
Automatlca, Vol. 4, pp. 31-48. Pergamon Press, 1966. Printed in Great Britain. 

A STUDY OF LINEAR TIME-VARYING SYSTEMS 
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Summary--This paper is concerned with the analysis, in a stochastic sense, of systems des- 
cribed by linear differential equations with random disturbances, which often arise in the 
study of the variational behavior of an optimal control system along its nominal trajectory 
due to random disturbances in plant parameters or measuring errors in state variables. 

The random vector may be a white noise vector or may be generated by ditferenfial 
equations excited by white noise. By means of the Fokker-Planck equation the general 
result not only reveals the stability property of the system but also enables one to determine 
the state of the system at every instant of time in a stochastic sense. E,xperimcntal verification 
is given by simulating a second order system on an analog computer and the result is found to be 
in agreement with theory. 

1. I N T R O D U C T I O N  

Tnls PAPER describes a method of analyzing the behavior of  time-varying systems under the 
influence of stochastic disturbances. By means of the known property of  state transition 
matrix a close-form solution for the probability density function for the given system can be 
obtained. 

During the past 15 years there has been much interest in analyzing the behavior of  
automatic control systems under the influence of random disturbances. I f  the system is 
linear and the output- input  relationship is governed by a linear differential equation with 
constant coefficients, then the well-known techniques using transfer function, correlation 
function, etc., are adequate to analyze the behavior of  the system. In the case that the 
behavior of  a system is described by a set of  linear differential equations with constant 
coefficients under the influence of random disturbances, with practically white spectra the 
method of Fokker-Planck equation was used by WANe and Um21~ECK [l]. 

The present paper is primarily concerned with the analysis of  linear time-varying 
systems excited by white noise and to a greater extent, of  linear time-varying systems under 
the influence of stochastic processes which are non-white as well as non-stationary. How- 
ever, the assumption on these processes is that they are generated by a set of  linear 
differential equations excited by white noise; this being frequently the most  realistic way 
of viewing the operation of physical systems. A white noise random process can be con- 
sidered only as a limiting case which will never occur in practice. The most  common 
examples of  stationary process with rational power spectral density, especially in noise 
applications to electric circuits, are those which can be considered as the spectral density 
of  the output from a time invariant lumped-parameter linear circuit excited by white noise. 

* The work reported in this paper was supported by National Science Foundation/Grant GP-1381. 

[l] M. C. WANG and G. E. UHLEI~mECK: On the theory of Brownian motion II, Rev. Mod. Phys. 17, 
Nos. 2 and 3, April-July (1945). 
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2. PROBABILISTIC CHARACTERIZATION OF A MARKOV PROCESS 

Let P(t, x/z, y)dy be the conditional probability that at time z the random vector 
~(z)=(~l(z ) . . . . .  ~,(z))e[y, y + d y ]  under the condition that at t, ~(t)=x. Then a Markov 
process can be defined by stating that for such a process the conditional probability 
P(t, x/z, y)dy that the random vector ~(z)=(~l(z ) . . . . .  ~0(z)) assumes the values in 
[y,, yi+dyi](i= l . . . . .  n) at time z depends besides on Yi and z only on the vector ~ at the 
previous time t. Any additional information concerning the states of the system at instants 
of time earlier than t for the process has no effect on the function P(t, x/z, y). In other 
words, a Markov process is completely described by the conditional probability density 
frunction P(t, x/z, y). It can be shown that such a process will always satisfy the generalized 
Markov equation, i.e. for the instants of time t, s, z such that t < s < z  

P(t, x/z, y) = f P(t, x/s, z) P(s, z/r, y) dz (1) 

It is assumed in what follows that any integration is to be carried out over the entire 
n-dimensional state space R. unless the limits of integration are specified otherwise. 

