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Abstract-The ionosphere is considered as a dissipative medium in which the random thermal 
motions of the charged particles act as a source of thermal radiation. Attention has been 
focused on the electrons colliding with ions and neutral particles in the ionosphere. A method 
of analysis has been developed with the aid of the Maxwell and Langevin equations based on a 
linear, macroscopic, fluctuating electroma~etic field theory. The spectral density of the random- 
current souroe function is derived in terms of the conductivity tensor of the ionosphere. 

The ionosphere is divided into a large number of incremental volume elements, each eon- 
taining an ionized medium which represents an anisotropic elementary radiating system, 
characterized by the spectral density of the source function. The radiation characteristic of the 
radiating system observed at a point located outside of the source region is obtained with the 
aid of the potential functions which relate the thermal electromagnetic fields at the observation 
point to their source function. Based on the supe~osition principle, general expressions have 
been derived for 20s) the thermal noise power generated per unit volume, per unit bandwidth, 
from any given source region 8, of the ionosphere, and for I’&, I’,), the available thermal 
noise per unit bandwidth at a receiving antenna. These expressions are valid for most regions of 
interest in the ionosphere where the electron collision process plays a major role in the thermal 
radiation and they are not limited in frequency range. 

IT IS well known that because the ionosphere acts as an absorber of radio waves, 
it can also act as an emitter of thermal radio noise, It has been conclusively 
demonstrated by various workers (PAWSEY et aE., 1951; GARDNER, 1964; DOWDEN, 

1960; LITTLE et at., 1961) that the thermal emission from the D-region can, under 
favorable conditions, be observed with a dipole antenna. For example, PAWSBY 

et al. ( 195 1) have identified and measured the thermal radiation from the ionosphere 
in the vicinity of 2 MC/S in the temperate latitude. 

It appears that usually the thermal radiation has been neglected because its 
level is exceedingly low as illustrated by PAWSEY et al. (1951) and it does not 
constitute an appreciable source of interference in radio communication. However, 
the noise radiated from a plasma (e.g. the ionosphere) is not necessarily a detrimental 
effect in all cases, as it is in communication, since if the spectral distribution of the 
emitted energy is characteristic of the plasma properties, a measurement of radiation 
provides specific information on the plasma. For example, knowledge of the radiated 
power gives a measure of the electron temperature in the plasma and this has been 
used as a powerful diagnostic technique. 

It is well known that the thermal radiation from dissipative bodies is due to 
the random thermal motion of the charges in the body. If the body is at a uniform 
temperature, one approach that may be used for studying radiation may be called 
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the integral approach. The body as a whole is considered to be nonradiating and 
the power that is absorbed from its surroundings, which is assumed ho be at the 
temperature of the body, can bc computed. This power is set eyua.1 to the power 
radia,ted by the body. In this approach no attempt is made to determine the noise 
current fluctuations that are the cause of the thermal radiation. In those cases in 
which the temperature of the body is nonuniform this approach fails. 

Another approach, which may be called the ‘Nyquist source treatment’ (RYTOV, 

1959; HAUS, 1961; VANWORMHOUDT and HAUS, 1962), focuses attention upon the 
sources of the ra.diation and determines their relevant statistical properbies. Once 
these are known, the determination of the radiat,ion is conceptually a, simple problem, 
although mathematical difficulties usually arise. 

In the present study, the ‘Nyquist source treatment’ is adopted and the iono- 
sphere is considered as an anisotropic dissipative medium in which the random 
thermal motions of the charged particles act as a source of the thermal radiation. 
It is further postulated that in the ionosphere a linear constitutive local relation 
exists between the driven a,.c. conduction current density J, and an applied a.~. 
electric field intensity E of the form 

J,(w, F) 1 a(o, r) - E(co, r), (1) 

where Q is the conductivity tensor of the ionosphere, and a function of the angular 
frequency (1) and position variable r which characterize the medium under consider- 
ation. A small-signal analysis is made throughout the present, paper. 

2. U)ERIVATI~N op THE ('OKDUCTIVITY TISN~~R 

For a macroscopic analysis the Langevin equation can be used effectively to 
describe the motion of an electron, and it can be expressed as follows: 

nr -it -+ rwv -= e/E -t v x B], (2) 

where B(r) is the static geomagnetic field, V(T) is the average electronic collision 
frequency with ions and neutral particles, e, m and v are the electronic charge 
taken as a negative value, mass and velocity respectively. 

