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Abstiact-An analysis of the space and energy dependence of neutron fluctuations is presented, and 
applied to the results of reactor fluctuation experiments. Two experiments, measurements of Power 
Spectral Density and Variance to Mean, are singled out for special attention. These are of special 
interest, since previously published experimental results seem to be interpretable by space and energy- 
independent theories of neutron fluctuations. 

Both infinite and finite-geometry reactor models are treated, and calculations are presented to 
illustrate the effects of detector size, shape and location, and delayed neutrons. In any event, agree- 
ment with actual experimental results is achieved only when the effect of fast diffusion is included 
through a two-energy group model. It is seen that when the migration length is sufficiently large by 
comparison with a typical reactor dimension, the results of the space-energy independent theory 
appear as a first approximation. Thus it is argued that experiments on larger reactors would yield 
results not in agreement with the space-energy independent theory. 

1. INTRODUCTION 

OUR purpose in this paper will be to attempt a careful analysis of two types of experi- 
ments which measure neutron fluctuations in a steady-state reactor. In the first type, 
the power spectral density (P.S.D.) of the current produced in a single detector in 
or near the reactor is measured. In the second, the ratio of the variance-to-mean 
(V/M) of the number of counts recorded by a detector as a function of the counting 
interval is measured. The first is typified by a P.S.D. measurement performed by 
RICKER et al. (1965) on the ORNL pool-type critical facility, and the second by a 
V/M measurement by ALBRECHT (1962) on the University of Michigan Ford Nuclear 
Reactor. Motivation for the consideration of these experiments, and for the related 
studies discussed here, stems from the desire to understand the success of a seem- 
ingly space and energy-independent theory of neutron fluctuations (RICKER et al; 
ALBRECHT) in interpreting the data. Of course, experiments which measure the kinetics 
of the mean neutron distribution can often be interpreted by a space and energy- 
independent theory (i.e. point reactor kinetics) in which fast and thermal leakage 
rates are included. This is accomplished by assuming a space-time decoupling of the 
mean neutron distribution in a finite reactor. Thus, the absorption rate in the point 
kinetic equations is modified to include the fast and thermal leakage rates. But there 
is no reason to believe a similar decoupling can be applied to the higher moments of 
the neutron distribution which describe neutron fluctuations. It will be part of the 
burden of this paper to show that in general there is no similar decoupling for the 
higher moments, but that for the specific systems considered by RICKER and ALBRECHT 

an approximate decoupling does occur which makes possible the interpretation of 
experiments performed on them by a space and energy-independent theory, a theory 
in which infinite reactor parameters are replaced by appropriate finite reactor 
parameters. 

* A.E.C. pre-doctoral fellow. 
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Our programme is as follows: 

(a) First we explore the relations between the quantities measured in P.S.D. and 
v/M experiments and the various moments of the neutron distribution. 

(b) We then evaluate the effects on the results of these experiments due to 
(i) Detector Volume (SHEFF, 1965) 
(ii) Detector location with respect to the reactor (SHEFF) 
(iii) .Detector geometry 
(iv) Reactor Volume (SHEFF; HARRIS, 1965) 
(v) Delayed neutron production, (SHEFF; RAIEVSKI, 1960; OSBORN and 

AKCASU, 1965).* 

(c) Finally we apply the above to the specific experiments of RICKER et al. and 
ALBRECHT, and propose certain new experiments. 

The entire analysis will be performed in the framework of a physical, rather than 
phenomenological, theory of neutron fluctuations. The theory has been introduced 
previously by the authors (OSBORN and YIP, 1963; OSBORN and NATELSON, 1965) 
and detailed derivations are presented there. 

In the physical theory the basic quantities are: N”(x, t), the detected particle 
singlet density, the expected number of detected particles (e.g. a-particles in a BF, 
detector) accumulated per unit volume about x in a counting interval of t set; and 
NDD(x, x’, t) the detected particle doublet density, the expected product of the number 
of detected particles accumulated per unit volume about x and the number accumula- 
ted per unit volume about x’ in a counting interval of t sec. They are related to the 
first and second moments of the neutron distribution-the neutron singlet and doublet 
densities, J@“(x, v, t) and fl?“(x, v, x’, v’, t) and thus to the various reactor parameters. 

In a P.S.D. experiment the frequency spectrum of the fluctuations in the current 
from an ionization chamber in or near the reactor is measured. This spectrum 
Q(o) is obtained experimentally from the cosine transform of the chamber current 
autocovariance, i.e. 

where 

CD(w) = mdt cos cot+(t), s 0 
(1) 

d(t) = 7!‘“, ‘T jo’dri(r)i(r + t) 
+ 

is the chamber current autocovariance,t and i(r) = 3(r) - I is the fluctuation of the 
chamber’current ; 4(r) being the instantaneous chamber current and I the steady-state 
or d.c. chamber current.: The autocovariance, 4(t), can be related directly to the 
detected particle correlation function, XDD(x, x’, t), according to 

$(t) = fID v, d3x/n,” d3x $ XDD(x, x’, t), (2) 

* The role of delayed neutrons in noise analysis experiments has received such extensive attention, 
that we have referenced only three papers, each representing a different approach. 

t Of course a given experiment measures only an approximate value for 4(t). 
$ Whether +(r)is measured with respect to i(t) or X(t) is of no consequence to the P.S.D. measure- 

ment, as the difference would only appear at zero frequency. 
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where XDD(x, x’, t) = NUU(x, x’, t) - NU(x, t)ND(x’, t), D.V. = detector volume, 
and F is an appropriate conversion factor from detection rate to current. A derivation 
of this relationship has been presented in the spirit of the physical theory by one of us 
(OSBORN, 1965) and by others using various inductive arguments (PLUTA, 196 1; SHEFF 
and ALBRECHT, 1964; BENNETT, 1960). Entering (2) into (1) yields the desired relation 
between the measured P.S.D. and the detected particle correlation function of the 
physical theory, i.e. 

@(co) = ;j=;df cos ,!,,/lj,i_. d3x/n,1F. d3x’ $ XDn(x, x’, t). (3) 

In a V/M experiment a time record is made of the current pulses produced in an 
ionization chamber located in or near a reactor. The record is divided into equal 
intervals and the mean ti and mean square Z number of pulses recorded for a given 
interval are computed. This process is repeated for intervals of different duration. 
Thus the variance-to-mean, (% - fi”)/,fi as a function of counting interval, can be 
computed. By definition, the relationship of the detected particle densities to this 
measured quantity is 

n2 _ 22 
1//M(r) = - ii (r) = d3x 

s s 
d3x’X1jD(x, x’, r) d3xND(x, r). (4) 

n.v. r).\7. ii D.T. 

It is clear from relations (3) and (4) that the P.S.D. and V/M experiments are 
closely related; both in some sense measure XDD (x, x’, t), the detected particle 
correlation function. Of course the technical problems in handling currents and 
counting records are quite different. Thus, the limits of applicability for the two 
experiments will not be the same. However, for the reactors (small cold clean cores) 
and power levels (milliwatts) involved in the experiments of Albrecht, and Ricker 
et al. either experiment could have been done on either system. We will, therefore, be 
able to consider simultaneously effects on both experiments of the various reactor- 
detector properties. 

In Section 2 the set of equations relating the detected particle and neutron densities 
is introduced. A reduction from the transport to a diffusion description is made in a 
mathematically consistent manner. The resulting set of working equations is then 
applied to the second and third phases of the analysis in the subsequent sections. 

In Section 3 an infinite-volume model of a thermal reactor is considered, and the 
effect of detector configuration is investigated for P.S.D. and V/M experiments which 
might be performed on a reactor described by such a model. The results are not in 
accordance with the experiments of either Ricker or Albrecht. In fact, the experi- 
mental measurements agree with computations using an infinite detector, whereas if 
detector geometry similar to the actual detectors is used in the calculation, the results 
are substantially different from the measurements. 

In Section 4, we study a finite, cubical reactor. A particular reactor-detector 
configuration is considered which is intended to represent the systems studied by both 
Ricker and Albrecht. Here again, if we assume as before that the neutron population 
is adequately described by considering only thermal diffusion, the results are not in 
agreement with these experiments. 

In Section 5 we incorporate diffusion during moderation into the reactor model of 
Section 6. We obtain immediate agreement with the experimental results. We note 
that for reactors of the type utilized by both Ricker and Albrecht this modification 
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effectively eliminates higher mode contributions to the spatial dependence of the 
various correlation functions and thereby we are led to an explanation (and also a 
qualification) of the success of the space-energy independent theory. 

In this section we also consider hypothetical P.S.D. experiments on alarge graphite- 
moderated reactor with various detector configurations and positions. The results 
obtained demonstrate the need to include the effect of finite reactor size, even for a 
reactor of this magnitude. The infinite reactor model of Section 3 will be shown to 
have only limited applicability for such a reactor. 

