = A implies A = 0.

Proof. Let B be an open submodule of A. Since A4 is a topological A-mo-
dule, we may find an open ideal I, and a neighborhood V', of x in 4 such that
IV, C B and we may choose I, to be an open submodule of B for which
A|V, has finite length and a fortiori is finitely generated, say, by the images
of x;, -+, x, . Let

I=I)nl, n-- NI,

n?
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then 14 C B. Since A/I is an Artin ring with nilpotent radical R/, it follows
that for some finite set M, , ---, M), of open maximal ideals and some integer

m, we have
(MM, - M)"C I

But 4 =(M, - My» ACIAC B by hypothesis; hence A is contained
in every open neighborhood B of 0 and thus 4 = 0.

CoroLLARY 1.5. Let A be in € and let {x;} be a family of elements of A.
Then {x;} generate A as a topological A-module if and only if their images
{%,} generate A|RA as a topological A|R-module. If A|RA is finitely generated
by %, &, , then A = Ax; + - + Ax, .

Proof. Let B be the closed A-submodule generated by elements {x,}
whose images generate 4/RA. We note that if {x;} is a finite set, then we
may take B = Ax, + --- + Ax, which is closed since it is the continuous
image of A". Our hypothesis shows that B + R4 = 4, i.e,, R(A/B) = A|B,
hence 4 = B by Lemma 1.4.

Lemma 1.6.  Every object A in € is the quotient of a free object, i.e., there
are enough projectives. In particular, the projectives are the direct summands
of the free objects.

Proof. The result follows from Lemma 1.2 once we find a generating set {x,}
for A with the following property: each open submodule U of 4 contains all
but a finite number of {x;}. This is done as in Theorem 1.3 of [6].

Remark 1.7. There is a more categorical proof in Chap.IV of Reference[7]
which is a convenient source for other facts mentioned in this section.
Dually, we have the following well-known result.

LemMma 1.8. Let A be a pseudocompact ring. Then the category < of discrete
A-modules is an Abelian category with exact direct limits and enough injectives.

Proof. We note that 2 is a full subcategory of the category of A-modules.
For any A~module 4, let A° be the set of elements of 4 annihilated by some
open ideal of A. Then 4 ~ A% is a covariant functor from A-modules to &
which takes injectives into injectives. The claims can be deduced easily
from this observation.

2. &aé AND Jo2 OVER PSEUDOCOMPACT ALGEBRAS

Let 2 be a commutative: pseudocompact ring. The complete Hausdorff
topological ring A will be said to be a pseudocompact algebra over 2 if:

481/4/3-9
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(i) A4 is an £2-algebra in the usual sense,

(i) 4 admits a system of open neighborhoods of & consisting of two
sided ideals J such that A/I has finite length as 2-module. Clearly such a
ring / is pseudocompact and a A-module A has finite length if and only if
it has finite length as £2-module.

We define a “‘tensor product” for A-modules by its universal property.
Explicitly, let 4 be a right and B a left pseudocompact /-module; then their
complete tensor product is a pseudocompact £2-module 4 & 4 B and a A-biho-
momorphism! « : 4 X B— A &4 B with the following property : given any
A-bihomorphism f of 4 X B into a pseudocompact Q-module C, there is a
unique morphism of £2-modules g : 4 &, B — C such that go = f. We con-
struct the tensor product as follows: 4 &, B = lim A/U ® 4 B|V,

Ao 1. tha shevnadaila, t' A {voce

-1 A { e
WnNere U \ICBP l/ }lullb uuuusu LLIC UPCI] SUDINIGGUICS O A \ICBP U} slll\:ﬁ

AJU and B[V are 2-modules of finite length so is A/U ® 4 B/V, and thus
A &4 B is a pseudocompact £2-module. The natural bihomomorphisms
A x B— AJU ®, B/V induce the desired bihomomorphism
a: A X B— A @, B upon passage to the limit.

The exact sequence

0—>Im(ARV+U®.B)— 4 ®AB—> ®A———>0

shows that 4 &, B is the completion of 4 @, B in the topology induced

by takinglm (A ®,V + U ® 4 B) as a fundamental system of open neigh-
borhoods of 0 (cf. References [81, [101 for the commutative raeg\

LQLI00ES O U (L5 ReX S Oy 4V 100 200 COTIIARRLANIVE L&

LemmMa 2.1. (i) The functor T(A4, BY = A & , B is an additive covariant

o3 annnnt Casan ndrne furams tho nnbon £ Booasdnnna. 2
e exaci ul«_/uf"u,bul J7 Gt Lrie Cubcg(l‘fy GJ PSI’:‘uuGCulupaCt 14-7756&"3&'16'5 to tllic cate’gﬂry

of pseudocompact §2-modules.
(it) If A is a finitely generated right A-module, then A Q,B=AQ,B
(i) If A is a projective right A-module, then T (4, *) is exact.
(iv) Similar statements for B.
Proof. (i) Since inverse limits in & preserve exactness, (i) follows from
the known properties of the tensor product.
(if) The natural isomorphism

AMRB=B® PR

is a continuous morphism such that afal, b) = «(a, Ab) for a € 4
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of pseudocompact £2-modules shows that
A" ®,B=1"®,B.

If A is finitely generated, there is an epimorphism A* ®, B— 4 ®, B.
Thus 4 ®, B is pseudocompact and (ii) follows since 4 @, B is dense in
A&®,4B.

(itf) Since T is an additive functor, it follows from Lemma 1.6 that we
may suppose 4 to be a free A-module. If 4 is finitely generated, (iii) is a
consequence of (ii). In the general case, write 4 == lim 4, where 4; runs
through the finitely generated free quotients of 4 and apply Lemma A4 of
the Appendix.

It follows from the preceeding lemma that we may define the left-derived
functors Zs2, (4, B) of T(A4, B) = A & , B by using a projective resolution
of either 4 or B according to established principles of homological algebra
(cf. Reference [4]). We note that To4,* (4, B) is a pseudocompact 2-module,
that 00 (A4,B) = A ®, B and that J02,% (4,B) =0 for all n > 1
if 4 or B is projective.

The category € of pseudocompact A-modules has enough projectives by
Lemma 1.6 and the category £ of discrete A-modules has enough injectives
by Lemma 1.8. The correspondence 4 X B~ Hom, (4, B) is a left exact
bifunctor from % x 2 to the category of discrete £2-modules which is
contravariant in 4 and covariant in B. We may define the right-derived
functors &z¢ " (4, B) by using either a projective resolution of 4 or an
injective resolution of B. We note that £z¢,° (4, B) = Hom, (4, B), and
that £z£," (4, B) is a discrete £2-module. The following lemma shows that
Ezté” (A, B) =0 for n > 1 if A is projective or B is injective.

