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A STUDY OF LINEAR TIME-VARYING SYSTEMS
SUBJECT TO STOCHASTIC DISTURBANCES

S. Y. CuHAN and K. CHUANG*

Electrical Engineering Department, The University of Michigan, Ann Arbor, Michigan, U.S.A.

Summary—This paper is concerned with the analysis, in a stochastic sense, of systems des-
cribed by linear differential equations with random disturbances, which often arise in the
study of the variational behavior of an optimal control system along its nominal trajectory
due to random disturbances in plant parameters or measuring errors in state variables.

The random vector may be a white noise vector or may be generated by differential
equations excited by white noise. By means of the Fokker-Planck equation the general
result not only reveals the stability property of the system but also enables one to determine
the state of the system at every instant of time in a stochastic sense. Experimental verification
is given by simulating a second order system on an analog computer and the result is found to be
in agreement with theory.

1. INTRODUCTION

THISs PAPER describes a method of analyzing the behavior of time-varying systems under the
influence of stochastic disturbances. By means of the known property of state transition
matrix a close-form solution for the probability density function for the given system can be
obtained.

During the past 15 years there has been much interest in analyzing the behavior of
automatic control systems under the influence of random disturbances. If the system is
linear and the output-input relationship is governed by a linear differential equation with
constant coefficients, then the well-known techniques using transfer function, correlation
function, etc., are adequate to analyze the behavior of the system. In the case that the
behavior of a system is described by a set of linear differential equations with constant
coefficients under the influence of random disturbances, with practically white spectra the
method of Fokker-Planck equation was used by WANG and UHLENBECK [1].

The present paper is primarily concerned with the analysis of linear time-varying
systems excited by white noise and to a greater extent, of linear time-varying systems under
the influence of stochastic processes which are non-white as well as non-stationary. How-
ever, the assumption on these processes is that they are generated by a set of linear
differential equations excited by white noise; this being frequently the most realistic way
of viewing the operation of physical systems. A white noise random process can be con-
sidered only as a limiting case which will never occur in practice. The most common
examples of stationary process with rational power spectral density, especially in noise
applications to electric circuits, are those which can be considered as the spectral density
of the output from a time invariant lumped-parameter linear circuit excited by white noise.

* The work reported in this paper was supported by National Science Foundation/Grant GP-1381.

[11 M. C. WaNG and G. E. UHLENBECK: On the theory of Brownian motion II, Rev. Mod. Phys. 17,
Nos. 2 and 3, April-July (1945).
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2. PROBABILISTIC CHARACTERIZATION OF A MARKOV PROCESS

Let P(¢, x/t, y)dy be the conditional probability that at time t the random vector
Ey=((1), . . ., E(T))ely, ¥y +dy] under the condition that at ¢, {(f)=x. Then a Markov
process can be defined by stating that for such a process the conditional probability
P(t, x/t, y)dy that the random vector &(t)=({,(1), ..., &) assumes the values in
i yi+dyJ(i=1, ..., n) at time t depends besides on y; and 7 only on the vector ¢ at the
previous time 7. Any additional information concerning the states of the system at instants
of time earlier than ¢ for the process has no effect on the function P(¢, x/t, y). In other
words, a Markov process is completely described by the conditional probability density
frunction P(t, x/t, y). It can be shown that such a process will always satisfy the generalized
Markov equation, i.e. for the instants of time f, s, T such that r<s<7t

P(t,x/t,y) =fP(t, x/s,2) P(s, z[t,y)dz (1)

It is assumed in what follows that any integration is to be carried out over the entire
n-dimensional state space R, unless the limits of integration are specified otherwise.

3. THE FOKKER-PLANCK EQUATION

In order to use the Fokker-Planck equation for the analysis of physical systems under
stochastic disturbances we need the following assumptions:
(a) Condition of strong continuity, i.e.

1
lim — P(t—At, x/t, y)dy=0 2)
A0 AlJip—x|zs
for every positive number 6. The quantity ' y—x[ can be considered as the Euclidean length
in R,.
(b) for any 6> 0, the limits