2. THE BASIC EQUATIONS 
The system of equations relating the measured quantities, NDD (x, x’, t) and 

ND (x, t), to the first and second moments of the neutron distribution and thus to the 
various reactor parameters have been derived previously (Osborn and Yip; Osborn 
and Natelson). This derivation will not be reproduced here, though it is well 
to recall two of the approximations involved: the neglect of neutron-neutron 
collisions, and the neglect of correlations between the neutron and reactor nuclei 
distributions. For brevity the equations will be displayed in reduced form. Delayed 
neutrons are ignored, and averages are taken over particle speeds. The energy- 
averaged parameters (e.g. scattering and absorption rates) are assumed equal, whether 
a singlet or a doublet density has acted as a weight function in the averaging process. 
This assumption is implicit in all theories of neutron noise where energy dependence 
is not explicitly considered. The delayed neutrons, on the other hand, have been 
ignored only for simplicity. Their effect on measurements in the time and frequency 
intervals of interest here is considered in Appendix A and seen to be negligible. Our 
working set of equations (with the above considerations in mind) are exhibited as 
equations (5)-(S), (lo), (11): 

aND(x, t) 

at 
= rD(x) daN”(x, 51, t). 

V 

& NDD(x, X', 2) = rD(X)jdRNvD(X,n, x’, t) + r,(x’) 
s 

da’NLvD(X’, 8’ x, t) 

+ rD(X) b(X - x’)Idnic.‘(x, a, t). (6) 

i 1 5 + B N”“(x, a, x’, t) = rD(x’) 
s 

S(X, r) dS?N“\‘(x, 8, x’, 8’, r) + T N”(X, 0 

- r,(x’) 6(x - x’)N”(x, n, t). (7) 

[ 1 & + B N”D(x’, a’, x, t) = r&x) 
s 

d8N‘VLv(X,fi, S(x', 1) 
x', a', t) + ___ 

477 
ND(x, t) 

- rD(x) 6(x - x’)N’\‘(x’, Q’, t), (8) 
where S(x, r)/4n is the expected number of neutrons produced by external sources, 
per unit volume about x, per second (production assumed isotropic in velocity) and 
where the operator B is defined according to 

BN(x, G?) = (u)S2 - VN(x, S2) + rtN(x, S2) 

- rs 
s 

da”F(S2” --f !2) N(x, a”) - $i rf 
I 

dQ”N(X, Q”). (9) 

The conditional probability that a neutron having been scattered while travelling in 
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direction 51’, will be found travelling in the solid angle d!Z about S2 is represented by 
F(fi’ --f a) dS1, the scattering frequency. 

[ 1 & + B NY(x, !a, t) = S(x, t)/4n. (10) 

[ 
& + B + B’ 1 N-‘-‘(x, Q, x’, a’, t) = =$) N-‘(x’, a’, t) S(x', f) $ 7 Nyx,s2, t) 

+ b(x - x')8(Q - Q')S(x, t)/4?T 

+ 6(x - X’)r‘NL\‘(X, 52, t), (11) 
where 

I’N’(x, 8, t) = c?(Q - S.)(,,N\-(x, Q, t) + 
m 

r,qj dQ”F(s1” -+ sZ)N-‘(x, S2”, t) 

I i.i”) I 
4?7 

rf 
s 

d8’WY(x, Q”, t), - r,F(a ---f C2)N-‘(x, a’, t) 

- r,F(Q + Q’)N-\-(x Q 1) _ LC > I 4~ r,{N-\jx, 51, L) + N.\‘(x, Cz’, t)}. (12) 

The various parameters appearing above are defined as follows: The ‘Y’S refer to the 
reaction rates, rt for total, rs for scattering, rf for fission and rD for detection. (2)) is 
the mean neutron speed, (j) the mean number of prompt neutrons produced per fission, 
and (j”) the mean square number per fission. The production of neutrons by fission 
is assumed to be isotropic. 

The equations are reduced by a truncated spherical harmonics expansion. 
For densities which depend on a single-direction vector we have: 

N(x,S)=~+2 
and for those dependent on two direction vectors, 

w>; (13) 

N(x, s2, x’, s2’) = y -+ 3 8. +(x, x’) 

(477Y 

+ (47r)Z -LX ‘+‘(x’I x) + &$Q~:~(x, x’). (14) 

Applying these expansions to equations (3)-(7), and assuming that all neutron 
densities have reached their steady-state limits, we obtain the following system of 
equations [equations (IS), (16), (17), (19), (21), (22), (23), (25)-(27)] 

& Nn(x, t) = rD(x)H(t)N~v(x), (15) 

where H(t) = 0 for t < 0, = 1 for t 2 0, and ;r H(t) = d(t). 

i N1jn(x, x’, t) = rD(x)H(t)NS”(x, x’, t) + rD(x’)H(t)N-vD(x’, x, t) 

+ rD(x) 6(x - x’)H(t)N-\‘(x). (16) 

[ 1 i + a NavD(x, x’, t) = rD(x’)NA’-‘(x, x’, t)H(t) + S(x)Nn(x’, t) 

- r,(x’)H(t) 6(x - x’)NAm(x) - (jj V .+v”(x, x’, t), (17) 
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where a z r, - (jjr,. (18) 

[ 1 it + b #a=)( x, x’, t) = r,(x’)H(t)cpV(x, x’) 

- r,(x’)H(t) 6(x - x’)$c?(x) -. F VN”“(x, x’, t), (19) 

where b = r,, + (1 - (p))r,, (20) 

and (1~) is the first moment of the scattering frequency. 

UN’\‘(X) = S(x) - (u) V -+“(x). (21) 

bw”(x) z - (vi vN-v(x) 
3 * 

(22) 

ZaN”‘v(x, x’) = S(x)N”(x’) + S(x’)N’v(x) + 6(x - x’)[CN”(x) + S(x)] 

- (u) v * +ss(x> x’) - tv) V’ * tjiAvA-(x, x’), (‘23) 

where C = a + (j(j - l))r,. (24) 

(a + b)wvN(x, x’) = S(x’)e’(x) + 6(x - x’)~+~(x) 

_ $l VNSLy(x, x’) _ (oj V’ . _Q(x, xrj, (25) 

(a + b)tjCviy(x, x’) = S(x)+“(x’) + 6(x - x’)+‘(x) 

_ y v !,iv.v( x, x’) - (v> V *2(x, x’). (26) 

2bQ(x, x’) = +j 6(x - x ‘)[C’Wv(x) + S(x)] 

where C’ = 2b - r, + (j2)rf, (28) 

and I is the identity dyadic. 

3. INFINITE REACTOR MODEL 

It is instructive to consider first an infinite homogenous reactor. The reactor is 
assumed to be in the steady state in the sense that the external neutron sources are 
assumed time independent, and the neutron singlet and doublet densities will have 
reached their asymptotic values. Moreover, we assume that the detector does not 
perturb the neutron distribution. 

This infinite reactor is described by equations (15)-(17). In view of the transla- 
tional and rotational invariance we have : 

(i) The neutron singlet density is independent of position, and thus the singlet 
current W(x) is zero. 

(ii) The neutron doublet density depends upon spatial variables only through the 
magnitude of the vector x-x’. 
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The solution of these equations for wv, N,““(x, x’), and (v)V . +“L*T(x, x’) follows 
straightforwardly : 

N” = S/a, (29) 

N”“(x, x’) = (N4’}’ + yN-’ 6(x _ x’) -+ fiNa’ exp (-Ja/Dlx - X’I) ) 
47rD Ix - x’l 

(30) 

(0) v . +,““(x, x’) = PjjP’ 6(x _ x’) qj,+ exp (-da/D Ix - x’j) 
’ 455-D Ix - x’/ 

where 

We consider first the power spectral density (P.S.D.). Keeping the geometry of our 
detector quite arbitrary, we can write a generalized definition of P.S.D. for the 
infinite homogenous reactor as follows : 

c cc 

0 
dt cos cfjt g2 XD”(x, x’, t) 

= r&x){wyx, x’, iw) - XAYD(X, x’, -iiw)}itLJ 

+ rD(x) 6(x - x')N", (33) 
where %-vD (x, x’, s) is the Laplace transform of the neutron-detected particle correla- 
tion function (i.e. wTu(x, x’, t) - N*‘(x)ND(x’, t)). We have made use of equation 
(11) and the fact that in an infinite reactor 

+(x)N”~(x, X’, l) = rD(X’)NA’-D(X’, X, t). (34) 
In addition we have utilized the relationship between the cosine and Laplace trans- 
forms : * 

p’~(o) = $[pyi<!J) + pT.(- io)]. (35) 
Applying the definitions of EvB(x, x’, t) and the neutron correlation function 
(N,yx(x, x’) - NvN’\) to (17) and (19) we find that : 

a 
[ 1 at + a XA~~(X, x', t) = rD(x’)H(r)XAv-“(x, x’) 

and 
- I’D(x’)H(t) 6(x - x’)N-v - (u) V .9”+, x’, t), (36) 

[ 1 & + 6 cjP’D( x, x’, t) = rD(x’)H(t)c&v”i(x, x’) - ? VXAYD(x, x’, t). (37) 

The solution of the transform of equations (36) and (37) for zAvD(x, x, s) follows in a 
straightforward manner with the application of (30), (31) and the boundary conditions 
pD(x, x’, 0) = 0 and c#?~(x, x’, 0) = 0. 
We find that 

F”(x, X’, s) = 
r,(i)pN” eXp (-\/m IX - ~'1) 

s’47rD Ix - x’l 

rD(x’Xs + b)[B - dy - l)lNN exp <-,I% + a)(s + b)lbD Ix - ~‘1). 
s24nDb /x - x’l 

(38) 

* This is obviously valid whenever the integral for the cosine transform converges, and is, in any 
event, correct in the sense of generalized functions. 
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Equations (33) and (38) p rovide us with a solution for the generalized P.S.D. in an 
infinite reactor. Analysis of both single and double detector experiments is possible. 
In accordance with our primary aim of understanding the specific experiments 
mentioned in Section 1, we shall restrict ourselves to a single detector. 