On the other hand the convection density J is related to the velocity v by 

J = Ili’,ev, (3) 

where N,(r) is the electron number density. 
Assuming the time harmonic variation P, j”” for the quantities of interest, upon 

elimination of v from equations (2) and (3) the following relationship is established: 

UJ + j(J x Y) = -jos,XE, (4) 
where 

ii e2 
X3, ‘u,z, _~O 

me0 

y_eB 
mw ’ 

y_EL_, --elBI 
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2 = _Y 

Co' 
U=l-jz, (5) 
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in which o, and w,, are the plasma and gyrofrequencies of the electrons, respectively, 
and e0 is the dielectric constant of vacuum. 

On the other hand, the geomagnetic field B can be approximated by a dipole 
field which is induced by a uniformly magnetized spherical Earth, and may be 
expressed (MORGAN, 1959)as 

where the space variables r and 8 denote, respectively, the radial and polar angular 
coordinates of the geomagnetic spherical coordinate system with its origin located 
at the center of the Earth, and the constants M and a are the magnetization and 
the radius of the Earth respectively. By adopting this model of the geomagnetic 
field, the r-component Y,, the e-component Y, and the v-component Y, of the 
vector Y are given by 

Y, = 2G cos e, Yz = G sin 0 and Y, = 0, f’i) 
where 

G = (z);(;)“. (8) 

Furthermore, by writing a vector as a column matrix the vector equation (4) may be 
conveniently expressed in the following matrix form: 

zg = !! Pa) 
or equivalently in tensor notation as - 

ygJ=E, Pb) 

where the resistivity matrix y is defined as 

r= = (r,s>t a,@ = 1,2,3, (10) 

with its elements being given by 

Yll = Y2z = Y33 = - 
W&OX' 

Yl2 = -Y21 = 0, 

G sin 0 
713 = -731 = ws 9 

0 

-2G cos e 
Y23 = -Y32 = 

W&&u ' 
(11) 

and with its determinant 1~1 given by 
= 

‘I’ = (0&,.x)~ 
jv [y2 - U2] (12) 

in which 
Y2 = G2(l + 3 co52 e). (13) 

171 can be zero only for a special situation where v = 0 and w = ob occur simulta- 

~ously. Since v = 0 is not of interest to the present study, 1~1 can be considered 
= 
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to possess an inverse, which is denoted by e and is referred to as the ‘conductivity 
matrix’. i.e.! 

ay == 1, (14) zz_ = _ 

where _I is the unit matrix. Consequently. from equations Sa and 14, J can be 

expressed in terms of E explicitly as - 
J =2 OE (15a) - -- - 

or in a tensor notation as 

where 

J-o.E, (lsb) 

where 

a 4 = DC,,, x,@ -m= 1,2,3, (16) 

with 

C,, = (22 - 1 + 4G2 co52 0) + j2.z 

C’,, = (Z2 - 1 + G2 sin2 0) + j2.Z 

CT33 = (22 - 1) + j2z 

I’ --- Czi = 2G2 sin N cos 0 i’? -- 

(‘i3 zz --C,, :-= -(Z -/- ,j)G sin 0 

C’ 23 == - C& == 2(% -1_ <j)G cos 0. (17) 

3. NOISE POWER RADIATED FROM THE IONOSPHERE 

A body with a non-uniform temperature distribution is not in the thermodynamic 
equilibrium. However, in those cases in which the distribution function of charge 
carriers deviates only slightly from the equilibrium distribution (so as to produce 
heat and current flow), and this includes all cases for which a temperature can be 
reasonably defined, it would be expected that the radiated noise power could still 
be computed as the superposition of the noise power radiated from the various 
volume elements of the body. In this case each element at a particular temperature 
radiates the same noise power it would radiate at equilibrium at the same temper- 
ature. Such an analysis calls for an approach to the fluctuation problem that 
considers each differential volume element separately as an absorber and emitter 
of noise power. It calls for the introduction of a source term into MaxwelI’s equations 
analogous to the source term of the Langevin equation in the theory of Brownian 
motion. 

Although Maxwell’s equations and the constitutive relation are sufficient to 
solve most electromagnetic problems, they are insufficient for noise studies. The 
current density derived from the constitutive relation represents only the current 
driven by the electromagnetic fields. Besides this driven current, the current density 
fluctuation caused by the random motion of the charge must be considered. This 
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can be taken into account by introducing into Maxwell’s equations a random driving 
current density distribution which is independent of the electromagnetic fields, i.e. 