1
lim — (y; —x)P(t—At, xt, y)dy=ayt, x) i=l,...,n 3)
a0 Atfiy-x|<s

1 . » N
lim = (vi—x)y;—x)P( —At, xft, y)dy="b(t, x) Lj=1,....n 4
At—0 At ly—x|<é
exist and the convergence of (3) and (4) is uniform in x.
(c) the partial derivatives

oP(t, x/t, y) i,

o [a.(r, Y)P(t, x/t, y)]a 5y [bi,(r. VP, x/t, ¥)] )

exist and are continuous for all 7, x, 7>¢ and y.
Under the assumptions (1) through (5) it can be readily shown the conditional
probability density function satisfies the Fokker-Planck equation

oP(t, x/t, y)__ e

= = .Zxa [ai(z, »P(t, x/, ¥)]

i [bu(T, VP, x/7, y)] (6)
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4. LINEAR TIME-VARYING SYSTEM EXCITED BY WHITE NOISE

Let us consider a linear time-varying system of the form
S S Ut IhOn0,  #O=i  i=l.oon ()
Equations (7) can be put into vector form
3—:=C(t)z +D@On)  20)=z, ®)

The elements C,,(f) and C;,(#) are continuous functions of >0 and n,(¢) are the com-
ponents of a random noise vector n(t)=(n,(1), ..., n(?), satisfying the following con-
ditions:

(a) Each component n(i=1,..., n) is a Gaussian white noise with zero mean and a
constant spectral density of 4D, or
E[n(D]=0
and
En(t,)n(t))=2D5(t, — 1), o)

where d(t, —¢,) is the Dirac singular function.
(b) The components n/f) and n(¢), i#j, are uncorrelated so that

E[n(t)nft))=0, i, j=1...,n (10)

With the above assumptions, the Fokker-Planck equation (6) associated with the
system (7) reduces to the following form:

oP ‘ %P
—_—= t
it = 2 [CutzP]+ Z Sl R a1
where
iD= kzl Dydy(1)d (1) (12)
At t=0, the initial condition on P is given by
P =] 8z—24) (13)
t=0 i=1

and P—0 as z;— + 0. The solution of (11) which satisfies the above initial and boundary
conditions is called the fundamental solution of the Fokker~Planck equation associated
with system (7).

The fundamental solution, that is, the conditional probability of the system (7), is
provided by the following theorem:

Theorem 1. For the given system (7) satisfying conditions (9) and (10), the fun-
damental solution, P, of the associated Fokker-Planck equation (11) is given by

1 1 2
PO, zy/t, z)=(—27t7/—2|—'1[1—/2 exp[-— m Z; [Alifzi=mXz,~ m,)] (14)

where [4|;; is the cofactor of the elements A, in the determinant || of the covariance
matrix
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A1y A1z - Atn
i: }.21 122 .. }.2" (15)
lnl ':mz ']nn
in which the elements 4;; and m; are given, respectively, by
n t
=2 3 ¢k,(t)¢,s(t)fof,,uwi,‘(r)w,(t)dt | (16)
L, 1=
k, 1
myt)= kZ] i (Dzok - (17)
¢ (1) and y; (1) are the elements of the matrices ® and ¥ satisfying the following equations
@' =C(H)d, @'(0)=1 (18)
¥=—C(1)¥, W(0)=1 (19)

where @’ and C'(z) are the transposes of the matrices ® and C(f) respectively and I is the
identity matrix.

Proof. To find the fundamental solution of (11) with the initial condition (13) we shall
generalize the method of WaNG and UHLENBECK [1] which was first used in the theory of
Brownian motion with Brownian particles governed by a set of linear differential equations
with constant coefficients in which the characteristic roots were assumed to be real and
distinct. Let us define the Fourier transform of the conditional probability density function
P by

9, )= dzPexp[—iél ékzk]= J

where £=(&,, ..., &)
Taking the Fourier transform of both sides of (11) and integrating by parts with
respect to z; and z; we find

oo}

.. .szl . dz,,Pexp[—i Y «szk:I 20)
- k=1

Qe n_ & 30 :
PEO- S oLl —o@n 3 ok, ey
i, j=1 i i, j=1

Equation (21) is a linear first order partial differential ecjuation and its solution can be
obtained by the method of characteristics [2]. The auxiliary system of equations is of the
following form:

do ik k=1,...,n (22)
_21 Ca)ei g Z lfi,(‘)fifj
i= i, j=
Writing equation (22) in matrix form, we have,
(=—-C@,
g=—g ) Z l.ﬂj(t)éiéj (23)
i, j=

[2] L. E. ELcoLts: Differential Equations, p. 298. Gordon and Breach, Delhi (1961).
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It can be seen that the first equation of (23) is the adjoint equation of the original system (8).
Let y(¢) be the state transition matrix of the first equation of (23), i.e. ¥() is the
solution of