3. THE FOKKER-PLANCK EQUATION 

In order to use the Fokker-Planck equation for the analysis of physical systems under 
stochastic disturbances we need the following assumptions: 
(a) Condition of strong continuity, i.e. 

lira P( t -A t ,  x/t, y ) d y = 0  (2) 
At-~,0 A't y -x l > j  

for every positive number 6. The quantity [ y - x  t can be considered as the Euclidean length 

in Rn. 
(b) for any 6 > 0, the limits 

1 fb,_xl<,(y i lim -- xz)P(t-  At, x/t, y)dy = at(t, x) i = 1, . n (3) 
Ate0 " ~  " " 

'f, lira (Yi - x~)(yj- xs)P( - At, x/t, y)dy = b~j(t, x) i, j = 1 . . . . .  n (4) 
At-*O A-t y--x[<~ 

exist and the convergence of (3) and (4) is uniform in x. 
(c) the partial derivatives 

tgP(t, ozx/z, y), [ai(z, y)P(t, x/z, y ) ] ~ [ b , j ( z ,  y)P(t, x/z, y)] (5) 

exist and are continuous for all t, x, z>t  and y. 
Under the assumptions (l) through (5) it can be readily shown the conditional 

probability density function satisfies the Fokker-Planck equation 

t~P(t, ~zx/z' y ) =  _ i= ~I ~--~f a,(z, y)f(t ,  x/z, y)] 

1 n (~2 
+ 2 ,. 7---~'1 vYtvYi:'--:--~ I-b,j(z, y)P(t, x/z, y)] (6) 
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4. LINEAR TIME-VARYING SYSTEM EXCITED BY WHITE NOISE 

Let us consider a linear time-varying system of the form 

dz-"A= ~ C~k(t)Zk + ~d~(t)nk(t), Z~(0)fZ0t, i= l . . . . .  n (7) 
dt k=l 

Equations (7) can be put into vector form 

dz 
"d7 = C(t)z + D(t)n(t) z(O)-= z o (8) 

The elements Cl~(t) and Clk(t) are continuous functions of t >0  and n~(t) are the com- 
ponents of a random noise vector n(t)=(nl(t ) . . . .  , n.(t), satisfying the following con- 
ditions: 
(a) Each component hi(i= 1 . . . . .  n) is a Gaussian white noise with zero mean and a 
constant spectral density of 4Dl, or 

E[nl(t)] ---0 
and 

E[ni(tl)ni(t2)] =2Dl~(tl - t2), (9) 

where ~(t I - t z )  is the Dirac singular function. 
(b) The components n~(t) and nj(t), i# j ,  are uncorrelated so that 

E[ni(tl)nj(t2)] = 0 ,  i, j =  1 . . . .  , n (10) 

With the above assumptions, the Fokker-Planck equation (6) associated with the 
system (7) reduces to the following form: 

at , oz~ ~ oz•zj i, k =  l, j f f i  

where 

j~j(t)= ~.~ Dkd~k(t)djt(t ) (12) 
k~=l 

At t =0, the initial condition on P is given by 

Pl,=o = ,ffi, f l  ~(z , - z~)  (13) 

and P--*0 as zi--, + m. The solution of (11) which satisfies'the above initial and boundary 
conditions is called the fundamental solution of the Fokker-Planck equation associated 
with system (7). 

The fundamental solution, that is, the conditional probability of the system (7), is 
provided by the following theorem: 

Theorem 1. For the given system (7) satisfying conditions (9) and (10), the fun- 
damental solution, P, of the associated Fokker-Planck equation (11) is given by 

1 [ 1 ~,~1=1 ]2]o(zt_mlXzl_ml)] (14) P(O, zolt, z)=(2=). / , i ;  q1/2 exp - 

where ];qti is the cofactor of the elements 2 o in the determinant 121 of the covariance 
matrix 
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11 A 1 2  • " " A l n  

2= 22t 222 ' " " 

l 2 n 2  . . . 2 

( 1 5 )  

in which the elements 2ij and m~ are given, respectively, by 

2,Xt ) = 2 c~k,(t)dp,~(t Xt)O,k(t)~,~t)dt. (16) 
i , j = l  

k ,  1 

m~(t)= ~ ~bkj(t)zok. (17) 
k = l  

~p~j(t) and ~j(t) are the elements of the matrices q) and u/satisfying the following equations 

~ '  = C(t)~', q)'(0) =1 (18) 

= - C'(t)~P, ~P(0) = I  (19) 

where ~ '  and C'(t) are the transposes of the matrices ~ and C(t) respectively and I is the 
identity matrix. 