The P.S.D. is obtained by integrating the r.h.s. of (33) over the detector volume 
[see equation (3)]. For a spherical detector of radius R, we obtain: 

i 1 
-$ O(w) = r,{XiVD(R, ice) - X-“D(R, - h)}ico + r,N”V,, (39) 

where V, = (47rR3/3) is the detector volume, and 

XND(R, s> = ‘;c;” ~(/i K) 
D 

- rD(s + b)[/3 - s(y - l)]N”R5 G 
s24nDb 

1000 ?? 10000 
W ,FREQUENCY (r.p.S.) 

FIG. l.-Characteristic frequency dependence of the P.S.D. as calculated for spherical 
detectors of various radii in an infinite water moderated-reactor (r, = 8000 set-r, 
km = .99, and D = 36,590 cmz/sec). Calculations a are carried out with equations (38) 
and (48), calculations b with equations (38) and (39). The asymptotic infinite detector 
frequency dependence (l/we) is displayed along with the asymptotic point detector 

dependence (l/o’/*). 
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-70 
IO 100 1000 

w ,FREQUENCY (r.p.s.) 
10000 

FIG. 2.-Chara!cteristic frequency dependence of the P.S.D. as calculated for spherical 
detectors of various radii in an infinite graphite-moderated reactor (r, = 1000 set-‘, 
km = .96, and D = 182,954 cm2/sec). The calculations are performed using equations 

(38) and (39). 

The integral G(IR) is given by 

where 
F(M) = (1 + iZR)2 e-21.R + (LIQ2 - 1. (42) 

The quantity (2/I’2)@(o) - r,P V, is plotted in Figs. 1 and 2 for water and graphite- 
moderated systems for a number of detector radii. However, before discussing these 
results, we should make note of two limiting cases for CD(w). 

The first, which provides a check with the space and energy-independent theory is 
the large detector limit. For R such that 

J 
h/w4 + OJ”(U” + b”) + a’b” * (ab - co’) R z 1 

bD 
7 (43l) 
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we find that 

(44) 

(45) 

This is the well-known space and energy-independent theory result. However, it must 
be pointed out that conditions (43&) are met for a detector of large but finite radius, 
given a and b, only for frequencies greater than some cc),, [which can be determined 
from the condition (43-)]. 

The second limit is for the small or ‘point’ detector. Here if 

Then 

J<,~4 + ~‘(a” + 6”) + a2b2 f (ab - w’) R ~ 1 

bD (4633 

and the P.S.D. becomes 

G(;IR)r (g2[$ - AR], (47) 

@(a)- rDN-‘VD + rD2N”VD2 [’ - ’ - ‘lb’ 
2rrDR 

+ ri7 2NsvD2/j 
i 

&j4 + ~“(a” + b’) i a2b2 - ab + ~0~ 

27~D 24 bD 
(48) 

As before, conditions (46-J) are met for some range of frequencies for a given R, a 
and b. Here this range includes all frequencies less than some o0 determined by 
condition (46+). The P.S.D., O(w), is independent of frequency for R sufficiently 
small that the first and second terms on the r.h.s. of (47) dominate. For R such that 
the third term is dominant, we find that when a < w < b, which is the frequency 
range of experimental interest, O(Q) goes as w- 1/Z (for all thermal reactors b > a). 

In Figs. 1 and 2 both limiting cases [(45) and (48)] of Q’(W) are exhibited. In 
addition it can be seen that for intermediate values of R the P.S.D. displays the ex- 
pected combination of behaviours, point-detector-like for low frequencies and as a 
large detector for higher frequencies. 

In Fig. 1 we have also plotted CD(o) as computed by a much simpler approximation 
scheme. Noting that b (the transport or scattering rate) is much greater than all other 
rates (namely ra, rf and co in the range of experimental interest) we can take the ratios 
of these rates with b to be zero. Expression (40) for the power spectral density is thus 
greatly simplified as 

X,VD(R s) N m(j(j - l)kfN”R5 > - 
8nDs2 

[G@ R) - G(jF R)]. (49) 

This approximation can also be applied to the working equations by ignoring terms 
containing ratios of the various other rates to b (the transport rate): i.e. 

ia --- 
b at 

0, f, DV2 m 0, 3 ~0, and rf B 0. 
b b 

(50) 
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Applying these conditions, we find that equations (19), (20), (25), (26) and (27) 
become respectively : 

and 

- $ V’N-V”(x, x’) - z v * 2(x, x’), (54) 
\ 

Q = $1 b(x - x~),v~(x). (55) - - 

From Fig. 1 it is clear that the new approximation scheme is very good as compared 
to our more general scheme. Since we will always have in mind systems in which the 
scattering rate is much larger than all other pertinent rates, we shall use (51)-(55) in the 
remaining analysis. It should be pointed out that this scheme corresponds to that 
used by AKCASU (to be published); MATHES (1962); HARRIS, and SHEFF in their 
inductive approaches to these problems. SHEFF has reported results for a cubical 
detector of arbitrary size in an infinite reactor in terms of the auto-correlation function 
and for the P.S.D. in the point detector limit. Agreement between their results and 
those presented here seems to be very good. 

Finally, the most important conclusion to be drawn from Figs. I and 2 is that a 
finite spherical detector in an infinite homogenous reactor in no sense describes the 
particular P.S.D. density experiment which we are attempting to understand. The 
active volume of the detector used by Ricker et al. clearly places it in the point 
detector limit, and yet his experimental results (see Fig. 3) are in complete agreement 
with the large detector limit. 

Before giving up the infinite reactor description, we must look at the possibility of 
detector geometry being an important effect. Of primary interest will be a long thin 
cylinder, as this is the geometry of the detector employed in the experiment of Ricker 
et al. Computing the P.S.D. for such a detector is straightforward in the new approxi- 
mation scheme. We will use the generalized definition [equation (33)] of the P.S.D. 
but first we insert (51) into (17) to obtain 

& + a - D t2 
1 

X-'-D( x, x’, t) = 7-n(x’)H(t)X-‘--‘-(x, x’) - r,(x’)H(t) 6(x - x’)Ny 

(56) 
where 

and 

X-\“v(x, x’) = Nr.v(,, x’) _ {@-)’ (57) 

N”“(x, x’) = {NAY)” + 6(x _ x’)@ + !j(j + l))r,N-\‘exp (-da/D lx - x’l) 
8~0 Ix - x’l 

(58) 
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[Note that (30) reduces to (58) simply by letting b go to infinity.] Solving equation 
(56) for X-yD (x, x’, t) we find that: 

t 1 f 0(x, x’, 0) = r,(x’) 6(x - x’)NAV 

+ rdx>r&‘> LKj + l))r,W’ 
(2rj3 I 

d3k e-ik (X--x’) 

(n + Dk2)2 $ co2 ’ 
(59) 

where we have used the identity: 

exp (-Ja/D Ix - X’l) 1 
s 

d3k e-ik.(x-x') 
_- 

47rD Ix - x’I (27~)~ (a + Dk2)’ + w2 ’ 
(60) 

The integration of @(x, x’, U) over any single detector is facilitated by noting that: 

,- dsX,- dsXI e-ik. (X-X') = 1 [ d3Xe--ik$ (61) 
J D.V. JD.v. I JD.v. I 

\ 

0 

@W 
(in arb. 
unitr) 

REACTOR, DETECTOR 

GEOMETRY 

J 
IO 100 1000 t fOPJO 

W , FREQUENCY (r.p.s.) 