Y(0) = — C'(W(), ¥(0)=1. (29)
Then the solution of the first equation of (23) is given by
&)=y 25
or in terms of components
GO= Y Wfepy il (26)

where y;; if the ij'" element of the matrix ¥, and &; is the J® component of an arbitrary
initial vector &,. By the property of nonsingularity of state transition matrix [3] we find
from (25)

So=¥ "1 (OED =D()(1) @7
or
fam 3 OOEAD,  i=L....m 28)

where ¢, () is the ij th element of ®(¢), which is the transpose of the state transition matrix
of the system (8).
The solution of the second equation of (23) can be found as

g=goexp{—._2=

i,j=1

f o ﬁ,(t)éKt)ij(t)dt} (29)

Using relations (26) and (28), equation (29) reduces to

1

g=4goCXp { - ¢kr(t)¢xs(t)érfsJ' ; SOy jl(t)dt} (30)

n

D>
Ik=
Lrs

The general solution of (21) is of the form

T(p - -+ » Eom d0)=0 (3D

where I' is an arbitrary function. Making use of (28), (30) and (31) the solution of (21)
reduces to

G :)=r[j=il B0y - 3 B0y t]exp[— > K,,(t)f,é,]. 32

rs=

where

A8 3 uOu0| SAWalW 03 33)

[3]1 L. A. Zapex and C. A. DEsoer: Linear System Theory, p. 344, McGraw-Hill, New York (1963).
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and F is another arbitrary function. Making use of the initial condition (13) together with
(20) and (32), the fundamental solution of (21) becomes

n

{i ) A K,,(t)é,és} (34)

1 r,s=1

g(&, t)=exp{—i

k,

It can be easily verified that g(&, 1) is actually the solution of (21). Let us define

YOI I N O EE N (35)
and

¢k,(:)¢,,(t)f AN, rs=1n G6)

=1

A dDA2K, (=2 }
A
then equation (34) reduces to

e z)=exp{—i 3 em-3 3 A,,(r)t,:,} G)

r,s=1

Equation (37) is simply the Fourier transform of an n-dimensional distribution with
means and variances expressed respectively by (35) and (36) with the corresponding
probability density function [4].

nM’

1
PO, z,ft, 2)= ()"/——_zﬁll_/zexP[ 7

which is what we want to prove.

|1|.-,(za— mXz;— mj)] (38)

If the initial position of the system (7) or (8) is known exactly then the initial probability
density function P(0, z,) can be written as

P(O, z0)=8(zo—ag)= U, 8(zoi— ) (39)

and the probability density function P(¢, z) will be the same as equation (38) with means
and variances given by (35) and (36) with z;, in (35) replaced by ay,.

However, if only the initial distribution P(0, z,) is known, then the probability density
function P(¢, z) is given in the form of an integral

P(t9 Z)= P(Os ZO)P(O, ZO/t, Z)dZo (40)

[4] W. B. DAVENPORT, Jr. and W. L. RooT: Random Signals and Noise, p. 152. McGraw-Hill, New York
(1958).
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Knowing the probability density distribution P(z, z) the expected values as well as the
moments of the solution of the given system can be determined at every instant of time.
This is true even though the initial position of the system is not exactly known, but is only
given by its probability distribution. This, of course, determines the stability of the system
in a stochastic sense.

5. LINEAR TIME-VARYING SYSTEM WITH DISTURBANCES GENERATED BY
DIFFERENTIAL EQUATIONS EXCITED BY WHITE NOISE

In the previous section we assumed that random disturbances n(#) of the linear time-
varying system were caused by white noise. A white noise random process can be considered
only as a limiting case which will never occur in practice.

For the above reason the natural generalization is to assume that the random noise
vector n(t)=(ny(), . .., n,(t)) in the system (8) is governed by the following set of linear
differential equations

d%n i
ar

, d*"1n, dn, .
+ﬂ(t)'(ai—1)-<it‘—“T+' . .+ﬁ,1(t)—d-;+ﬁ,o(t)n,=wi i=1,...,n 41)

where w; is the i component of the white noise vector w(f)=[w,(?), . .., w,(t)].

For each i, equation (41) can be transformed into a set of first order linear differential
equations. Let
i=Y;
and
ni=vn+a.+...+a‘_1+ls i=1""’n (42)

then equation (41) can be written into the following form

Vg + ... +tag-g+1
dt T Vatat .. bagog+2

d"n+¢,+ e taiog 42

dr FVndas+ ... +¢,_;+3 43)
AVpygs ...
_ﬂH«= “Biai~ ) OVasayt .o va = o oo =Bk Vasarh .. ba 1 W
i=1,...,n

Adjoining equations (43) to the linear system (7)

d
2= Y Gzt T dadm()  i=1,...,n ™
dr = k=1
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one obtains a set of linear first order differential equations in the expanded state space of
dimension NAn+a,+ ... +u«, excited by white noise.