Proof. To find the fundamental solution of (11) with the initial condition (13) we shall 
generalize the method of WANG and UHLENBECK [1] which was first used in the theory of 
Brownian motion with Brownian particles governed by a set of linear differential equations 
with constant coefficients in which the characteristic roots were assumed to be real and 
distinct. Let us define the Fourier transform of the conditional probability density function 
P by 

9(~, t ) : fdzPexp[ - - i k~ l ' kZk l : f~"  ." . f d z , . . .  d z .Pexp[ - i k~  ' ~kZk] (20) 

where ~ =(~1, • • •, ~.)- 
Taking the Fourier transform of both sides of (11) and integrating by parts with 

respect to z~ and zj we find 

~g(¢, t) ~ C "t"00(~'  t) - , ,] . )~,--~ g(¢, t) Z, fo(t)¢,¢J (21) 
at i , j = l  u % j  i , j = l  

Equation (21) is a linear first order partial differential equation and its solution can be 
obtained by the method of characteristics [2]. The auxiliary system of equations is of the 
following form: 

dt - d~k - do 
- -  = - k = 1 . . . . .  n ( 2 2 )  

1 c,,(t)¢, o Z 
i =  1 i,  j =  1 

Writing equation (22) in matrix form, we have, 

= - c ' ( t ) ~ ,  

0 = - 9  ~ fj(t)~,~ (23) 
i , j = l  

[2] L. E. ELC, OLTS: Differential Equations, p. 298. Gordon and Breach, Delhi (1961), 
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It can be seen that the first equation of (23) is the adjoint equation of the original system (8). 
Let ~(t) be the state transition matrix of the first equation of  (23), i.e. g,(t) is the 

solution of 

~(t) = - C'(t)~b(t), ~b(O) = 1. (24) 

Then the solution of the first equation of (23) is given by 

~(t) = ~k(t)C0 (25) 

or in terms of components 

~t(t)= ~ q%(t)~oj, i=1 . . . . .  n (26) 
j = l  

where qJ~j if the ij th element of the matrix ~, and C0j is t h e j  th component of an arbitrary 
initial vector G0- By the property of nonsingularity of state transition matrix [3] we find 
from (25) 

Co = ~'- a ( t )~( t ) = ~(t)~(t) (27) 
or 

n 
~oi = Z q~,tt)~tt), i--1 . . . . .  n (28) 

j = l  

where 4hi(t) is the ij th element of ~(t), which is the transpose of the state transition matrix 
of the system (8). 

The solution of the second equation of (23) can be found as 

g = o 0 e x p { -  ~ : ' } (29, i ,  j = 1 0 A~(t)~t)~j(t)dt 

Using relations (26) and (28), equation (29) reduces to 

9=goexp{  - 
i , j . k = l  

l ,  r ,  8 

qbk,( t )qb,.( t )¢,~,~ i f o( t)¢ ,,( t )~ j~ t)dt } (30) 

The general solution of (21) is of the form 

r'(Col . . . . .  Co., 0o )=0  (31) 

where F is an arbitrary function. Making use of (28), (30) and (31) the solution of (21) 
reduces to 

where 

O(~, t ) =  , ( t ) ~ j .  . . , O . , ( t ) ~ j ,  t exp -- K . ( t ) ~ , q ,  , 
j = l  r ,  s =  l 

" )flf~tt)~u,(t)Ojt(t)dt K,(t)A.~. 4~,(t)dA,(t 

[3] L. A. ZAD~H and C. A. Dr.SOER: Linear System Theory, p. 344. MeOraw-I-Iill, New York (1963). 

(32) 

(33) 
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and F is another arbitrary function. Making use of the initial condition (13) together with 
(20) and (32), the fundamental solution of (21) becomes 

O(~,t)=exp{-i ~ ¢pkj(t)~jZok-- ~ } (34) 
h, I= a , , ~ =  1 K , ~ ( t ) ~ , ~  

It can be easily verified that g(~, t) is actually the solution of (21). Let us define 

and 

mj(t) A ~ dpk~(t)zok j = 1 . . . . .  n (35) 
k = l  

~, )f l fo( t)g/~(t)~/ j~(t)dt, 2,~(t)~2K,,(t) = 2 cks,,(t)c~l,(t 
| , k  1 k , l  ~ 

r, s = 1 . . . . .  n (36) 

then equation (34) reduces to 

g(~'t)=exp{-i~¢lmj(t)-~j=l ,,,=1 ~ 2,~(t)¢,~,} (37) 

Equation (37) is simply the Fourier transform of an n-dimensional distribution with 
means and variances expressed respectively by (35) and (36) with the corresponding 
probability density function [4]. 