. MEASURED SPECTRUM, . MEASURED SPECTRUM MINUS THE 

CONSTANT TERM 

FIG. 3.-Measured and calculated P.S.D. for a small water-moderated reactor near 
critical /3/A = 117 see-‘, L = 2.88 cm. The solid squares are the measured values (by 
RICKER et a/.) for the P.S.D. The upper curve is the P.S.D. as calculated by equation 
(85) with D = u,L2. The solid triangles represent the P.S.D. minus the constant term as 
obtained from the measured data by subtracting an appropriate constant. The lower 
curve is the P.S.D. minus the constant term as calculated from equation (85). The 
reactor detector geometry is chosen to represent the experiment (a 50cm on a side 
homogenous bare reactor, and a 2 x 2 cm x 30 cm rectangular parallel-piped detector 

whose outer is 5 cm in from the side of the reactor). 
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The final result is simply 

NAvVDR2 tan-’ (o/a) 
m2(j(j - I))?, 2D 0J (62) 

where V,, = .rrR21, R being the detector radius, and I the detector length. This approx- 
imate result is applicable for I large enough that: 

J Ja2 + 01~ f a 
20 

1 >l, 

and R small enough that: 

J Jn2 + ~0’ h a R $ 1. 
20 

(63%) 

(64) 

Ricker’s detector (a BF, tube), which has R - 3 cm and I- 30 cm, will satisfy the 
second condition (64) over the frequency range of interest, but conditions (631) are 
met (using the reactor parameters in Fig. 1) only for frequencies in excess of 100 
r.p.s. Thus according to this model the detector should behave like a point for 
frequencies somewhat less than 100 r.p.s., and as a line for frequencies greater than 
100 r.p.s., but in no case like an infinite detector. Clearly the finite cylindrical de- 
tector, infinite reactor model dosen’t explain Ricker’s experiment. 

We have also calculated the P.S.D. for a large, thin rectangular plate detector, just 
as for the long, thin cylinder, and it displays a still different frequency dependence; 
i.e. 

where 

(66) 
and 

J 
Jo2 + (11~ * a ,, cc , 

20 
(67) 

Tn Table I the characteristic frequency dependence (2/1?)~(w) - roNsVo near 
critical a a 0 of the P.S.D.‘s, for each of the limiting cases of detector geometry that 
have been considered, is displayed. These results argue strongly that knowledge of 

TABLE 1 .-CHARACTERISTIC FREQUENCY DEPENDENCE OF THE P.S.D. 
NEAR CRITICAL (am 0) FOR VARIOUS DETECTOR GEOMETRIES 

Detector Small Long thin Thin Large 
geometry sphere cylinder plate sphere 

_ - 

& Q(w) ~ r,N 1 1 1 1 

f Q(O) - Q,N 
z/w 

- 
w 03/2 oz 
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the manner in which the neutron doublet density (the density of correlated neutrons) 
is sampled by a detector is very important to the interpretation of any experiment 
which purports to measure neutron noise phenomena. Therefore we are forced to 
conclude that in the case of Ricker’s P.S.D. measurements considerations other than 
detector geometry must play an even more important role. The role of finite reactor 
size and geometry is logically the next to be investigated. However, before proceeding 
with this, we must look at the companion experiment, the measurement of the 
variance-to-mean with a finite detector in an infinite reactor. 

The definition of the variance-to-mean (4) for an arbitrary detector in an infinite 
reactor becomes : 

V/M = d3x 
s I 

d3x’XDD(x, x’, t),/rDNSI/bt. (68) n.v. I).V. 

In order to find X”“(x, x’, t) we make use again of the solution of equation (56) for 
XxD(x, x’, t). The result is 

XDD(x, x’, t) = r-,(x’) 6(x - x’)N”t 
& e-ik ’ (X-X’) 

(u + Dk2)” 

+ 
f 

d3k(’ -‘- (n+Jq e_ik. (y_-x’)) 
(a + Dk2)3t I’ 

If we perform integrals over x and x’ for an infinite detector (one whose radius is such 
that 2/ajd R > 1, we get the following result for the variance-to-mean: 

(V/M) largedrtector = 1 + m(Aj - l))k 
r, ij)( 1 - k,)’ 

l ~ 1 - cat 1 at ’ (70) 

where k, = ((j)rf/r,) is the infinite medium multiplication factor. This is the space- 
energy-independent theory result to which Albrecht was able to fit his variance-to- 
mean measurements. However, Albrecht’s detector is small (in the sense that 
l/ajd R <l) so that we should properly integrate X”“(x, x’, t) only over the finite 
detector volume. When this is done we obtain a complicated expression for V/M. 
For the sake of comparison, it is sufficient to consider the long time limit, which gives : 

lim (V/M - 1)small Detector = 1 

t-m (V/M - l)mge Detector 6 
(71) 

This is small (w1/103) for parameters appropriate to Albrecht’s experiment. Thus we 
see that we are in exactly the same uncomfortable position with respect to explaining 
a variance-to-mean measurement in terms of a finite detector, infinite reactor system 
as we were with the P.S.D. measurements. 

4. FINITE REACTOR MODEL 

We attack the problem of the finite reactor in the approximation scheme of equa- 
tions (51)-(55) by an expansion in the eigenfunctions of the Laplacian operator appro- 
priate to the geometry of the system. Singling out these eigenfunctions which are 
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zero on the extrapolated boundaries of the reactor, we can define the following 
complete orthonormal set: 

n%LW = --Bn2WnWr (72) 

d3xynb)v,,W = Lx, (73) 

(74) 

where R.V. = reactor volume. The functions in this set are sometimes referred to as 
the reactor modes. It is convenient to use correlation functions instead of doublet 
densities and to treat only neutron co-ordinates in the expansion. We therefore write: 

X-=)(x, x’, t) = i A.‘=yx’, t)yn(x), 
71=1 

NV(x) = 2 A;%&(x), 
n=l 

(75) 

(76) 

SW = $ S,yn(x), (77) 
n = 1 

XiV”(x, x’) = f A,,-y-vyn(X)ym(X’). (78) 
n, m=l 

The solution for A / follows immediately from equations (21) and (52) 

A? = s,/(a + D&2). (79) 

We have assumed that the neutron densities have achieved a steady state, and for now 
the spatial distribution of the external neutron sources (i.e. the S,‘s) will remain 
arbitrary. AnmNN is found by taking moments of the appropriate equation for 
XNN(x,x’). This equation (in the new approximation scheme) is the result of com- 
bining equations (23), (53), (54) and (55): 

[2a _ D v2 _ DV’“]X’v-‘( x, x’) = 6(x - x’)[CN”(x) + S(x)] 
+ 208. V’ 6(x - x’)N’(x). (80) 

Taking the moments of (80) with respect to the reactor modes we thus obtain: 

Finally we need the equation for AnxD(x’, t). The appropriate equation for 
X”“(x, x’, t) is: 

---f DV2 
1 

XND(x, x’, t) = rD(x’)H(t)XA’~l’(x, x’) 

- r,(x’)H(t) 6(x - x’)iP(x), (83) 
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where equations (17) and (51) have been combined. Proceeding as above we find 
immediately that: 

& + a + DBn2 1 AnND(X’, tj = rD(X’)H(t) f &&ii I cc - a> 
i.WI=l \(2a + DB,’ + DB,‘) ym(x’)’ 

(84) 
The solution of this equation for AnND (x’, t) provides us with expressions for theP.S.D., 
the two detector or ‘cross P.S.D.‘, or the variance-to-mean, all for arbitrary detector 
location and geometry in reactors of arbitrary configuration. In the final results [for 
example Q(W)], geometric effects are contained in theY,‘s; i.e. in the set of constants 
Cinm and in integrals of the Yn’s over the detector volume. 

For the generalized P.S.D. we find: 

x, x’, u) = rD(x) 6(x - x’)Ns(x) 

+ rD(xjrD(x’) z CinmA/ W - lj)r,(a + D&2~yn(xh&4 
i,n,VL=l (2~ + D B,2 + D B$)[(a + DB,2)’ + w”] 

+ rD(xjrD(x’i, nf$=finmA> 
W - l))rAa + DJL2)w,(X’jy,(Xj 

(2~ + DBn2 + DBm2)[(a + DB,‘)’ + co2]’ 
(85) 

To analyse specifically Ricker’s P.S.D. experiment we represent his reactor as a cube, 
and generate the various reactor parameters from a measured B/A (fraction of delayed 
neutrons over neutron lifetime in units of k, the multiplication constant) and a rep- 
resentativeL(diffusion length) for his reactor. Of course (85) has been derived ignoring 
delayed neutrons; however, if we include a single group of delayed neutrons, and then 
keep only terms of zero order in the small quantity A/r, (I being the single precursor 
group time constant) we obtain in the frequency range of experimental interest 
(1 < o < b) an identical expression for 0(x, x’, w) where the critical condition is 
now a - (C)r, + DB, 2 = 0 ((5) being the mean number of delayed neutrons 
produced per fission). This result is demonstrated in Appendix A. 

In Fig. 3 a comparison is made between Ricker’s measurement of the P.S.D. for 
his system in the critical limit and the corresponding result obtained from 0(x, x’, W) 
integrated over an appropriate detector (one which resembles the actual detector as 
closely as possible). The configuration of the detector-reactor system is also illus- 
trated in Fig. 3. The comparison is clearly not very satisfactory. Our expression for 
theP.S.D. does not fit Ricker’s data, and no small variations of the reactor parameters 
will make it do so. A similar result has been obtained by Sheff for a reactor much 
the same as that treated here, but for a point detector located at approximately the 
centre of our finite detector. His result is equally unsatisfactory as far as explaining 
this experiment is concerned. 