In terms of components of state vector (v, . . ., vy) in the expanded space we have

dv
Et—l=C11(t)V1+ coe FCLOVe+d (D 1 Hd (Vg e+ -
+d1n(t)vn+a;+... tan-gt1
dv,
—&=Cnl(t)vl+ L +Cnn(t)vn+dnl(t)vn+l+dn2(t)vn+u1+1+ ..
+dnu(t)vn+a1+ A L T ]
dvn+1=v
dt n+2
Bnra_ t t Foig(t
ar =Bitar- 1 DVnsay— - -« —=BroOVns 1+ Fpsq, (D)
dvn+ul+1 =y
_d—t'_"— nta;+2
dvn+al+az_ (t) t +F t)
—a —Barar- 1Y DVntasta,— - - - = B20o(DVnsas+1 wtas+as

dvn+¢1+ oo tan-g 1l
at =Vntai+ ... tan-1+2

AVata,+ ... +an
__'l_l_ld_t__¢= —ﬂu(a,.—l)(t)vn+a,+ R e

—BaoOVnsar+ ... tan- 41T Farays .. +all)  (46)
Writing equation (44) in matrix form we obtain

dv
T E(Hv+ F(t) (45)
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and F(¢) is a column matrix in which the non zero elements are given by
Fn+ Zaj(t)=w,-(t) i=1,....n 47
i=1

It is readily seen that the expanded system (45) is again a linear system excited by white
noise and is in essence the same as equation (8). Therefore, we can summarize the above
results into the following. '

Theorem 2. For the given system described by equations (8) and (41) with the white
noise vector w(t) satisfying conditions (9) and (10) the fundamental solution, P(0, zy/t, 2),
of the associated Fokker—Planck equation in the expanded state space of dimension N is
again given by the expression (11) satisfying conditions (13) through (17) with n, C(r), D(r)
and n(t) replaced, respectively, by N, E(?), I, and F(r).

The results developed in this paper can be applied to a wide class of control systems
such as for the determination of average changes in trajectory and the performance index
of optimal control systems due to random disturbances in plant parameters or noisy
observation of state variables [5].

6. EXAMPLE

Let us consider an optimal control system which can be considered as a single axis
model of a vehicle with a reaction wheel [6]. The control problem is to transfer the vehicle
from some fixed initial attitude to some fixed final attitude and the control voltage will be
chosen such that the energy delivered to the servomotor is minimum. The equation of
motion can be described by the following differential equations

—=X2

dr

d
a2 — X, +u(t) (48)
dr

with the initial conditions, x,(0)=x,, x,(0)=0
The control problem is to find u(t) such that it transfers the vehicle from the initial
state (x,q, 0) to the final state (0, 0) and at the same time it minimizes the functional

T
J =J u(u —x,)dr (49)
0
for a given transition time 7.

It can be shown that the energy (49) is minimized if the control function u#(t) assumes
the following form

2x, —(6/T)x,
[5] S. Y. CHAN: Analysis of variations in optimal control systems subject to deterministic and stochastic
disturbances. Ph.D. Thesis, The University of Michigan (1965).

[6] I. FLUGGE-Lotz and H. MARBACH: The optimal control of some attitude control systems for different
performance criteria, 12-1 (1962). Joint Automatic Control Conference, New York.

36 2X—x
u(x;. xz)=x2+—T—3xlo[——‘—L] (50)
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Substituting (50) into (48) gives

X=X
X;—X
x2=%§-xm[§f—_‘(—6/—;)—‘;;] 1)
If we let
x;(0)=20
x,(0)=0
x(T)=0
x,(T)=0
T=10
then equation (51) reduces to
X =x,

. xl - 10
=0.7 . 52
X3 2[ X;—6 :| (52)
The solution of (52) gives the optimal trajectory.