Lemma 2.2. (i) If B is an injective in D, then the functor Hom , (*, B)
is exact on €.

(it) If A is a projective in €, then the functor Hom , (A, *) is exact on 9.

Proof. (i) Let 0— Al—f> Az-i A;—0 be an exact sequence in %.
For any open submodule U, of 4,, let U, = f-}(U,) and Uy = g(U,), then
we have an exact sequence of discrete /4-module:

A Ay Ay
0——+U1——>U2 U3—>O

which gives rise to the exact sequence

0-—>Hom,1( A ,B)—>H0m.4( Ay ,B)—»Hom,l( 4

Us 2 v Uy ,B)—*O
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since B is injective. Taking direct limits over all open submodules U, , we
conclude from Lemma A.3 of the Appendix that

0 — Hom/, (4;, B) - Hom,, (4, , B} -~ Hom, (4, , B) -0

is exact since direct limits preserve exactness for discrete modules and

for t=1,2,3.

(ii) is proved similarly.

We next show that the category € of right pseudocompact A-modules is
dual to the category 2 of discrete left /-modules extending a result of Matlis
and Gabriel. Let E be the dualiser of £, i.e., the injective envelope, in the
category of discrete £2-modules, of the module @ 2/ where M runs through
the open maximal ideals of 2. We define contravariant functors S : € — 9
by 4 ~ Homy, (4, E) and T :9 — € by C ~ Hom,, (C, E), where T(C)
is given the topology of pointwise convergence. The functor T is exact since
E is injective while S is exact by Lemma 2.2(i).

ProposiTION 2.3. The functors S and T define a duality between €
and 9. In fact, their composition is naturally equivalent to the identity functor
on the respective category.

Proof. This has been shown in the commutative case by Gabriel ([7],
p- 400) for the full subcategory # of modules of finite length. The general
case follows by writing A = lim 4/B, where B runs through the open
submodules B of 4, and C =1lim D where D runs through the sub-
modules of C of finite length. We then apply Lemma A.3 of the Appendix
and the well known rule

lim Hom,, (4, , E) = Hom,, (lim 4,, E)
for discrete modules 4, and E. The operations of A are preserved by func-
toriality.

LemMa 2.4, Let A and T be pseudocompact 2-algebras. Let A be a right
pseudocompact A-module, let B be a left (A, I')-pseudocompact module, and let C
be a discrete left I'-module. Then there is a unique isomorphism :

S :Hom, (4, Hom (B, C)) > Hom (B &, 4, C)

such that (Sp) (b @ a) = ¢(a) (b). This morphism induces a natural equivalence
of functors.

This is the topological analog of Proposition 5.2 on page 28 of Reference [4].
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COROLLARY 2.5. Same notation as above, but we assume that C is an
tnjective I'-module. Then we have a natural isomorphism,

&zt (4, Hom,. (B, C)) = Hom, (T21,* (B, 4), C).

This follows from Lemma 2.4 by general principles (cf. Reference [4],
p. 120).

CoroLLARY 2.6. Let A be a pseudocompact 2-algebra and let E be the
dualizer of . Let A (resp. B) be a right (resp. left) pseudocompact A-module.
Then we have a natural isomorphism :

T4, (4, B) >~ Hom,, (€z¢,* (B, Hom,, (4, E)), E).

3. HomoLoGICAL DIMENSION OF PSEUDOCOMPACT ALGEBRAS

We develop here a theory of dimension for a pseudocompact £2-algebra 4,
thereby generalizing the homological theory of complete semilocal Noetherian
rings. Many of the proofs will be omitted since they are formally the same
as the classical ones.

We saw in Section 1 that the category % of pseudocompact /A-modules
has enough projectives. Thus, for any A-module 4, we may define the homo-
logical dimension of A, written hd , 4, as the least integer n for which we
may find a projective resolution

0—-P,—>P, ,— —>P—>A4A->0

in € If no such resolution exists, we write hd, 4 = oo and
by convention we set hd, 0 = — 1. We define the global dimen-
sion? of A by gl dim A = sup hd, 4 as A ranges through ¥.

ProrosITION 3.1. The following are equivalent for a pseudocompact
A-module A.

(i) A is projective.

(ii) The functor C ~ Hom , (A4, C) is exact on the category of A-modules C
of finite length.

(i) =t (4, C) =0 for all simple discrete C.

(iv) Fou1(C, A) = 0 for all simple pseudocompact C.

Proof. We note that simple A-modules are necessarily of finite length.
(i) — (ii) is a special case of Lemma 2.2(ii). (iii) is equivalent to (iv) by the
duality established in Corollary 2.6.

3 We can also define injective, weak, right and left global dimension but these are
easily seen to be equivalent.
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(ii) — (iii). It follows from Lemma A.3 of the Appendix that the functor
C ~ Hom (4, C) is exact on the category 2 of discrete A-modules. We may
embed the module C of finite length into an injective J in £. Since
Szt (4,1) =0 we conclude that &z£,! (4, C) = 0 for all A-modules C
of finite length.

(iii) — (i). In the Abelian category %, we may define the right-derived
functors of Hom, which we denote by &=/, either by the Yoneda process
via long exact sequences or by projective resolutions of the first variable.
The second approach show that £=#, agrees with our old &=¢ when the
second variable has finite length. The Yoneda approach shows that if 4
satisfies (iii) then every exact sequence 0 - C— B — 4 — 0 in & splits if C
s a simple A-module. This is equivalent to the following: if 7 : By — B,
is an epimorphism in % with simple kernel C, then every morphism
f: A— B, can be lifted to a morphism g: 4 — B, such that ng =f. To
prove that A is projective, it suffices to check that every exact sequence
0—-C—>B—>A—0in ¥ splits.

Consider the collection .S of pairs (V, s) consisting of a submodule N of C
and a splitting morphism s: A4 — B/N such that #s(¢) = a, where
# : BIN — A4 is the morphism induced by 7. Since B/N N, = lim B|N,,
we see that S with the obvious partial order is an inductively ordered set
with a maximal element, by Zorn’s lemma, say (N, s). If N 3 0, we may
find an open submodule M of N such that N/M is simple. Hence, by what
we saw earlier, there is a morphism t: 4 — B/M making the following
diagram commutative:

A
lt/ ls
N B B

The element (M, ) of S is strictly larger than (I, s). This contradiction
proves that 4 is projective.