Vxe= -p,; 

and 

Vxh=a,,g+i, 

(18) 

(19) 

where e and h are the time-dependent electric and magnetic fields, respectively, 
and i is the current density, ,uO is the permeability of vacua. The current density 
i in equation 19 consists of two parts. First of all there is the ‘driven’ component 
i, that is produced by the electric field e and is related to e by equation 15. The 
spontaneous noise fluctuations of the field at thermal equilibrium can be taken into 
account by another current component of i in equation 19, the source current 
density K(t, F), a statistical quantity which is a stationary function of time. 

3.1 The dyadic spectral density of current Source functions 

In the study of problems involving radiation of noise power, it is convenient to 
introduce Fourier transformations in time of all field quantities in equations 18 and 
19. In the present case all random time functions are stationary and, strictly 
speaking, they do not possess Fourier transformations. However, this difficulty may 
be overcome by constructing a periodic substitute function (RYTOV, 1959; HAUS, 
1961) according to the definition 

W, r, T) = W, I), for 
T 

-2 <t<g 

and 
F(t + nT, r, T) = F(t, r, T). (20) 

These substitute functions have Fourier transformations of the form 

F(w, r, T) = -! 
s 

T/2 

T -T/Z 
F(t, r, T) e-jut dt. (21) 

In the limit as T + CO, the substitute functions are indistinguishable from their 
originals. The spectral density of any noise process can be obtained directly from 
the ensemble average of products of these Fourier components. Thus, the dyadic 
spectral density of F is given by 

Slp(w r, r’) = Emm g (F(w r, T)F*(w, r’, T)),,,, (22) 

where the symbol * denotes the complex conjugate. 
It should be noted that the spectral analysis of the periodic substitute function 

leads to a discrete spectrum extending over negative, as well as positive, frequencies. 
With lines at frequency interval Af = (l/T) the expression 

(2F(o, r, T)F*(o, r’, T)& = 47AfSr(o, r, r’). (23) 

may be identified in the limit of large T as ‘the mean-square fluctuation of F in 



the frequency interval Af’. Furthermore, for a stationary time function F 
(BLANC-IAPIERSE and FORTET, 19X3), 

2 
27i ;F( (11, r, T)F*(w’, r. T) ):,vg == 0, (0 f (0’. (“4) 

Precisely this kind of treatment must be kept in mind in applying the formal 
expansion of the Fourier integral and using the spectral amplitude densities in the 
study of electromagnetic fluctuation on which the present paper is based. 

As a matter of convenience, for a particular physical variable, the lower case 
letter is used for the stationary time function and for its periodic substitute function, 
while the capital letter is used for its Fourier transform in the following discussion. 
For example, it is obvious, from equations (18) and (19), with the aid of equation 
(15b) that the Fourier amplitude of the periodic substitute functions is related in 
the following manner : 

and 
V x E = -,jw,uH (25) 

VxH=jwa,E-i-o.E+K. 

Suppose that a region of the ionosphere under study is 
number of sufficiently small elementary volume elements such 

(26) 
divided into a la,rge 
that within each one 

of these elementary volumes the medium may reasonably be assumed to be uniform 
at a certain temperature T,. Strictly speaking these elementary volume elements 
should be made to approach zero. On the other hand, they have to be kept large 
enough to contain a large number of charge carriers in order that statistical argu- 
ments may be applied. A tensor-conductivity description of the medium as given 
by equation (15b) is possible only because the current in an elementary volume 
depends upon the electric field in the same volume, but not upon its derivatives, 
that is, upon the value of the electric field in the neighboring elementary volumes. 
In view of this fact, it is quite reasonable to expect that the source current caused 
by the random motion of the charge carriers in two neighboring elementary volumes 
are uncorrelated. In other words, if P and r’ denote the points belonging to two 
different elementary volumes, then K( W, r) and K( w, r’) are not correlated and the 
dyadic spectral density of K has the form 

Sg(8, r, r’) = 6(r -. r’)y(o, r), (27) 

where S(r - r’) is the usual Dirac delta function. 
On the other hand, an elementary volume element may be considered as a linear 

network containing a noise source in thermal equilibrium and the technique developed 
in the theory of linear noise networks (HAUS, 1961; VANWORMHOUDT and HAUS, 
1962), which makes use of the generalized Nyquist theorem, can be applied. Using 
the concept of a linear network, for example, HAUL (1961) has obtained a simple 
expression for v( W, r) as follows : 

y~( w, r) = kz$e [O(OJ, r) + 4~ r)ll 

where k is the Boltzmann constant and the symbol dagger (t) indicates the complex- 
conjugate transpose of the conductivity matrix cr. If the average volume density of 
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thermal energy 7(r) in J/m3 is introduced, defined as the ratio of the amount 
of thermal energy generated within an elementary volume Al’ to the volume Al’, 
then from equations (27) and (28) one has 