If there is random noise n, in the optimal control problem, the equations of motion
will be

Yi=Y2

(53)

}‘, _0 72[}’14"11—10]
,=0- —_——

y2—6

where j’s are the components of the actual trajectory of the system.
Let us assume that the initial values of the system (53) are given by

11(0)=18
¥2(0)=0,

then by combining equations (52) and (53) the equations of first variation along the optimal
trajectory due to the presence of noise n; become

z.1=22

. 1 xl - 10 1

22=0'72[‘x2——_—6(21+n1)—(xz———_—-6—)-2'22] (54)
with the initial conditions z,(0)=—2 and z,(0)=0, where z, =y, —x, and z,=y,—x,.
Equation (54) can be written in the following vector form,

2=C(t)z+ D(t)n, (55)
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where
0 1
C(n)=
0-72 —0.72 x,—10
xZ el 6 (x2 — 6)2
0 0
D(r)= (56)
0-72
x2 - 6 0
and

l>"1(t)
n(t)= |
L 0
The expected values of z, and z, as well as their variances of the system (55) are given by

m (N =E[z (D]=¢, ()z0), j=12 (57)
and

irs(t) = 2[

e

¢kr(l)¢zs(t)f;fz2(‘)'/’;k(t)'/’2l(t)dt] r,s=1,2

kT
To generate the elements of ¥, the computer set-up is shown in Fig. 1 with the functions
¥, shown in Fig. 2. The generation of the matrix ® is indicated in Fig. 3 with the results
shown in Fig. 4.

Using a noise generator with an average spectral density of 5-28 V?/cps. The theoretical
values of the means and variance of the system (54) are plotted, respectively, in Figs. 5 and 6.

In order to check the theoretical means as well as the variances of the system (54), the
random noise n, is applied to the system (54) as indicated in Fig. 3. The experiment is
repeated for 100 times with a time interval of 10 sec for each run. From the date obtained
by the Sanborn recorder the means and variances can be calculated according to the
following formulas.

min Y 2= j=12 (58)

1901z (1) — m,(D][2:(1) — my(D)]
< 100
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FiG. 2. Experimental determination of the elements of the matrix .

where the superscript i indicates the i run of the experiment. The results corresponding
to several time instants are also plotted in Figs. 5 and 6.

It is found from Figs. 5 and 6 that the experimental resuits are in close agreement with
theory. However, it should be pointed out that the method of confidence intervals cannot
be used to compare the experimental and theoretical curves. This is due to the fact that
the confidence intervals are exceedingly small and in fact that they are well within the limits
of experimental errors of the measuring instruments.

7. CONCLUSIONS AND REMARKS

In this paper, the fundamental solution of the Fokker-Planck partial differentiai
equation arisen from stochastic systems is obtained by means of the combination of the
method of Fourier transform and the method of characteristics. This combinational
method is distinct from the other methods [7, 8] used in solving stochastic optimal control
problems in that the solution obtained by this method does not use the fact that the response
of a linear system subject to Gaussian random input is also Gaussian. In view of this
fact our method may be considered as a new proof of the Gaussian Invariant property of
linear systems.

The concept of state for deterministic systems is well known. As a matter of fact, the
concept was originated in the time of development of classical mechanics. However, for
stochastic systems, the concept of state is still unsettled. Recently, STRATONOVICH [9] of the
U.S.S.R. introduced the probability density function as the state of a stochastic system.

[7]1 W. M. WonNHAM: Stochastic problems in optimal control, R.ILA.S., Report 63-14. May (1963).
[8] J. J. FLoreNTINE: Optimal Control of Continuous Time, Markov, Stochastic Systems.
[9]1 R. L. STRATONOVICH: Conditional Markov processes, Theory Probab. Applic. 5, No. 2 (1960)
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This idea of using probability density function as the state of a stochastic system was
mentioned by BELLMAN {10]. The improved version of STRATONOVICH’s work on the
concept of state was presented by KusHNER [10, 11] and WoNHAM [12]. The key concept
of state is the separability of the past from the future, consequently the concept of the state
for a stochastic system is equivalent to the method of finding the minimum set of variables
such that by using this set of variables the system can be described as a Markov process.
In this paper, we have shown that for a linear system subject to a stochastic input described
by a set of linear differential equations excited by white noise, the state of the system may
be defined as the original deterministic state of the system adjoined by the deterministic
state of the set of differential equations describing the stochastic input to the system. The
above concept of augmented state has been discussed by several authors; however, a
specific definition of state to a particular stochastic system such as ours, as far as we know,
has not been given.

{10} R. BELLMAN: Adaptive Control Processes, Princeton University Press (1961).
[11] R. KusHNER: On the dynamical equations of conditional probability density functions, with applica-
tions to optimal stochastic control theory, J. math. Analysis Applic. 8, 332 (1964).