Remark. Part of this proof was suggested by that of Proposition 16

of [14].

CoROLLARY 3.2. The following are equivalent for a pseudocompact A-
module A:

(i) hd(4) <n;
(i) &zt (4, C) =0 for all simple A-modules C;
(iii) Fo2,2 (A, C) = O for all simple A-modules C.
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CoroLLARY 3.3. Let (A;,A;;) be an inverse system of pseudocompact
-algebras and let (A;, a;) be an inverse system of projective A,-modules.
Suppose A;; and o,; are surjective. Then A = lim A, is a projective module
over lim 4, = A. -

Proof. Let C be a A-module of finite length, then ker A; is contained in
the annihilator of C for some ¢ by Lemma A.l. Hence C is a A;,-module
for a cofinal set of ’s. Let

0>B—~C—>D—0
be an exact sequence of /1-modules of finite length and let ¢ be as above; then
0 — Hom, (4,, B) > Hom, (4, C) > Hom, (4,, D)—0

is exact and thus by Lemma A.3, the functor C ~ Hom, (4, C) is exact
for modules of finite length. The corollary follows from Proposition 3.1.

LemMa 3.4. Let (4;, ;) be an inverse system of pseudocompact A-modules
and let C be a discrete A-module. If all o; are epimorphisms, then we have
natural isomorphisms,

lim £zt (4, C) = &zt (lim A4, C)

In particular,
hd 4 (lim 4,) < sup hd, (4,).

Proof. Lemma A.3 of the Appendix gives the case n = 0. The general
case is deduced by induction using an injective resolution of C. The second
assertion follows from 3.2.

THrOREM 3.5. The following are equivalent for a pseudocompact Q-alge-
braAd:

() gldimA <n;
(ii) &E=¢,"(C, D) = 0 for all simple A-modules C and D;
(ili) Fo2,1(C, D) = 0 for all simple A-modules C and D.

Proof. (ii) and (iii) are equivalent by Corollary 2.6. Since (i) clearly
implies (ii), it suffices to show that (ii) — (i). Let 4 be a pseudocompact
A-module, we write 4 = li({n A|B where B runs through the open sub-
modules of 4, so that A/B has finite length and thus, by induction on its
length we have &z¢,"(4/B,D) =0 for all simple modules D. Hence
hd, A/B < n by Corollary 3.2 and therefore hd, A < n by Lemma 3.4.
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Remarks. (1) If A is Noetherian and A4 is finitely generated, then
To1,* (4, B) = Tor,” (4, B) and &=¢ 4" (4, C) = Ext" (4, C). This fol-
lows from Lemma 2.1(ii), the fact that homomerphisms of 4 into the discrete
A-module C are automatically continuous and the existence of finitely
generated free resolutions of 4. Thus the global dimension we have defined
is the same as the usual one in this case.

(2) If Ais a local algebra over £, i.e., if the radical is the only maximal
ideal of 4, then the only simple A-module is the residue class field / of A. Thus
gl dim A is the least integer n such that &=¢2+1 (I, 1) = 0.

The following may be proved like Case 4 on p. 348 of Reference [4].

LemMA 3.6. Let f: A— T be a morphism of pseudocompact 2-algebras.
Let A be a pseudocompact I'-module and let C be a discrete A-module. Then we
have a spectral sequence

Extr? (A, Eatg (T, C)) > Extym (4, C).

CoroLLARY 3.7. Let A be a pseudocompact local algebra over the local
ring 2. Suppose we have an augmentation morphism ¢ : A — Q. Then

gl dim 4 = gl dim 2 + hd,, Q.

Proof. The only simple A-module is the residue class field k of £. Let
n=gldim$2 and let m = hd, 2. It follows from Corollary 3.2 that
&zt ™ (9, k) is a nonzero discrete vector space over k and thus that

Gzt (R, Exf ™ (R, k) # 0.
The spectral sequence
Exlba? (R, Ezd 2 (2, k) = Exty (k, k)
and Theorem 3.5 complete the proof.

Remark. 'The reader who prefers to avoid spectral sequences can do so
by supposing that 2 is a Noetherian local ring. We have k2 = Qf(x; , -, x)
where (x,, -, %,,) is an Q-sequence and thus hd k =hd, Q2 4 m as in
Reference [2] and the corollary follows from Theorem 3.5. This assumption
on 2 may not be too restrictive, since the author has no example of a non-
Noetherian commutative pseudocompact local ring of finite global dimension.

By Theorem 2 of Reference [17], the ring £2 is the direct product of
pseudocompact local ring with the product topology, say 2 = [] £2;. Let
1 = (¢,) be the corresponding decomposition of the identity into primitive
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idempotents. If A is a pseudocompact £2-algebra, then ¢, is a pseudocompact
(e:2 = £2,)-algebra. Suppose 4 is a pseudocompact /A-module and C is a
discrete /A-module, then

Hom, (4, C) = @ Hom, 4 (e;4, ¢,C)
and therefore
Ezt,"(4,C) =@ é= e"‘,, (e;A, e,C)

because ¢,P is a projective ¢;,/1-module whenever P is a projective A-module.
The following immediate consequence sometimes reduces the computation
of global dimension to the local case where Corollary 3.7 may be applied.

Lemma 3.8. (Same notation as above.) Then
gl dim A = sup gl dim ;4.

The following generalization of a result essentially contained in Theorem
3.2 of Reference [5] is too tempting to be left out.

THEOREM 3.9. Let 2 be a commutative pseudocompact ring and let L{{X}}
be the algebra of noncommutative formal power series over 2 in a nonempty set
X = {x;} of variables. Then

gl dim Q{{X}} = gl dim 2 + 1.

Proof. The algebra {{X}} with the topology of pointwise convergence
of the coefficients is a pseudocompact algebra over 2. We may suppose by
Lemma 3.8 that Q is a local ring in which case so is 2{{X}}. We have a
natural augmentation e : Q{{X}} — 2 whose kernel is the ideal M generated
freely by X. Hence hdg4;,@2 =1 and Theorem 3.5 proves our assertion.