It is important to note for future reference, that in order to compute Q(u)) with 
sufficient accuracy, it is necessary to keep 64 terms in the modal expansion of equation 
(85). This is the direct result of the smallness of the ratio L/R where R is a charac- 
teristic reactor dimension, and the fact that the leakage rate is proportional to the 
square of this ratio. 

Again a change in our reactor model is called for. An experiment which was 
analysed, with what has appeared to be great success, by the simplest of theories 
seems to demand more and more detail from a more general theory. 
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5. FINITE REACTOR MODEL-FAST LEAKAGE INCLUDED 

We show here that the difficulties encountered with the reactor model of the 
preceding section disappear when fast diffusion and leakage are taken into account. 
It is well known that the picture of neutrons thermalizing at a point (implicit in the 
treatment of Section 4), is unrealistic. In fact, in the small, water-moderated reactors 
used by Ricker and Albrecht, fast leakage is the primary contribution to the leakage 
from the core. Moreover, as we shall show, it turns out that a reasonable treatment 
of fast diffusion is crucial to the understanding of reactor fluctuation experiments. 
When fast diffusion is taken into account we not only find immediate agreement 
between our calculations and the experimental results, but we are also able to arrive 
at an explanation for the practical success of the space-independent theory in treating 
correlation problems where space effects, by definition, should play an important role. 

First, we sketch a generalization of the treatment of Section 4, and apply it to a 
two-group problem. The details of this are shown in Appendix B. Along with the 
neutron doublet density N*vJT which we now take to mean thermal neutron doublet 
density, we now work with NV’“, NTLS, N”“, the thermal-fast, fast-thermal and fast 
neutron doublet densities respectively. In place of equation (80) one obtains four 
coupled equations for the corresponding correlation functions, and is hence led to a 
coupled set of equations for expansion coefficients AnmSS, A,,‘lS, Am,7’-‘T and A,,““. 
An approximate solution for the thermal neutron doublet expansion coefficient is 
obtained to lowest order in the small parameter t-,/r,, (rK being the removal rate from 
the fast group, see Appendix B), with the following conclusions: 

(i) The resulting expression for the P.S.D. is similar in form to the one-group 
result with extra factors of (1 +- TB,~)-I appearing in various places. These 
serve to depress the effect of higher mode contributions to the P.S.D. Tn fact, 
for the reactor used by Ricker, the two-group treatment has the effect of 
collapsing the infinite sum in (85) to a single term, n = m = 1, whereas before 
it was necessary to keep approximately 64 terms to represent Q(o) adequately. 

(ii) For the surviving term, the two-group result may be obtained directly from the 
lowest mode contribution to equation (85) by a transcription which simply 
replaces the diffusion length L by M, the migration length, where 

M2 = L2 + T, T = neutron age to thermal. (86) 
This can also be seen from the Fermi age treatment of thermalization utilized in 

Raievski’s inductive theory of neutron noise. 
In Fig. 4, the single term expression for P.S.D. with M replacing L is compared 

with Ricker’s experimental results, and the agreement with the measured spectrum 
(the solid squares) is excellent. To facilitate comparison the first term approximation 
of Q(w) is presented in a notation analogous to that used by Ricker. The dependence 
on the delayed neutron precursor decay constant 1 is left explicit. The details of this 
lowest mode calculation are also found in Appendix A. For a subcritical reactor 
(with external sources distributed in the lowest mode) 

(87) 
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FIG. 4.-Measured and calculated P.S.D. for the same system considered in Fig. 3. 
Where now the calculations are performed from the first term in the sum (85) with D = 

raMa, M = 7.06 cm (the migration length). 

and for a critical reactor 

where 

p, 
s d3=V”W) 
D.V. 

is the mean neutron population in the detector, 

639) 

cz s d3G,dx) 
D.V. 

(90) 

is the importance factor for detector geometry and configuration, 

(v> = cj, + (5) 

is the total mean neutron production per fission, and 

p ~ (vhf - r,U + M2&? 
(Orr 

is the reactivity in units of ,8. 

(91) 

(92) 
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Comparing these expressions with those used by Ricker (p. 67) we can see that each 
corresponding expression has precisely the same form. 

It is now possible to give an explanation for the practical success of the space 
and energy-independent theory. The manner in which a detector samples the density 
of correlated neutrons may, in general, play a role in determining the P.S.D. For a 
given detector, the P.S.D. depends upon the spatial dependence of the doublet density 
and therefore on reactor configuration, neutron energy distribution, and degree of 
multiplication. However, in a reactor such as that used by Ricker et al., the ratio of the 
migration length to the greatest linear dimension is large enough to render the non- 
singular part of the doublet density a factorizable function of its two spatial variables. 
The spatial dependence is given by the product, yl(x)yl(x’), of the lowest eigenfunc- 
tions of the Boltzmann operator. Different detectors sampling such a density may 
yield different results for the overall magnitudes of the P.S.D., but the characteristic 
Lorentzian frequency dependence will be the same in each case. This dependence is 
fixed by the approximate factorizability of the doublet density as a product of eigen- 
functions of the appropriate Boltzmann operator. Thus since the space and energy- 
independent theory doublet density is trivially factorizable in this sense, the success 
of this theory in analysing Ricker’s experiment is guaranteed. Of course the full space 
and energy-dependent analysis is necessary to interpret the details even of these exper- 
iments. The relative magnitudes of the plateaus in the P.S.D. (see Fig. 4) are de- 
termined by i;, the detector configuration importance factor, and r,, the detection rate. 

c does not arise in the space and energy-independent theory, and the plateaus in 
the measured data must be fitted by choosing a value for rn* which is interpreted to 
be an effective detection rate for the real detector smeared out over the reactor volume. 
Finally the overall magnitude of the P.S.D. is seen in the general treatment to be 

\’ 
proportional to N- , the expected number of neutrons in the detector volume; whereas 
for the space and energy-independent analysis the proportionality is with the average 
neutron density (number/cm”) for the reactor. But as there has been little practical 
interest in the absolute magnitude of the P.S.D., this discrepancy has not hindered the 
interpretation of experiments. 

The explanation above also applies to the success of the space and energy-inde- 
pendent theory in interpreting Albrecht’s variance-to-mean experiment. From 
equation (84) our general expression for the detected particle variance follows 
immediately : 

XnD(X, X', t) = rD(X) 6(X - X’)N-‘(x)t + 2r,(x')rD(x')(j(j- l))r, 

x 2 n~=,Ci,,AiJ Y7LWYm(W 
‘, * pa + D&z + DB,“][a + DBn2] 

Again, taking fast diffusion into account, for a reactor small enough and near enough 
to critical, this sum is well represented by its first term with D set equal to r,W. The 

* We also used ru as a fitting parameter, for as f? depends critically on the extrapolated boundaries 
and detector geometry chosen to represent the system, we would not expect our calculated P.S.D. to 
fit the relative plateau heights as measured by Ricker. However, the particular value of r, (8.35 x 
lo3 set-‘) chosen to effect a fit, is of the correct order-of-magnitude for the type of detector actually 
used: and we are, therefore, confident that the calculated C (and thus our reactor-detector configura- 
tion) is not unrealistic. 
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result for the variance-to-mean follows immediately and is seen to be of the same form 
as that obtained from the space and energy-independent theory used by Albrecht, i.e. 

V/M = 1 + E (j(j + 1)) 

r 

1 _ 1 - ew {Hi%1 - d/W 
(ohm + KC1 - 8>1[1 - PI [/3(1 - p)/A]t 

1 
’ (94) 

(95) 

is the detector efficiency, and 
K = (Y)Y&~ + DB,2) (96) 

is the multiplication factor. 
It is interesting to note that c can be written in the following form: 

(97) 

where 
VD = detector volume, 
V, = reactor volume, 

and 4 = the appropriately weighted (by C,,,) average of the lowest 
mode over the detector volume. 

We are thus in agreement with the interpretation of detector efficiency commonly used 
in conjunction with the space and energy-independent theory (i.e. E being proportional 
to the ratio of detection rate to total neutron loss rate in the reactor). 

We therefore conclude that the success of the space and energy-independent 
theory in the analysis of the experiments considered here is limited to the class of 
reactors in which the migration length is large enough with respect to the overall size. 
The choice of a different reactor (one in which M/R < 1) might give results which 
such a theory could not explain. To support this claim, we have displayed in Fig. 5 
results calculated for the P.S.D. in a large graphite-moderated reactor (the XP-10 at 
Oak Ridge*) with a variety of detector configurations and locations. Specifically we 
consider a ‘point-like’ detector (represented by a single BF, tube) and ‘line-like’ 
detector (represented by three disjoint BF, tubes feeding a single output.) Calculations 
of the P.S.D. are made for these detectors located first at the centre of the reactor and 
then off-centre (see Fig. 5) where higher reactor modes have more influence. The 
‘characteristic behaviour’ of these P.S.D.s ((2/I’2)Q((0) - Ye-) is plotted, and the 
w-2 behaviour, characteristic of the space and energy-independent theory, definitely 
does not appear. 