Sjr(W r) = $ [Q(W, r) + Q?(W, @I (29) 

and from equation (23) 

@K(o, r)K*(w r)h = 2A.fW[4~4 r) + Q~(w, @I, (30) 

which may be given alternatively in its component form with the aid of equation (17) 
as follows : 

where 

with 

W,(w M$*b r))av, = W&fLBb, 4, (31) 

L&x, T) = 4Cuc)Eo %B = 1, 2, 3, (32) 

1 

&1 = &( Y, 2) 
~ [(l + Z2)(1 + Z2 + Y2) + (Z2 + Y2 - 3)4G2 cos2 131, 

1 

z22 = &( Y, 2) 
~ [(l + Z2)(1 + Z2 + Y2) + (Z2 + Y2 - 3)G2 sin2 01, 

1 

I,3 = &( Y, 2) 
~ [(I + -w(l + .z2 + Y2)1, 

1 
I,, = I,, = &( y, z) [(Z2 + Y2 - 3)G2 sin 2 e], 

I,3 = 131 = I23 = 132 = 0, 

m. 11 = m22 = m33 = m12 = m2i = 0, 

m 13 = -m31 = & W + z2)G sin 4, 
3 

m 23 = -m,32 = & [4(1 + Z2)G cos e] 
3 

and 
&( Y, 2) = (Y2 + 22 - 1)2 + 422. (33) 

It is observed that Y = 0 when G = 0. In this case, I,, = 1 if u = ,!l and 
I,, = 0 if u # B, while rnjaB becomes zero regardless of whether a = p or a # ,6. 

This suggests that the tensor {L,,} appearing in equation (31) becomes a scalar and 
the medium becomes isotropic. This is perfectly reasonable since when G = 0 the 
geomagnetic field is completely absent. 

It is also interesting to note that for the case 

Y2 + 22 = 3 (34) 

I,, again becomes either equal to unity or to zero according to whether a = #I or 
CC # /? and 

m 13 = -m3i = gG sin t9 
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and 

7n 28 = -rn32 = -G cos 8. (36) 

3.2 Tisme average thermal noise power radiatecl 

In view of the fact that for the periodic field the average time rate of change of 
stored energy is zero, the total average power radiated from a system of a current 
may be given by (STRATTON, 1911) 

W = $a dS = - h Be 
s 

(E . I*) d V, 
I’ 

(36) 

where p is the Poynting vector. Thus radiation can be calculated either by integrating 
the normal component of the Poynting vector over a closed surface S including all 
sources or by integrating the power expended per unit volume over the current 
distribution. In the present discussion the latter approach is taken. 

Keeping in mind that the concern here is with the random current distribution 
and since the time average power radiated per unit volume, w(o, r), is given by 

zu(cu, I) = :Re[K* . E], W/m3, (37) 

in which K is the cause and E is its effect: and with the aid of equation (9), w(o, r) 
becomes 

w(o), r) = +Re[K* + (y - K)] = &Re[&ty_K]. 
= (38) 

The substitution of equation (11) into equation (38) yields 

w(co, r) = & [J&K,* + K&2” + ~,&“I. 
0 

On the other hand, with the aid of equations (31) and (32), the thermal noise power 
generated per unit volume, per unit bandwidth, w,(f, r), may be given as 

[L + E22 + u, 

where 111, I,, and la, are given in equation (33). 
It is interesting to observe that w. given in equation (40) does not depend explicitly 

upon the electron number density No since it does not contain the parameter X. 

4. OBSERVATION OF THERMAL RADIATION FROM THE IONOSPHERE 

The rigorous determination of the radiation intensity within the emitting region 
of the ionosphere must be based on the study of the electromagnetic wave propa- 
gation in an anisotropic absorbing medium, in which each volume element can act 
as an emitter as well as an absorber of the thermal radiation. However, this problem 
is not discussed in the present paper. 

Nevertheless, it is of interest and of a considerable practical importance to know 
about the characteristics of noise power received from the ionospheric thermal 
radiation at a detecting antenna located outside of the source region. 