4. GroBaL DIMENSION OF GROUP ALGEBRAS

Throughout this section let £2 be a fixed commutative pseudocompact
ring. Let G be a profinite group, i.e., the inverse limit of finite groups. We
define the complete group algebra® Q]G] of G over 2 to be the inverse limit
of the ordinary group ring of the finite quotients G/U of G over Q, i.e.,
Q[G] = lim Q[G/U]. We may alternatively define £[G] as the completion
of Q[G] in the topology induced by taking as a system of open neighborhoods
of O the kernels of the natural epimorphisms Q[G] — Q/N[G/U], where N
runs through the open ideals of £ and U runs through the open normal

3 This algebra was introduced under somewhat more restrictive hypotheses by
Golod and Safarevid in their paper on the class tower problem, and by Lazard [10].
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subgroups of G. The map G ~ £[G] defines a covariant functor from the
category of profinite groups to that of pseudocompact algebras over Q. In
particular, let f: G— G’ be an epimorphism with kernel NN, then we have
an epimorphism f : Q2[G] — £[G’] whose kernel will be denoted by I(N)
where the dependence on £ and G is understood. It is sometimes useful to
note that I(/V) is the closed left (right) ideal of 2[G] generated by the elements
{1 —n|ne N} since N is normal.

We shall use freely the results on the cohomology of profinite groups
found in [/4] and in [6]. We recall that the cohomological p-dimension of G,
written cd,G is the smallest integer n such that H™*Y(G, C) = 0 for all
discrete p-primary G-modules C. We define the residual set of £, written
r($2), to be the set of the nonzero characteristics of the residue class fields
Q/M where MM runs through the open maximal ideals of Q2. We write
cdG = sup,.,(g) ¢d,G. The central goal of this section is the proof of the
following result.

TreorREM 4.1. Let 2 be a commutative pseudocompact ring and let G be a
profinite group. Then

gl dim Q[G] = gl dim 2 + ¢d,G.

ExampLes: (1) If G is a finite group, we find the well known result that
gl dim Q[G] = oo unless the order of G is a unit in £ in which case
gl dim Q[G] = gl dim L.

(2) If Qis alocal ring whose residue class field has characteristic p and G
is a pro-p-group, then £[G] is a local ring whose maximal ideal is generated
by I(G) and the maximal ideal of £ since the only irreducible representation
of a p-group over a field of characteristic p is the trivial one (cf. Reference [10]).
In particular, if G is the direct sum of n copies of the p-adic integers, then
£[G] is the algebra Q[x, , -+, x,] of formal power series in n variables over
£ since

216 x H] = 2[G] &, 2[H].
We find again a known result: .
gl dim Qfx, , -, x,] = gl dim 2 + n.
(3) If Gis a free pro-p-group on a set X, then Q]G] is the algebra of

noncommuting formal power series over £ on the set {l 4+ x| x € X} by a
result of Lazard ([10]), and we have a special case of Theorem 3.9.

Whenever there is no danger of confusion, we write §z/;; for &/ and
T o1° for T04™°1, The following result establishes the connection of these
functors with the cohomology groups of G. We note that an 2-module of
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finite length is a G-module if and only if it is an 2[G] module, hence this is
true of pseudocompact and discrete £2-modules.

Lemma 4.2, (i) Let A be a discrete Q[G]-module, then
HY G, 4) = E=£,2 (2, A).
(il) Let A be a right pseudocompact A G]-module, then
H(G, 4) = To1C (4, ).
Proof. (i) Both HYG, *) and &=/% (R, *) are right-derived functors
of A4 ~ A% = Homg (2, A).
(i) Both H(G, *) and J04,° (4, Q) are left-derived functors of

QG) A

AWAG-:A@GQ:A@GW_W'

CoroLLARY 4.3. (i) Let G =1im G; and let A =lim A; where G; are
profinite groups and A; are discrete G;-modules, then

lim Ezlg, (2, A) = Exte, (2, A).

(i) If B= li_m B, where B, are pseudocompact G -modules, then
lim %46 (B;, Q) = J04° (B, ).

Proof. The ﬁr'st assertion follows from Lemma 4.2 and from Proposi-
tion 8 of Reference [14]. The second is a consequence of the first and of
Corollary 2.6.

Remarks. (1) If U runs through the open normal subgroups of G,
then H/G, A) = lim H(G/U, AJAI(U)) by Corollary 4.3(ii). Thus our
definition of homology groups for profinite groups agrees with the special
case mentioned in Problem 4, pp. 1-55 of Reference [/4].

(2) Corollary 4.3 is true for supplemented pseudocompact algebras as

we see by using standard resolutions of £ (cf. References [4] and [/0])
but we shall not need this fact.

CoroLLARY 4.4. hdgef? = cd,G.

Proof. A simple 2[G]-module C is an 2/M-module for some open maxi-
mal ideal M by Lemma 1.4. If the characteristic of /M is 0, then C is
divisible hence H*(G, C) = 0 for all n > 1. The result now follows easily
from Corollary 3.2, Lemma 4.2 and, Proposition 11 of Reference [14].
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LemmA 4.5. Let G be a profinite group and let H be a closed subgroup of G.
Then Q[G] is a projective 2 H]-module. In particular

gl dim Q[H] < gl dim Q[G].

Proof. If the groups are finite, then 2[G] is a free Q[H]-module generated
by the cosets of G mod H. In general, let U be an open normal subgroup of G,
then Q[G/U] is a projective QIH/U N H]-module. Since

QG =lm Q[G/U] and  QH]=lim QH/U N H],

the first assertion follows from Corollary 3.3. The second is an immediate
consequence of the first and the definition of dimension.

LEmMMA 4.6. Let A be a pseudocompact Q[G|-module and let C be a discrete
Q[H]-module. Then there is a natural isomorphism :

Ext 7 (A, Homy (2[G], C) == Exby (4, C).

Proof. The case n = 0 is a special case of Lemma 2.4. Since Q[G] is a
projective H-module, the functor C~ Homy (Q[G], C) is an exact functor
which takes injective H-modules into injective G-modules (use Corollary 2.6
and Proposition 3.1). The general case follows upon using an injective
resolution of C.

We need a generalization of the restriction and corestriction maps as
defined in Reference [/4]. We define a G-monomorphism:

¢ : C— Homy (2[G], C)

by i(c) = x - ¢ for c € C and x € Q[G]. This induces the restriction homo-
morphism:

resy® : Exég (4, C) LY Eztz (A, Homy (QG], C)) = 244 (4, C).
If the index of H in G is finite, we define a G-epimorphism:
w : Homyg (Q[G], C) - C

)= 2 (%)

zeG/H

by

This induces the corestriction homomorphism
CorgH : Sty (A, C) = Exty (A, Homy (QUG, C)) > Szt (4, C).

We verify that Corg” - Res,® is multiplication by (G : H) since this is obvious
for n = 0 and we are dealing with maps of cohomological functors. Thus we
may prove as usual the following result (cf. Proposition 9, p. I-11 of
Reference [14]):
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Lemma 4.7. Let H be a closed subgroup of the profinite group G. If (G : H)
is relatively prime to p in the supernatural sense, then Resy® is injective on the
p-primary component of by (A, C).