[12] W. M. WonHAM: Some applications of stochastic differential equations to optimal nonlinear filtering,
R.LLA.S., Report (1964).
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In current control literature modeling theorems for stochastic systems often have been
proved only mathematically, experimental verifications of the theorems are usually bypassed.
However, it is well known unless the topics under theortical study are purely theoretical in
nature such as controllability and observability, the success of a modeling theorem must
be conformed with the experimental data. Simply for this reason, our analytical results
were checked with our simulated experimental data, even though the experiment may be
crude in nature.

Résumé—Le présent article se rapporte a ’analyse stochastique de systémes décrits par des
équations différentielles linéaires avec des perturbations aléatoires, qui interviennent souvent
dans I’étude du comportement variationnel d’un systéme de commande optimale le long de sa
trajectoire nominale, en raison de perturbations aléatoires dans les paramétres de P'installation
ou d’erreurs de mesure dans les variables d’état.

Le vecteur aléatoire peut &tre un vecteur de bruit blanc ou peut étre engendré par des
équations différentielles excitées par un bruit blanc. Le résultat général, obtenu au moyen de
I’équation de Fokker-Planck, ne revéle pas seulement la proprieté de stabilité du systéme
mais permet également de déterminer stochastiquement I’état du systéme a chaque instant.
Une vérification experimentale est constituée par la simulation d’un systéme du second ordre
sur un calculateur analogique et le résultat trouvé est conforme a la théorie.

Zusammenfassung—Die Arbeit befasst sich mit einer stochastischen Analyse von Systemen,
die durch lineare Differentialgleichungen beschrieben werden und stochastischen Stérungen
unterworfen sind. Eine solche Problemstellung tritt bei der Untersuchung des Verhaltens eines
zeitoptimalen Regelungssystems entlag seiner Nennphasenbahn bei Anwesenheit von
zufilligen Schwankungen der Regelstreckenparameter und von Fehlern bei der Messung der
Zustandsvariablen auf. )

Der zufillige Vektor kann ein Vektor von weissem Rauschen sein oder durch eine mit
weissem Rauschen gestorte Differentialgleichung erzeugt werden. Unter Benutzung der
Fokker-Planck-Gleichung zeigt das allgemeine Ergebnis nicht nur die Stabilitdtseigen-
schaften des Systems, sondern gestattet auch, fiir jeden Zeitpunkt die Bestimmung des
Zustandes des Systems in stochastischem Sinne. Die experimentelle Nachpriifung durch Simu-
lation eines Systems zweiter Ordnung auf einem Analogrechner zeigt ein mit der Theorie
iibereinstimmendes Ergebnis.

Ab6crpakT—HacTosA1as cTaThst OTHOCHTCA K BEPOATHOCTHOMY aHAJIH3Y CHCTEM OITHChIBaeMBIX
NHHEHHBIME OR(depeHIHATEHBIME YPABHCHESIME C CTy4adHBIMA MOMEXaMH, KOTOPBIE 4acTO
BCTPEYAIOTCA NPH H3YYEHHH BAPHAIHOHHOTO NOBEOHHSA CHCTEMBbI OITHMAJIBHOTO YIIPaBJIICHHA
BIOJIb €6 HOMHEHANBHOMN TPACKTOPHH, U3 32 ClIy4aiHBIX NOMEX B mapaMeTpax 00 ’exTa WiH-xke
M3 33 H3MEPHTEhHBIX NOrPEIIHOCTEH B KOOPAHHATAX COCTOAHMA.

CnyualiHbiit BeKTOp MOXeT GbiTh BEKTOPOM 6enoro myma HIH-Xe MOXET ObiTh CO32aH
nudepepeHIIHanbHbBIMH YPaBHEHHAMHA BO30yxOeHHRIMH GenbiM wymoM. OOMit pe3ynbTar,
NONYYeHHBIH nyTeM ypaBueHnsa ®oxxepa-IInanka, TONMEKO OOGHApyX#BaeT CBOMCTBO
YCTOMYABOCTH CHCTEMBI HO M ITO3BOJIACT TakxXe ONPCACIHTb BEPOATHOCTHOC COCTORHHC
CHCTEMBI B KaXAbl MOMEHT BpPEMEHH. JKCHEPDHMCHTAJIbHAS IIPOBEpKa COCTOMT B
MOZCIIHPOBAaHKM CHCTEMBI BTOPOIO NOpsAXa HA AHANOrOBO# BHYACIMTENLHON MaminmHe M
HalaeHHBIA pe3ysibTaT COOTBETCTBYET TCODHH.