In view of the fact that the relation of the radiation fields to their sources is 
most readily found in terms of potential functions, and since the information with 
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regard to some statistical properties of the random source current function K is 
available from Section 3, the retarded vector potential function is introduced here 
and expressed in complex form as A( o, x,)ejWt, with 

(41) 

where x, and x,’ denote the coordinates of the observation point and the source 
point respectively, and R(z,, x,‘) is the distance between them. V&r,‘) is the volume 
of the source region under investigation and k, is the wave number. In the present 
discussion x, is taken in the air and x,’ is taken in the ionosphere. 

It should be observed that equation (41) signifies superposition of the solutions 
of the inhomogeneous wave equation 

V2A + ko2A = -K, (42) 

where k,2 = co2p0~,, and corresponds to a source at the point x,! given by K = 
C6(s, - x,‘), with 6(x, - x,‘) being the usual Dirac delta function. On the other 
hand the retarded scalar potential function @(o, x.) is related to the vector potential 
by (STRATTON, 1941) 

V-A +jcOpCLE0 = 0, (43) 

which expresses the idea of conservation of charge. It should be noted that equation 
(43) is valid in free space (air) whereas it is only an approximation in a region of the 
conducting medium in which lo/jwc,,l < 1. 

It is well known that the electromagnetic fields at an observation point x,, 
taken in air, can be derived from these potential functions by 

and 
E = -V@ -jwA (44) 

H=lVxA, (45) 
PO 

where the spatial differential operator V should be understood as V,, which only 

operates on the function of x,. The utilization of potential functions is particularly 
convenient because space differentiation V, under the sign of the volume integration, 
does not touch K(w, x,‘) and thereby the field intensities E and H in the same 
manner do not contain derivatives of K. 

Upon substitution of equations (41) and (43) into equations (44) and (45) and if 
only a l/R dependent radiation field is taken into account, the electric and magnetic 
fields may be written as 

e-jk*R 
E =J+c&/v[kX (Kxk)lTdV (46) 

8 
and 

H=l 4~ 
s 

v (Kxk)GdV’ (47) 
* 

in which the propagation vector k = nk, is introduced and the unit vector n is 
defined as R/R so that k and R are in the same direction. 



The electromagnetic fields given by equations (46) and (47) can be considered as 
the random thermal electromagnetic fields since t’heir source function II: is a random, 
statistical quantity. The time average power flow density a,t the observation point 
2, may be considered now with the aid of thp Poynting vector defined 21s 

5 = hRe[F: ‘r H”]. (48) 

It is not difficult to show that the substitution of equations (46) and (45) into 
equation (48) yields 

t-191 

where A is the free-space wavelength, Z, X and T, are functions of the source point 
coordinate 2,’ and JT(x,, 2,‘) is defined bk 

l?(x,, 2,‘) = (1 - n,2)1,, + (1 - 7L22)1,, -f- (1 - n,~)Z,, - 27alrL2112> (60) 

in which n,, n2 and n3 are the components of the unit vector n along r-, O- and 
v-coordinate axes, and 1 II, 122, I,, and E,, are given in equation (33). 

It should be observed that equation (49) is based on the concept that the radiation 
intensity in any solid angle can be treated as energy, transferable in a bundle of 
plane, nonextinguishable waves whose normals are included in the solid angle. In 
a homogeneous isotropic medium the direction of the vector of energy flux coincides 
with the wave normal (RYTOV, 1959). The unit vector n(x,, x,‘) indicates the 
direction of propagation of the wave orginating at the source point x3’. 

Since the time average Poynting vector $0, x.) is determined, the noise power 
received from the ionospheric thermal radiation at the receiving antenna can be 
obtained by taking a proper surface integral of $0, xE) over the aperture of the 
antenna A,, 

where ds = n, ds, with n, being a unit vector normal to the differential surface area 
CLS. 

It should be noted that P(W), given by equation (51) can be regarded as the 
available noise power at the receiving antenna in the frequency interval between f 
and f + Af. On the other hand, from an elementary antenna theory (KRAUS, 
1950), if the receiving antenna is properly oriented for maximum response, the 
available noise power P(U) can be given by 

J’(a)) = A,T+,(~), (52) 

where p&co) is the time average Poynting vector at the position of the receiving 
antenna and A, = (ii2)/Q, is the effective area of the antenna, with Q2, being the 
solid angle through which all of the power radiated would stream if the power per 
unit solid angle equaled the maximum value of radiation intensity over the beam 
area. 