We write H = N U where U runs through open subgroups of G. Since 4
and C are G-modules, we find that

lim 824y (4, C) = 8ty (4, C)

by using a G-projective resolution of 4. Our claim follows immediately.

ProprosiTION 4.8. If n>gldimQ, then Ezf;*(A,C) is a torsion
Abelian group annshilated by the order of G.

Proof. We suppose first that G is finite. Then res,® = 0 since
Ea4y" (4, C) =0 by hypothesis. Since Corg! - Res,® is multiplication by
(G : 1) on &z¢5" (A4, C), the result is truein this case. Now suppose that G

is arbitrary and that 4 is a G/U-module for some open normal subgroup U
of G. The proof of Lemma 4.2 shows that

wz;gm(g [%] , c) — HYU, C)

which is a torsion Abelian group annihilated by the order of U if ¢ > 1 by
Corollary 3 of Reference [14]. The proof in this case is completed by the
spectral sequence of Lemma 3.6, which becomes

Eztire vy (4, H(U, C)) = 245161 (4, C).

In generél, we write A = lim A/I(U) A where U runs through the open
normal subgroups of G and apply Lemma 3.4.

COROLLARY 4.9. Let G be a profinite group and let G, be a p-Sylow sub-
group for each p. Then

gl dim Q[G] = sup,e, (o) gl dim [G,],
where the right-hand side is interpreted as gl dim Q if r(£2) is empty.

Proof. We may suppose, by Lemma 3.8, that £ is a local ring with
residue class field & of characteristic ¢ with the agreement that G, = 1. Let
n = gl dim Q[G,], then n < gl dim Q[G] by Lemma 4.5. Let 4 and C be
simple Q2[G]-modules, then 4 and C are in fact simple A[G]-modules, by
Lemma 1.4, and thus é’m&},‘lal (4,C) is a vector space over k. We distinguish
two cases:

(a) if ¢ =0, then &= ,’;[Jg] (4, C) is a uniquely divisible Abelian group
which must vanish by Proposition 4.8;



458 BRUMER

(b) if ¢ £ 0 then ébﬁfgfé] (4, C) is a g-primary Abelian group which
vanishes by Lemma 4.7, since é"wt},‘[‘a] (4, C) = 0 by hypothesis.
In either case the proof is completed by Theorem 3.5.

Proof of Theorem 4.1. We may suppose that G is a pro-p-group and that 2
is a local ring with residue class field & of characteristic p by Lemma 3.8
and Corollary 4.9. As we remarked in Example (2) at the beginning of this
section, £[G] is a local pseudocompact algebra and the result follows from
the conjunction of Corollaries 3.7 and 4.4.

5. PreseNTATION OF GROUPS AND COHOMOLOGICAL DIMENSION

We preserve the notation introduced in Section 4 with the following sim-
plification:  will henceforth denote the ring 2, of p-adic integers. We note
that the dualizer of Q2 (cf. Section 2) is Q,/2, and that gl dim Q = 1.

Let G be a profinite group presented as G = F|N, where F is a free pro-
finite group and N is a closed normal subgroup of F.% In fact, the only
property of F which will be used is that c¢d,F = 1 (cf. Section 3.4 of
Reference [14]).

LemMA 5.1. Let G be a profinite group and let 1(G) be the kernel of the
natural augmentation € : QG| — 2, then cd,G < r if and only if

hdged(G) <7 — 1.

Proof. This is immediate from Corollary 4.4 and the exact sequence

0 — I(G) — Q[G] — 2 — 0. (5.1.1)

THEOREM 5.2.5 Let G be a profinite group and suppose G = F|N, where N
is a closed subgroup of the group F. Let N, be the p-Sylow subgroup of the compact
Abelian group N|N', where N’ denotes the commutator subgroup of N. Suppose
cdF =1, e.g., F is a free profinite group. Then

hdgV, = ¢d,G — 2
unless ¢d,G = 1, in which case N, is a projective Q[G]-module.
Proof. We note first that NV, is a compact Q[G]}-module with the action
of G induced via inner automorphisms of F. We recall that for any Q[N]-

¢ This is always possible by Theorem 1.3 of [6].

® The proofs given here apply equally in the discrete case. For instance Lyndon’s
identity theorem [12] shows that under his hypotheses N/N’ is a free Z[G]-module,
hence it follows immediately that cdG = 2, as he shows by computation.
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module 4, 4 Qo2 = A/AI(N). Since 2[F] is a projective Q[N]-module,
by Lemma 4.5, the beginning of the sequence of (5.1.1) is given by

I(F) Q[F]

— N —
0— T20,N (2, Q) T~ oL~

Q—0,

where Ay = AI(N). But J24," (2,02) = N,’ as Q[G]-module since the

P

proof in the discrete case (e.g., p. 190 of Reference [4]) will work with
minor changes. We thus obtain the following exact sequence of G-modules:

s I(F) I(F)

0—>N,,——>I(F)IN—> Q[[F]]IN—)

0, (5.2.1)

where 3 is determined by 8(z) = 1 — n. Let R be the kernel of the natural
epimorphism Q[F]— Q[G], then % = Q[F]I, since N is normal and
I(G) = I(F)/?. Thus (5.2.1) can be rewritten as follows:

I(F)
0—>No = 7w

—I(G)—0. (5.2.2)

Since cd F = 1, I(F) is a projective 2[F]-module, by Lemma 5.1, and thus
I(F)/I(F)® is a projective Q[F]/R = 2[G]-module. The conclusion follows
from (5.2.2) and Lemma 5.1.

CorOLLARY 5.3. Let G be a pro-p-group and suppose G = F|N, where F
is a free pro-p-group. Then the following are equivalent:

(i) cd,G <2;

(i) N, is a free 2,[G]-module generated by the images of a minimal set of
generators for the closed normal subgroup N of F.

Proof. Since Z,]G] is a local ring, the usual argument shows that every
projective is free and a generating set is obtained by lifting a generating set of
N,/N, Bt = N|[N,F] N?, where M =(p,I(G)) is the maximal ideal of
2,IG] (cf. Corollary 1, p. 393 of Reference [7]). But a set {n,} of elements of
N generates NV as a closed normal subgroup if and only if their images
generate the compact vector space N/[IV, F] N? over the field with p elements.
The result now follows immediately from Theorem 5.2.