It should be pointed out that P.S.D. measurements in such a system may be 
experimentally difficult to achieve. If rD and/or V, cannot be made sufficiently great, 
the constant term in the P.S.D. will swamp all frequency dependence. The detector 
used by Ricker et al. would not be satisfactory. Perhaps ‘cross’ P.S.D. measurements, 
in which no constant term appears, are better suited for such reactors. 

* The authors wish to thank Professor S. H. Hanauer for pointing out the experimental possi- 
bilities for XP-10, and for additional valuable discussions on the nature of the reactor on which he, 
Ricker and Mann performed their P.S.D. experiments. 
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FIG. 5.-Characteristic frequency dependence of the P.S.D. as calculated from equation 
(B.24) for various detector configurations in a large graphite-moderated reactor (B/-1 = 
7 set’, Y, = 1000 sect’ k, = 1.035 and M* = 560). The reactor is a bare homogenous 
cube. Curve 1 represents the frequency dependence for a single 2 x 2 cm x 30 cm 
rectangular parallel-piped detector located at the centre of the reactor. Curve 3 is for a 
similar detector located 250 cm from the bottom of the reactor and 125 cm in from two 
adjacent sides. Curve 2 is for a three segment detector whose middle segment corre- 
sponds to the single detector of Curve 1. Curve 4 is for a similar three segment detector 

whose middle segment corresponds to the single detector of Curve 3. 

As a final note on Fig. 5, it is interesting to observe that for detectors placed in 
regions of the reactor where the higher modes have greatest importance, the reactor 
seems to appear infinite. The resulting P.S.D.s are very much like those predicted in 
the infinite reactor, finite detector model (see Table 1). It should also be pointed out 
that when fast diffusion is taken into account the infinite reactor results of Section 3 
are modified (in the frequency range of interest a w o < Y, < rK) merely by the 
replacement of L2 by M2 in the diffusion coefficient. The calculation is shown in 
Appendix C. This emphasizes the non-trivial nature of the interaction between 
detector configuration, reactor size and the distribution of correlated neutrons in 
P.S.D. measurements. For a given detector configuration the inclusion of fast diffu- 
sion takes the calculated P.S.D. farther away from a Lorentzian shape for an infinite 
reactor and closer to it for a finite reactor. 
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APPENDIX A 
Here we shall include the statistical behaviour of a single group of delayed neutron precursors. 

It turns out that the expression (85) for the generalized P.S.D. is not affected by this, at least to lowest 
order in the small parameter I/r, = ??where 1 is the precursor decay constant. 

We use the superscript A to refer to precursor quantities. The basic set of equations (see Section 2) 
is generalized as follows: 

$t ND(x, t) = ro(x)H(t)Wv(x), (A.1) 

[a - DVz]NN(x) = ANA(x) + S(x), (A.2) 
II”IA(x) = ([)r,NN(x), (A.3) 

where (5) is the expected number of precursors produced per fission 

[ 
a 
at 

$ a - DVz 
1 

PD(x, x’, t) = r,(x’)H(t)X”Av(x, x’) + jlXAD(x, x’, t) 

-rB(x’)H(t) S(x - x’)N”(x), (A.4) 

[ 1 $ + A XAD(x, x’, t) = ru(x’)H(t)X”A(x, x’) + (<)r,WvD(x, x’, t), (A.5) ’ 

[a - DV2 + I]XNA(x, x’) = (c)rtXNN(x, x’) + IXAA(x, x’) 

-&x - x’WN’(x) + (I)rW”(x) - (j)(S)rtNN(x)l, (A.61 

[2a - DP - DV’2]XNN(~, x’) = AXNA(x, x’) + IXfla(x’, x) 
+ 6(x - x’)[Crvlv(x) + INA + S(x)] 
+ 2V . V’ 6(x - x’)N~(x), (A.7) 

2AXAA(x, x’) = (c)r,XflA(x, x’) + (<)rfX”A(x’, x) 

+ S(x - x’)[(Or,NN(x) + ~N-Tx)l, (‘4.8) 
$ XDD(x, x’, t) = rD(x)H(t)X-vD(x, x’, t) + ro(x’)fZ(t)XND(x’, x, t) 

+ r,(x)H(t) 6(x - x’)P(x). (A.9) 

The reactor is considered to be in the steady state, and the approximation scheme discussed in Section 
3 has been applied. 

USing the eigenfunction expansion of equation (78), we are led to the following set of coupled 
equations for the expansion coefficients of XvN (x, x’), X-vA(~, x’). XNA(x’, x), and XAA(x, x’): 

[2a + DB,2 + DB,2]A,,N1v - jlA,,,,NA - IIA,,NA = izI CinmA;YC + a + DBn2 + DBm21, (A.lO) 

-(~)r~Anm-v~ + [a + DB,2 + AIAnmNA - MtmAA = - i$l Ci,,AiN(S)rJ(j) - 21, (A.1 1) 

-(l’)r,AnmNN + [a + DBmZ + I]A,,Na - lAnmAA = - $lC..,&N(iir,[ij) - 21, (A.12) 

-(c)rtA,,NA - (S)r,AmnNA + 2AAmmRA = 2 igI G,,A?(S)rf, (A.13) 
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with the solution: 

A,,BS = 2 C,“,A,~{[C c n + DBna + DB,‘] 4A 
i=l 

+ (<)r,[(j) - 21(4B ~ 4C) - 2(i)rf4Dl14M, (A.14) 
where 

I 2a $ DB,2 + DB,2 -;i -I. 01 

AM= 
--(Of-r 

-(5)rf 

a t- DBn2 + I 0 -1 
= [2a + DBn2 + DB,2] 4A 

0 a-c DB,,2+1, -1 -i- (L?rf(4B - AC), 
I 0 -(Or1 -(i)rf 22 I 

(A.15) 

and where 4A, 4B, 4C and 4D are the minors of the elements of the first column of AM. Similarly, 
the solution for AnmNA is: 

A nm aTA =i$, C,,,Ai~V{ -[C $ a + DB,* $ DB,z]4E 

+ (I;kr[(i) - 21(4E ~ 4G) + 2(0r,4H)/AM (A.16) 

where 4E, 4F, 4G and 4H are the minors of the elements of the second column of AM. 
For the generalized P.S.D. we need only examine the expression for AnNU(x’, s), which is obtained 

by Laplace transforming and combining equations (A.4) and (AS): 

[? $ (a + DB,2 + li)s J- n(a + DB,’ - (<)~,)lA,~~(x’, s) 

= ro(x’) 2 A,,B,v 
112 = 1 

Y,(x) f r&x’) f A,,-?ID ” ydx’). (A.17) 
m=1 

From equation (A.17) and the definition of the P.S.D. (3) the following expansion in reactor modes 
is found for the P.S.D. 

@a f DB,*) + i2(a + DBn2 ~ (or,) 
’ 1 ()(a $ DBs2 ~ (<)r,) - 19)~ + &(a i f DB,2 + Qz 

A N.V 
mn 

,%*(a + DBn2 
+ (@(a + DBn2 - 

- (or,) ~ h2 
(c)r,) - co’)’ + d(a + DBn2 - 2)” 

+ rD(x)rD(x’) 5 y,(x’)y&) In z ml. (A.18) 
n,n,=l 

In the frequency range of experimental interest o > jl, thus the quantities appearing in (A. 18) can 
be obtained to lowest order in E simply by setting the rate 3, = 0 wherever it appears, except when it 
is to be compared with the rate a + DB12 - (<)rr which becomes small near criticality, or perhaps 
when it multiplies the rate a + DBs2 which can be large for large n. We therefore consider the term 
n = m = 1 in the double sum (A.18) separately from the others. 

For the case n = m = 1, we combine the exact expressions (A.lO-A.13) with n = m = 1 to obtain 
the lowest mode contribution to the P.S.D. 

2 ( i ~;a CDll(x, x’, 0) = rU(x)S(x - x’)~V(x) 

f raWD(x’)(j(j - 1))~~ 2 Cm&&hMW + A2[1 + (jX<Y(j(j - l))l) 
i=l (n(a + DB12 - (c)r,) - o.P)2 $ oz(a + DB12 + A)% ’ (A’19) 

The constant term has been included to emphasize the comparison with Ricker’s results (p. 27). 
Indeed Ricker’s expression, with slight notational changes is identical with (A.19) with the small term 
(jXU/(i(j - 1)) neglected. 

We note that there is no difficulty in taking the limits I + 0 and a + DB,2 - (lJrr + 0 (critical 
limit) separately, or together in either order. 