In order to determine p(o, x,) from equation (49) the source region VS, which is 
determined by the beam area of the receiving antenna, must be specified and the 
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integrand must be expressed as a function of conveniently chosen coordinate vari- 
ables. Although the parameter l,, was expressed in spherical coordinate variables 
(P, 13, 9;1) in the previous section it is not difficult to see that the integration can 
con~oniently be introduced with respect to the solid angle, subtended at the observa- 
tion point, instead of carrying out the volume integration in a spherical coordinate 
system as in equation (49) ; this is illustrated in the following discussion. 

Fig. 1. Coordinate system and definition of variables. (a) Geomagnetic spherical 
coordinate system. (b) Geometrical relation between the source points 2, and the 

observation points zcl. 

If d&2 and dSZ, denote, respectively, the differential solid angle subtended at the 
origin (the center of the Earth) and at the observation point (on the surface of the 
Earth) by a souroe located at x,‘, then it is not difficult to see that with the aid of 
of Fig. 1. 

R"df2, 

I@ l u,‘)l 
= r2dR, (53) 

where IQ’(s~‘) is the radial unit vector at the source point. The radial component 
of the noise power flow density received by the antenna located on the surface of 
the Earth may be given as follows, with the aid of equation (49) : 



(65) 

and G2, is the solid angle representing the beam area of the receiving antenna and 
T = a -+ h is used in the derivation. The angles y,, and yO’ appearing in equation 
55 are those between n and u, and between n and u,’ respect,ively, a.nd they are 
related geometrically as is shown in Fig. I. 

If an antenna of sufficiently small beam area is used for measurement, some 
approximation can be made in equation (51). That is to say, if fz, is sufficiently 
small, then the unit vector n(z,, x,!) may be considered as a constant vector within 
the solid angle !&, and may be replaced by iI(x,, q,), where qa is the representative 
source point lying on the axis of fi2, and the factory given in equation (55) becomes 
independent of the source point x,’ also. Therefore from equations (52) and (54), the 
expression for the availa8ble noise power at* thts receiving amenna is 

where 

It is observed that for the case of a veitical incident measurement, u1 -= ul’: 
G1 = 1 and 6, = E, := 6, so that T, = I,, + 1,, and g = 1. Consequently the 
available thermal noise power at the receiving antenna per unit bandwidth, ~~(~~~, 
for the case of vertical incident measurement may be given by 

(59) 

It is interesting to note that for a special cast Y = # (~orres~on~ng to the absence 
of a geomagnetic field), t,, = I-,, ::= 1 and P,, = 2. Furthermore, if 22 < I, then 
equation (59) is reduced essentially to the same form as that used by many workers 
(PAWSEY et al., 1951; GARDNER, 1954; DOWIXEN, 1960; LITTLE et al., 1961; DAVIS, 
1960; WHITEHEAD, 1959). 

The attention has been focused in the present study on the effect of colliding 
electrons under the assumption that the effect of the motion of ions in the region 
of the ionosphere of interest is negligible. 

The general expressions derived for w,,, the thermal noise power generated per 
unit volume, per unit bandwidth, from any given source region Vs of the ionosphere, 
and for P,(f), the available thermal power per unit bandwidth received at the 
detecting antenna due to the radiation from V7,, a;Pe valid for all frequency ranges 
and for most regions of interest in the ionosphere, i.e. where the electron collision 
process plays a major role. Once 8, is specified, the profiles of T,(k), N,(h) and 
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v(h) obtained from the experimental observations (NICOLET, 1959; THOMAS, 1959; 
KANE, 1960a, 1960b; ATAEV, 1959; SCHLAPP, 1959) can be used for the evaluation 
of w,, and P,(f). Thus the detailed information with regard to the spectral distri- 
bution of the thermal energy radiated from the ionosphere can be obtained with 
the aid of a numerical integration of the expressions derived in the present paper. 

It is indeed desirable that the present theory be tested and verified with some 
sort of experimental observation, e.g. a laboratory experiment. In other words, if 
the ionospheric plasma condition can be realistically represented with a laboratory 
experiment, then it will permit a study of the characteristics of thermal radiation 
in great detail and a test of the soundness of the present theory. 

It should be pointed out that the present analysis may not be as rigorous as a 
microscopic treatment using the Boltzmann transport equation with the proper 
collision integral. However, this method of analysis does offer a simple and direct 
way of analyzing the thermal radiation from an anisotropic ionized medium and 
its radiation characteristics. 
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