The strict cohomological p-dimension of G, written scd,G, is the smallest
integer n such that the p-primary component of H*}(G, A4) vanishes for all
discrete G-modules 4. It is easy to see that ¢d,G < scd,G < d,,G 41
(Proposition 13 of Reference [14]), but it is harder to decide between these
two possibilities. Serre has given the following criterion (Corollary 4 of
Reference [14]).
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CriTeRION 5.4.  Suppose that cd,G =n is finite. Then scd,G =n if
and only if H**Y(U, Z) has trivial p-primary component for each open subgroup
Uof G.

We immediately obtain the following result:

CoROLLARY 5.5. Suppose cd,G = n is finite. Then the following are equi-
valent :
(i) scd,G=mn.
(i) H™U, Qu/Z,) = 0 for every open subgroup U of G.
(il)) To21(Q, Q) = 0 for every open subgroup U of G.

Proof. Since Q is divisible, we have that
H(U, Z)p) = HY(U, Q/Z)(p) = HYU, Q,/2,)

for all # > 1. This proves the equivalence of (i) and (ii). The equivalence of
(ii) and (iii) follows from Lemma 4.2 and Corollary 2.6, since Q,/2, is the
dualizer of £.

CoROLLARY 5.6. Let cdG =2 and suppose G is a pro-p-group with finitely
many relations. Then the following are equivalent :

(i) scdG =2.
(i) For each open subgroup U of G, the rank of the torsion group of UJU’
1s equal to the number of relations of U. -

Proof. We recall that the number of relations in U is given by
the dimension of H¥U, F,), where F, is the finite field with p elements.
We recall that H(U, F,) is the dual of Fo4,V(F,, 2) by Corollary 2.6 and
that To2,Y (2, 2)=U|U". The result follows immediately from Corollary 5.5
and the J24 sequence of 0 — 2 *> Q — F, — 0; namely

To15 (2, 2) "> T2, (2, 2) > Tony (F, , Q) — g,—-’;—g—,,

since Jo4,Y (2, L2) is p-primary by Proposition 4.8, and HU, F,) is finite
because H*G, F,) is finite by hypothesis [in fact H¥G, 4) is then finite
for any finite 4; hence, by Shapiro’s lemma so is HYU, F,)).

ProPOSITION 5.7. Let F be a profinite group of cohomological p-dimension 1
and let N be a normal subgroup of F. Then the following are equivalent for
G =F|N.

(i) scd,G = 2;
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(i) N, s aprojective Q[G)-module and the p-Sylow subgroup of NNV'[[N,V]
1s trivial for each open normal subgroup V of F containing N.

Proof. As usual, we denote by [4, B] the closed subgroup generated by
all commutators [a, b] with a€ 4, b € B.

Let U be an open subgroup of G and let V be the complete inverse image
of U in F, so that V'/N = U. The Hochschild-Serre spectral sequence gives
rise to the following exact sequence (p. I-15 of Reference [14]):

o (012) o (12 o R (1 )

(@)=

where the last term vanishes since cd?V = 1. Since the groups act trivially
on Q/Z, we may rewrite the sequence as follows:

0—>Hom( v Q)—»Hom(

V N
AR T 2) — Hom ( )

N, V]’ Z

— H? (U,%)—»O.

Taking p-primary components and passing to the duals, we obtain the follow-
ing isomorphisms by Corollary 2.6:

Tor,9(@, Q) = B (U,22) "= (N 0 V')IN, V1)), .

The proposition follows from Theorem 5.2 and Corollary 5.5.

6. AppLICATION TO CLass FORMATIONS

We consider a profinite group G and a G-module 4 such that 4 = {Jz4F,
where A = HY(F, A) and F runs through the open subgroups of G. We note
that if N is an open subgroup of G contained as a normal subgroup in H, then
Ay is an H/N module. We say that (G, 4) is a class formation if A satisfies
the following two axioms for all such pairs N C H:

() HYHIN, 4y) = 0;

(ii) H*H|N, Ay) is cyclic of order [H : N].

It is well known that we can choose a canonical class ugy;y generating
H¥H|N, Ay) which behaves properly with respect to inf, res, and cor

481/4/3-10
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([Z], [13]). Tate’s theorem asserts that the cup product with #z,y induces
an isomorphism

— Vugy : H2(H|N, Z) — H(H|N, Ay)
for each integer g, where H denote the Tate cohomology groups. In particular,
for ¢ = 0, we obtain the Artin reciprocity isomorphism
Au|Ngix(Ag) = (HIN)/(H|NY,
where the prime indicates the commutator subgroup and Ny, denotes the
norm map; passing to the limit as V shrinks to 1, we define a homomorphism
Wy ? A H— H / H'

which shall be called the reciprocity map for the formation. If H is a normal
subgroup of K, then wy is a homomorphism of K/H modules. Let Cy be the
kernel of wy and let Dg be its co-kernel; then the exact sequence

0> Cy— Ay ~E> HIH —> Dy — 0

of K/H modules induces homomorphisms
d,: H¥K[H, Dy) — H(K/H, Cy)

as the composition of two co-boundary maps.
The main result of this section is the following.

THEOREM 6.1. The following are equivalent for a class formation (G, A).
(i) scd, G =2;
(ii) For each integer q and each pair H C K of open subgroups of G such

that H is normal in K, d, induces an isomorphism onto on the p-primary com-
ponents of the respective cohomology groups.

This theorem is immediately applicable to all classical class formations:

(i) In local class field, the reciprocity map is injective and its co-kernel is
2/Z, where 2 is the total completion of the integers. Since 2/Z is uniquely
divisible, it is cohomologically trivial (cf. Chap. 14 of Reference [13]).

(ii) For function fields of one variable over a finite field, the situation is as
in (i) (cf. Chap. 8 of Reference [1]).

(i) For number fields, the reciprocity map is surjective and the kernel
is the connected component of the identity in the idele class groups. The
cohomology groups of the kernel are thus elementary 2-groups which are
trivial if and only if the ground field is totally imaginary (cf. Chap.9 of
Reference [1]).
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(iv) For a field complete under a discrete rank-one valuation with alge-
braically closed residue class field, the reciprocity map is an isomorphism
(cf. Reference [15]).

For any field %, let G, denote the Galois group of its separable closure.
We have thus proved the following consequence of Theorem 6.1.

CoROLLARY 6.2. In Cases (i)—(iv) we have scd, G;, = 2, unless p = 2 and
k is a number field which is not totally imaginary (in which case complex con-
Jjugation is an element of order 2 making cd, Gy, infinite!).

Tate has announced this result in cases (i)-(iii) as a consequence of his
duality theorems ([16]). A proof in the p-adic case may be found in Proposition
15 of [ 14] and the weaker result cd,, G, = 2 is proved as Proposition 13 of [ 14].