580 M. NATELSON, R. K. OSBORN and F. SHURE 

In the case when either n or m is greater than 1, we perform the asymptotic analysis directly on the 
expression (A.18) for the P.S.D. and the solutions (A.14-A.16) for the A,,‘s. The frequency- 
dependent coefficients in the double sum (A.18) both possess the same denominator. To lowest order 
in n/w, the term &a + DBe2 - ({)rf) may be ignored regardless of the value of n, since for w < a + 
DB,,2 we have 

J.(a + DBn2 - (c)r,) - d < o(a + DBn2 f I.), (A.20) 

whereas if w is at least the same order of magnitude as a + DBc2 we have 

n(n $ DBn2 ~ (c)r,) < w2. (A.21) 

Thus the denominator becomes simply 

Denominator M wa(w2 + (a f DB,2)2). (A.22) 

We have also made use of the fact that I < (<jr+ 
The determinental solutions for (A.14), (A.16) for the A,,‘s may also be easily evaluated to 

lowest order in e. We find 

AB AC AD AB AC 1 
FM w KM m FM m TA m ?ij = ’ and 

AA 
TM w (2~ + DBn2 + DBm2) * (A.23) 

Thus to lowest order in E 

A NA may also be computed to lowest order in e but this is not necessary, since the frequency- nm 
dependent coefficient multiplying it in (A.18) is higher order in ??than the coefficient multiplying the 

I cc \ 
term AnmNN - 

! 
Finally, to lowest order in E, the coefficient of the term A,,,N6 

i 
w’(u + DB,‘) + Wa + DB,,’ ~ (Orr) a + DB,2 

@(a + DBn2 - ({)rr) - cd)2 f UP@ + DBn2 + 1)’ = co2 + (a + DB,2)2 ’ (A.25) 

and combining (A.24), (A.18) [with 3, = 0] and the first term result (A.19) we have the desired expres- 
sion for the generalized P.S.D. 

2 ( ) F @(x, x’, 0) = rD(x) 6(x - x’)N”(x) 

C, 
ANyk=)~m(x’k + D&‘) 

i,n,m=l Inrn [2u + DBs2 + DBma][w2 + (a + DB,a)“] + ‘(‘) (A’26) 

Although this is identical in form with the expression (85) obtained by ignoring delayed neutrons, it 
is actually different since the parameters a and D are now related according to the critically condition 
where delayed neutrons are taken into account, i.e. 

a + DB12 - (<)rr = 0. (A.27) 

APPENDIX B 
Here we shall consider neutrons in two energy groups, thermal and fast, carrying out calculations 

of the P.S.D. to lowest order in the small quantity r,,/r R = E (where r, is the removal rate of neutrons 
from the fast to the thermal group). 

The basic equations are generalized for two groups as follows: 

i ND(x, t) = rD(x)H(t)NN(x) (B.1) 

where the superscript N refers to the thermal group. The superscript n will refer to the fast group. 
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The detector presumably responds to thermal neutrons, so the formula (33) for the P.S.D. is still 
correct, with the new notation understood. 

[r, - DC2]NN(x) = r,&“(x), 03.2) 

where D = r,L2 is the thermal diffusion coefficient (L is the diffusion length), 

[rR - D”?]N”(x) = (,j)r,N’(x) -L S(x), (B.3) 

where D’ = rgr is the fast diffusion coefficient (T is the neutron age). S(x) (the density of external 
sources) only contributes to the fast group, 

[ 
i + r, - DV2 1 X”D(x, x’, t) = rRXnD(x, x’, t) + r,(x’)H(t)X”“(x, x’) 

- ru(x’)H(t)S(x - x’)N-l’, (B.4) 

[ ; + rB - D’T= 1 XnD(x, x’, t) = (j)r,XsO(x, X’, I) $ r,(x’)H(t)Xn”(x, x’), (B.5) 

[2r,, - Drz - DC’z]X-v”(x, x’) = rliXn.V(x, x’) f r’lXnx(x’, x) 

+ 6(x - x’)[rJP(x) + r,N”(x)] 
+ 2DV. V’ii(x - x’)W(x), (B.6) 

Iv,, $- rH - D’iz - D’~‘z]XnLv(x’, x) = r,X”“(x, x’) + (,j)rrXvLv(x, x’) 
- 6(x - x’)[mN’“(x) 2 (j)r,W(x)], (B.7) 

[2r, - D’T2 - D’C’2]Xnn(x, x’) = (j)rrXnLv(x, x’) + (j)rfXn-?‘(x’, x) 
+ 6(x - x’)[S(x) + r,N”(x) j (j”)rJP(x)] 

+ 2D’V. V’S(x - x’)N”(x), (B.8) 

g XDD(X, x’, t) = rD(x)H(t)XRD(x, x’, t) f r,(x’)H(f)XND(x’, x, t) 

+ ru(x)H(t)6(x ~ x’)Wv(x). (B.9) 

For simplicity, we have considered the reactor to be in the steady state, no delayed neutron produc- 
tion, and no fission or capture in the fast group. In addition the approximation scheme discussed in 
Section 3 has been applied. 

As in Appendix A, an eigenfunction expansion leads to the following set of coupled equations for 
the expansion coefficients of XxX(x, x’), XnN(x, x’), XnN(x’, x) and Xnn(x, x’): (extrapolated 
boundaries are assumed the same for the fast and thermal group). 

[2r, + DB,2 + DBm2]A,,KJ - rRAnmnS - rRAmnn.V = 2 C,,,A;v(2r, + DB,,2 4 DBmZ), 
i=l 

(B.10) 

-(j)r,A,,“‘” + [r, + r, $- DB,% + D’Bm2]AnnLnS ~ r,A,,,“” = - $ CdrRAin + (j)rfA;“l, 

(B.11) 

- (j)rfAnmss + [r, + r, + DB,2 + D’Bn2]A,,“-v - r,A,,“” = - i$I CdrRAin + (j)r+li”l. 

(B.12) 

- (j)r,AnmnS - (j)r/AmnnB + [2r, + D/B,* $ D’B,2]A,m”n = iz G,,J(j(j - l))rJiB 

+ (2r, + D’Bn2 + D’Bm2)Atn]. (B.13) 
The formal solution for AnmBN is : 

A nmNs = x C,,,([2r, + DBa2 + DBm2]A/“AA + [TRAP + (j)rfAiN](AB - AC) 
i=l 
-[(j(j - l))rfAtR + (2r, + D’B,2 + D’Bm2)Ain]AD}/AM, (B.14) 
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where 

AM = ro4 

2+LQLz+&*) --l/E _-1/E 0 

---km l+LZB,2+~-‘(1+TB,2) 0 ---l/E 

--km 0 l+L2B,2+E-Y1+7&*) _-1/E 
0 -kco -koo c-Y+ r(B,2 + B,?) 

(B.15) 
= ras[(2r, + 08,’ + DB,*)AA - (j)r,(AB - AC)], 

and AA, AB, AC and AD are the minors of the elements of the first column of the determinant 
appearing in AM. km is the infinite medium multiplication constant, (i)rf/ra, and E is defined as the 
ratio r,/r,. The solution for AnmeN is obtained in a similar fashion : 

A ,mnN = z Cinmr>{-[2ra + DBna + DB,2]AiNAE - [rRAln + (j)rfA;v](AF - AC) 
i 

+ [(j(j - l))rrAsN + (2r, + D’B,’ + D’B,“)A,“lAH]/AM, (B.16) 

where AE, AF, AG and AH are the minors of the elements of the second column of AM. 
We should note that AM (B.15) has the same form as its counterpart in Appendix A. One can 

obtain therefore, an expression for the P.S.D. to zero-th order in E, just as in Appendix A. It is not 
necessary to treat the n = m = 1 term separately. 