LemMma 6.3. Let T be a finite group and let
0>A->B-2%C—-D—>0
be an exact sequence of T-modules; we have an induced homomorphism
d,: A**(T, D) — HY(T, A)
defined as the composition of two co-boundary maps. The following are equivalent:

(i) For each q, d, is an isomorphism on the p-primary components;
(i) For each q,w*: AYT, B) — HY(T, C) is an isomorphism on the
p-primary components.
Proof. One splits up the exact sequence into two short exact sequences.
The result follows from easy but lengthy diagram chasing along the associated
cohomology sequences.

We shall say that a profinite group G is p-malleable® if for each open
normal subgroup H contained as a normal subgroup in K, the cup product

— U Ly s H¥K/H, Z) — AYK/H, H/H’)

induces an isomorphism on the p-primary components for all integers g, where
{x/m is the 2-cohomology class of the extension

1 — H/H' — K/H' — K/H ~ 1.

¢ This concept was introduced by Kawada [9] whose paper inspired some of the
proofs of the last two sections of mine.
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The theorem of Weil-Safarevi¢ [1] asserts that the diagram

A+¥K(H,Z) X2, HyK/H, Ay)

—uéK/\Ix oy (6.3.1)

HYK/H, H/H')

is commutative. Thus the second condition of Theorem 6.1 is shown by
Lemma 6.3 to be equivalent to the group-theoretic assertion that G be
p-malleable. To complete the proof of Theorem 6.1 it thus suffices to verify
the following.

THEOREM 6.4. The profinite group G is p-malleable if and only if scd ,G = 2.

The proof is broken up into a sequence of lemmas. As in Section 5, we
denote by H,, the p-Sylow subgroup of H/H’ and we observe that HYK/H, H,)
is the p- prxmary component of HYK/H, H/H ). Since Q and the p-adic
numbers Qp are uniquely divisible, while Q,,/Z is the p-primary component
of Q/Z, we conclude that ﬂq(K/H Z,) is the p-primary component of
HA9(K/H, Z). This shows that G is p-malleable if and only if

~ U L HoXK/H, 2,) — HO(K[H, H,) (64.1)
is an isomorphism for all g.

LeMMA 6.5. Let I(G) be the augmentation ideal of 2,[G]. Then G is
p-malleable if and only if
AYK[H, I(G)/[(G)lg) = 0
for all q and all pairs of open subgroups H and K, with H normal in K.

Proof (Kawada): We use the exact sequence of K/H-modules introduced
in the proof of 5.2; namely

0— H, — I(G)I(G)Ig —~ ZpHGB/Zm[[GﬂIH - Zp — 0,

where Al is the closed submodule of 4 generated by{a(l1 - &) |ac 4, he H}.
By Lemma 4.5, Z,[G] is a projective K-module, hence the third term is
a projective K/H-module and a fortiori is cohomologically trivial. We conclude
from Lemma 6.3 that I(G)/I(G)Iy is cohomologically trivial if and only if

d,: A*¥K/H, 2.) —~ BYK/H, H,)

is an isomorphism for all g. In view of the remarks above, the proof will be
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complete as soon as we know that 4, is induced by the cup product with
{x;m . This fact is verified by explicit calculation in the proof of Theorem 1

of Reference [9].

Z < re 1 Y 1 a1 P S 1171
0.0. Iy CA,U = 1, tnen G 1§ p-maiieavie,

Proof. By Lemma 5.1, I(G) is a projective G-module and a fortiori is
a projective K-module. Thus I(GYI(G)My is a projective module over

2,[K/H] = 2,[K]/Z,[K]Ig for each normal subgroup H of K. Therefore G
is p-malleable by Lemma 6.5.

Lemma 6.7. Let A be a pseudocompact 2,[Gl-module satisfying the
following property. For each open normal subgroup H of G, A|Aly is a cohomo-

logically trivial G/H-module. Then hdzp[G]A < 1.
Proof. 1t follows from Lemma 4.2 that
TorK'B(A]ALy ,2,) =0  forall n3>1

and all open normal subgroups H of G. Thus

Tor(4,2,) =0 (6.7.1)

for all K and all » >> 1 by Corollary 4.3(ii). Let 0 > B —~F — A — 0 be an
exact sequence of pseudocompact Z,[G]-modules with F free. In view of
(6.7.1), we obtain the following exact sequence upon tensoring with 2, over

Z,IK],
0 — B/BIx — F/FIx — A/ AIx — 0.

Since A/ Al is a cohomologically trivial G/K-module, we have
hdy 1/ A/Alx <1

by Theorem 8, p. 152 of Reference [/3]. Because F{Fly is a free G/K-module,
we conclude that B/Bly is a projective G/K-module. Hence B = lim B/BIx
is a projective module over Z,[G] = lim Z,[G/K] by Corollary 3.3.

CoRrOLLARY 6.8. If G is p-malleable, then scd,G = 2.

Proof. 1t follows immediately from Lemmas 6.5, 6.7, and 5.1 that cd,, < 2.
For each open subgroup K of G, the Jo+ sequence of

0—~I(G)— Z,[G]—~ 2,0
shows that
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by (6.7.1), since Z,[G] is a free K-module. Hence Corollary 5.5 implies our
claim.

LemMma 6.9. Let F be p-malleable and let G = F|N for some closed normal
subgroup N. Then the following are equivalent.

(i) G s p-malleable.

(i) The p-primary component of HY(V/U, NJU' N N) is trivial for all g
and all open subgroups U of F containing N and contained as normal subgroups
mV.

Proof. Let HC K C G be as before and let U and ¥V be the complete
inverse images of H and KinF. Thus U/N = H, VI[N = Kand V/U = K/H
so that the following diagram is commutative.

1->U/U—->ViU—->VU>1

Lol e

1 — H/H' — K/H' — K|H — 1

In particular, the 2-cohomology class of the bottom extension is induced by
that of the top extension via the natural map

AXV|U, UU") — BXK/H, H/H’).

The result is now an immediate consequence of the definition of p-malleable
groups applied to the cohomology sequence of the exact sequence

1-NUNN-—>UU—HH —~1
of K/H-modules.

Proof of Theorem 6.4. 'The necessity has been proved in Corollary 6.8.
We suppose therefore that scd,G = 2. We may write G = F/N with F
a free profinite group. Since cd, F = 1, we know from Corollary 6.6 that F
is p-malleable; hence it suffices to verify condition (ii) of Lemma 6.9. This
is a consequence of Proposition 5.7. In fact, let H, K, U, ¥V be as in the
proof of Lemma 6.9. Then N, is a projective Z,[K]-module and therefore

No/Nplp = Ny[Nply = N,/[N,, U] = (N[U" N N),

is a projective K/H-module, hence is cohomologically trivial. In particular,
the p-primary component of A% V/U, N/JU’ N N) is trivial and Lemma 6.9
applies.