First we note that to zero-th order in c 

__ 

AA (1 + ~Bn’)(l + dL*) 
mz (Zr, + raL2(B,2 + B,‘))(l + 7Bse)(l + TB,~) ~ (j)r,(2 + T(B,~ + Bm2)) ’ 

AB AA 1 
z = - &? ’ (1 + 7Bmz) ’ 

AC AA 1 _--.p 
AM= AM (1 + T~,7 ’ 

AD AA 1 
FM zz! - m(l + &,*)(l + +B,*) ’ 

It thus follows from equation (B.14) that to lowest order in E 

A N9 = izl CznmA~v 1 + 
(i(j - l),V 

n tn 11 i TB,21[r,(l + ~&,‘)(l + L’B,‘? - (j)rfl 
+ [l + dh21[rf(l + TB~‘)(~ + L2Bn2) - (j)r,l 

Next we find that to lowest order in E 

AE AF AG AH -,-,.-...,--0. 
AM-AM-AM-AM- 

I- 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

Thus A,,,,, nN must also vanish to this order. Finally, to obtain the P.S.D. we examine the equation for 
,4RD(x’, t) which follows directly from (B.4) and (BS): 

t g2 + (1 i- T&*) ir + r(1 + L’B,“) g + (v,(l + TB,‘?(I + LaBne) - (j)r,) AnND(x’, t) 
ci 1 

= rD(x’)H(t)(l + TB,*) $ AnmWN - jI G..A,X] y,(d) f rdx’)H(t) z A,,,,nNtp,(~‘) 
W&=1 W&=1 

AnmRN - $ C,nmAifl 1 ym(x’). (B.23) 
i=l 
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The bracket in the first term on the r.h.s. is considerably simplified by the use of (B.21). &sing the 
approximations of equation (50) we solve (B.23) to lowest order in E, and insert the result into the 
definition (33) for the generalized P.S.D. The final result is: 

t v,(x)r,(x’) 5 
cjcj - l))urC,,,W,(x’)y,(x)(a f D&“2)A,-V 

i ?1 1)1= r (I + ~&‘)(l + 7&‘)]2a i D,B,,2 $ D,&,Z][(a + D,,B,n*Y 7 4 ’ (B.24) 
1 

where D, is defined according to 

& = r, [ 
k, 

L2 + l ;_ 7B,1 T 1 . (B.25) 

This is just equation (85) with extra factors of [(l 1 7Bn2)(1 + &?,2)]-’ and with an ‘effective’ migra- 
tion length Mn2 7~ L2 + k m T/(1 + ~i3,~) for the n-th mode. For the higher modes Mn2 w L2, but the 
extra factors become small and supress the contribution of these terms. 

For the n = nz = 1 mode. since 

(B.26) 

the result is the same as the lowest mode result of the one-group treatment, with L2 replaced by the 
migration length M2 = L2 + T. It should be pointed out that 

a + D,B, = (1 - k)//“‘, (B.27) 
where 

k = (j)rr/r,(l + 7B12)(1 + L*B,%), and I’” = I/r,(l -F L2B12). (B.28) 

Thus one obtains the familiar form -(& + (1 - k/1’h)2)-1 for the frequency dependence of the P.S.D. 
The thermal lifetime I’” occurs here rather than the expected total lifetime. Of course 

/TOT = Ith(l + O(E)), (B.29) 
and the occurrence of 1’” rather than IToT . m our result is due to the neglect of terms of order E. 

APPENDIX C 
Here we apply the two energy group mode1 of Appendix B to the infinite homogenous reactor. We 

shall show that in the frequency range of experimental interest a M o < ra and to lowest order in 
the small quantity r,/r, the P.S.D. results of Section 3 are modified merely by the replacement of 
L2 byM2 in the diffusion coefficient. 

The two-group equations of Appendix B in the infinite reactor limit become: 

; ND(x, t) = rD(x)H(t)NA’. (C.1) 

r N” = rRNn. 

r,Nn’= (j)r,N-ST + S. 
(C.2) 

(C.3) 

[ 
a 

- at f ra - DO2 1 XND(x, x’, t) = rRXnD(x, x’, t) + r,(x’)H(t)X”“(x, x’) - r,(x’)H(t) 6(x - x’)N” (C.4) 

[ 
a 
- A- rR - DT at 1 XnU(X, x’, t) = (j)rJ-vD(x, x’, t) f rJx’)H(t)X”*(x, x’). (C.5) 

[r, - DV”“]Xn’~(x”) = rBXnN(x”) + G(x”)r,N” - DC”2 6(x”)NJ, (C.6) 
where x” = x - x’. 

[r, + rR - (D i_ D’)V”“]Xn”(x”) = r,X”“(x”) + (j)rtX1vN(x”) - G(x)[r,N” + (j)rfNB]. (C.7) 

[rR - D’P]Xnn(x”) = (j)rfXa”(x”) + 6(x”) [r,Nn + v r,NN] - D’V”’ 6(x”)N”. (C.8) 

i XDD(x, x’, t) = r,(x)H(t)X”D(x, x’, f ) f r,(x’)H(t)XflD(x’, x, t ) + r,(x)H(t)d(x - x’)N-\~. 

(C.9) 
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If we define 

and 
@fl(xfl) EE X-NN (x”) - S(x”)NN (C.10) 

G”“(x”) EE X,“(x”) - G(x”)N-v, 

then equations (C.6)-(C.8) become: 

[r, - 0V”2]G-NN(x”) = rRXnN(x”), 

[r. + r, - (D + W)V”*]XnN(x”) = r,G”“(x”) + (j)rfGNN(x”), 

<j(j - 1)) 

(C.11) 

(C.12) 

[rR - D’V”*]G”“(x”) = (j)rfXnN(x”) + 6(x”) 2 rfN-+‘. (C.13) 

The coupled set of equations (C.1 I)-(C.13) may be solved for GNN(x”) and X”A”(X”) by Fourier 
transform. 

GNN(X”) = rR”CjCj - l))rfNN 
f 

exp ik . x” 
2(277))3 dsk (r, + r, + (D + D’)k%(r, + DkZ)(rR + D’k2) - (j)r,rJ 

and 
(C. 14) 

X-yyf) = rR(.j(j - l))r,N” d 3 k  
exp (--ik x”)[ra + Dk2] 

w7v _ (r, + rR + CD + LWW, + Dka)(rE + D’P) - (jkrrB1 
(C.15) 

Next equations (C.4) and (C.5) are Laplace transformed and combined to give the following 
relationship between XNO(x, x’, s), GNN(x”) and XnN(x”). 

[SZ + (r, + rR - (D + O’)V’)S + (r, - DV2)(rR - 0’0’) - (j)rrrR] XVD(x, x’, s) 

rdx’) rh’) 
= s kR - D’V* + s]G,‘“(x, x’) + s r&n’y(x, x’). (c.16) 

Solving (C.16) one obtains 

where 
yl(k) = r, + rR + (D + D’)k2, 

and yn(k) - (r, + Dk2)(r, + D’k2) - (j)r,r,. 

Thus using the definition of the infinite medium generalized P.S.D. (33) we can write 

(C.18) 

(C.19) 

@(x, x', w) = b(x)g(x - x’)N-” + rD(x)rD(x’) 
(j(j - l))rfrB2NY 

(277)3 

I 
dsk 

exp (--ik . (x - x’)) 
[_h(k) - co2 + iwydk)Nyz(k) - 0.P - iwy,(k)l . (C.20) 

The integral in (C.20) can be evaluated by the residue theorem. 

L d3k 
I 

exp (- ik . (X - x')) 

(27r)3 [y*(W - UP + iwJ#)l[yz(k) - W2 - ioy*(k)] ~ m&, !A + AJ - 4 ~~ nl], 

(C.21) 
where 

A- exp (--a,lx - x’]) 
[.J%(i%) - W2 -t ioy,(ir,)l[or*2 - ccl”] ’ (C.22) 

BE 
exp ( -ap]x - x’]) 

lv&%) - 0~’ + iwyl(ia,)][cr,2 - aI”] ’ (C.23) 

and ia,, ia,*, ia,, ia,* are the four zeros of the denominator in (C.20) located in the upper half k 
plane. To lowest order in the small quantities ra/rR and o/rE 

t L 1  ” J ~W2/d2 + (w/r,Y + VW) + i 
2L2 J 

(C.24) 
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a2 z J z/a” -k w2 + a L i 
2r,M2 J 

da” + w2 - a 
2r,MZ ’ 

(C.25) 

Now as the real part of x1 is much greater than the real part of a2 the contributions from A and A* 
to Q(x, x’, w) can be ignored. We find, therefore, that to lowest order in w/rR and ro/rR the general- 
ized P.S.D. is: 

cD(x, x’, 0) = u,(x)d(x - x’)NS + rB(x)rD(x’) 
(j(j - l))rf 

4xr,M2 

From equation (59) the one-group generalized P.S.D. is obtained directly. It is: 

2 ( 1 
CjCj - l))rf exp - 

i;z 0(x, x’, 0) = r,(x)d(x - x’)N” + r,(x)rdx’) u 
da2 2’r 

47rr,L2 Ix - x/i 

;f + a Ix - x’l) 

IJ 

sin v’““; ;I - a Ix - x’I 

X a I. 

(C.27) 

I w I 
In the frequency range of experimental interest 1 > (w/r,)(2L%/M’). Thus it is clear that (C.24) and 
(C.25) are identical except for the replacement of L2 by M2 and the presence of the cosine term in 
(C.24). But it is necessary only to note that the presence of the factor co/r,(2L%/M4), typically 10-3- 
10-5, in front of the cosine term means that the sine term dominates except for a narrow range of 
values of x and x’. Hence, when the integration over detector volume is carried out it is easy to see 
that the main contribution to the P.S.D., a(o), will come from the sine term, except possibly in the 
limiting case of small detector size. In this limit the integration over x and x’ may be performed 
easily by replacing the cosine and the exponential by unity and the sine by its argument. With this 
approximation we find immediately for a spherical detector of radius R: 

(C.28) 

Even for a detector as small as 1 cm radius, this ratio does not exceed 
interest. 

10-l in the frequency range of 

5 