In conclusion, we would like to mention an open problem. Let K be an
algebraic number field and let S be a set of finite primes of K. Let K be
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the maximal extension of K unramified outside of S and let Gg be the
Galois group of Kg over K (cf. Reference [2]). What are necessary and
sufficient conditions on S to conclude that scd, Gy = 2? If p = 2, we must
assume that K is totally imaginary as we saw earlier. Tate has asserted that
a sufficient condition is that S contain all primes above p [16].7 On the other
hand, it is not hard to show from Theorem 6.1 that sed, Gs = 2 if S has
a sufficiently large Dirichlet density, whether or not S contains the primes

above p.

APPENDIX

We have collected here, for the convenience of the reader, the technical
results on limits which are needed in the body of the paper. We fix the follow-
ing notation: / is a directed partially ordered set; (A4, , A;;) is an inverse system
of pseudocompact 2-algebras; (4;, ;) and (B;, B;;) are inverse systems of
pseudocompact A,-modules while (C;, y,;) is a direct system of discrete
A,-modules satisfying the usual rules. For instance,

Ai(ly) aii(ay) = ayi(lay), Lyiies) = vifAifly) ¢2)

fori <j,l;€4;,a;€ 4;and c;€ C;. We write 4 = lim A; and A;: A — 4,
for the natural projection and similarly for the other limits. Thus 4 and B
are pseudocompact /A-modules and C is a discrete Z-module.

Lemma A.l. Let U be an open subset of A; containing «(A). Then there is
some j > i such that ay(A;) C U.

Proof. We may suppose without loss of generality that U is an open
submodule of 4, so that 4,/U has finite length. Passing to the limit over the
cofinal set j > ¢, the exact sequence

0> azi(U) > 4,4 MY g
shows that ;5 («;{(4;) + U)/U = 0, since inverse limits preserve exactness
and the first term is lim o3 (U) =a;(U)=A4 by hypothesis. Thus
a;(A;) C U for some j > i since the intersection is over submodules of the
module A4;/U of finite length.

CoROLLARY A.2. If the maps oy are epimorphisms, so are the limit maps
a, 1 A—A4;.

7 This is still wishful thinking. The author has shown that this is intimately con-
nected with the p-adic regulator problem of Leopold.
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Proof. 1f afA) # A, we can find an open submodule U containing the
closed submodule «,(4) and properly contained in A. Then Lemma A.1
shows that «;; is not an epimorphism for some j > 7.

Lemma A.3.  The natural morphism
lim Hom,, (4;, C;) — Hom, 4,0
is a monomorphism which is an isomorphism if the oy and A;; epimorphisms.
Proof. We have natural maps
h;; : Hom,, (A4, , C;)— Hom,, (4;, By),

defined by A f)) = y:; fies for i < j, forming a direct system. Similarly,
we have maps
@, : Hom,, (4,, C,)— Hom, (4, C),

defined by ¢ f;) = y:f~; , hence there is a canonical map:
¢ : lim Hom, (4, C;)— Hom, (4, C).
Let ¢(f) =0, then f = h( f;) with f; in Hom, (4, C)) for some 7 and
0 = ¢(f) (4) = (ki f)) (4) = ¢ 1) (A) = s Sl A).

Since A, is pseudocompact, C; is discrete and f; is continuous, we conclude
that f,a,(A) has finite length, hence there is a j > ¢ such that y,; fia(4) = 0.
Since 0 is open in C;, a,(4) is contained in the open submodule ker y;; f; .
By Lemma A.l, there is a & > j such that

anf{Ay) Ckery,; f; Ckeryy f; -
enHce
Yacf % = hik(f i) =0,

i.e., f = 0 and thus ¢ is injective.

To show that ¢ is surjective, let f: A — C be a A-morphism. Then ker f
is an open submodule of 4 and o%(U,) C ker f for some 7 and for some sub-
module U, of A. Since f(A4) is of finite length, f(A4) = y,(Dy) for some &
and some submodule D, of C; of finite length. We may choose /> ¢ and
! > k large enough to kill the kernel of v, : D; — C. We then define a map
g:4,—~ C, by g(a)) = ¢; where ¢, is the unique element of y(Dy) such
that f(a) = v{c;) with oa) = a (recall that o; is an epimorphism by
Corollary A.2). The map is a well-defined element of Hom, (4;, Ci),
since ker «; C ker f by construction, and ¢(k,(g)) = f.
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LemMa A4, If the maps oy , By; and A,; are epimorphisms then the natural
morphism

P :A @AB—‘)limAl @AgBi
is an isomorphism.
Proof. 'The morphism A;;: A, — A; gives A; and B; the structure of

A;-modules (which are pseudocompact since they are pseudocompact as
£2-modules!). We obtain maps

hy: A @A,» B, —~ A4, @A, B,
by composing the natural maps
A4, @A,- B;— A4, @A, B;— 4; @A‘ B;.

Thus we obtain an inverse system and lim 4; § a,B; is well defined. Simi-
larly, we have maps t;: 4 &4 B — 4; ®4, B; forming an inverse system
which induces the morphism ¢: 4 &, B —1limA4; ® 4,B;.

Under our hypothesis «;, 8;, and A; are epimorphisms by Corollary A.2.
Let U and V be open submodules of 4 and B, respectively, then we may find
a j and open submodules U; and V; of 4; and B; such that o;}(U;) C U and
B71(V;)CV. In particular, we conclude that kero; C U and ker8; C V.
Thus we may define a map f;: 4; X B, - A/U ® B/V by
fia;, b;) = x; ® y;, where x; is the coset mod U of an element ¢; such that
a;(t;) = a; and similarly for y; . Then f; is well defined and is in fact a biho-
momorphism, since A, is surjective. We thus have a morphism

~ A B
& 4; ®A,Bj—’ﬁ ®47

which may be combined with the natural projection
li([n 4; @A, B;— 4; @A, B;
to yield morphisms
. ~ A B
eu.y:ll(l_nAi ®A‘,Bi——>ﬁ ®AT/—
which form an inverse system and hence define a morphism:

. ~ . A __ B P
0:11‘1_1114]- ®A,B,-——>ll(’l:n'(7' ®A‘I‘/—=A®AB

which is the inverse of ¢.
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