1 F 1 ~ m(Xzj- rnj)] e(o, Zo/t, z)= 2 exp/- , (38) 

which is what we want to prove. 

If the initial position of the system (7) or (8) is known exactly then the initial probability 
density function P(0, z0) can be written as 

P(0, z0) = 6(z 0 -  ao) = f i  6(z0~- ao~), (39) 
i ~ l  

and the probability density function P(t, z) will be the same as equation (38) with means 
and variances given by (35) and (36) with z0k in (35) replaced by a0k. 

However, if only the initial distribution P(0, Zo) is known, then the probability density 
function P(t, z) is given in the form of an integral 

P(t, z)= fP(0, zo)P(O, zolt, z)dz o (40) 

[4] W. B. DAWNPORT, Jr. and W. L. RooT: Random Signals andNoise, p. 152. McGraw-Hill, New York 
(1958). 
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Knowing the probability density distribution P(t, z) the expected values as well as the 
moments of the solution of the given system can be determined at every instant of  time. 
This is true even though the initial position of the system is not exactly known, but is only 
given by its probability distribution. This, of course, determines the stability of the system 
in a stochastic sense. 

5. LINEAR TIME-VARYING SYSTEM WITH DISTURBANCES GENERATED BY 
DIFFERENTIAL EQUATIONS EXCITED BY WHITE NOISE 

In the previous section we assumed that random disturbances n(t) of the linear time- 
varying system were caused by white noise. A white noise random process can be considered 
only as a limiting case which will never occur in practice. 

For  the above reason the natural generalization is to assume that the random noise 
vector n(t)=(nl(t) . . . . .  n,(t)) in the system (8) is governed by the following set of  linear 
differential equations 

d°'~/ + fl(t)~(al d"-lnz dn~ 
• .- 1 ~ + . . .  + fl, t(t)"~"l" fl,o(t)n, ffi w, i=  1 . . . . .  n (41) 

where w~ is the i tb component of  the white noise vector w(t)f[wl(t) . . . . .  wn(t)]. 

For  each i, equation (41) can be transformed into a set of first order linear differential 
equations. Let 

and 
zj=vj  j - -1  . . . . .  n 

n l ~ - - D n + a t +  . . .  + a l - l ÷  1 ~ i f f i l , . . . ,  n (42) 

then equation (41) can be written into the following form 

dVn÷eq+... +al°l+l 
dE = vn+,j+ ... +,,-1+2 

dv'+ffil+ "'" +~'-I+Z= v,+~,+ +~,-i+3 (43) 
dt "'" 

dvn+aj + . . .  +~ 
d t  = - f l , ~ , _  l ) ( t ) v , + ~ +  . . .  +at - . .  • - f l ~ t ) v , + ~ l +  . . .  + ~ i _ , + 1  + w ~  

i - - - - 1 , . . . ,  n 

Adjoining equations (43) to the linear system (7) 

d__z,__¢; 
dt ~=1 Cik(t)Zk + ~ da( t )n t ( t )  i = 1 . . . . .  n (7) 

k m l  
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one obtains a set of  linear first order differential equations in the expanded state space of 
dimension N A n  + ~ 1  + . . .  + ct, excited by white noise. 

In terms of components of  state vector (va . . . . .  vN) in the expanded space we have 

d~t = Ca a(t)va + • • • + C a . ( t ) v .  + da a(t)v.  + t + da 2 ( t ) V n + a l  + 1 Jr-  • " " 

+ d l . ( t ) v . + . ,  + . . .  + . . . .  + 1 

dr_._._. = C.z ( t )v  l + . . . + C . . ( t ) v .  + d . t ( t ) v .  + 1 + d . 2 ( t ) v .  + ~, +1 + • • • 
d t  

+ d . . ( t ) v . + . ,  + . . .  +~._~ + 1 

dv.+ I 
d t  =Vn+2 

dye+,  
dt = ~ 1 ( ~ 1 - 1 ) ( t ) v n + a t t -  "" " - - f l tO( l ' )Vn+ 1 + F . + ~ ( t )  

dvn+, l+  1 
d t  "~- Vn+aq + 2 

dv.+. ,+. ,  
d t  - ~ 2 ( " - l ) ( t ) v " + " + ' ~ - ' " - ~ 2 ° ( O v " + " + 1 + F " + " + " ( t )  

d v n + , z + . . .  + a t n - l + l  

d t  = v , + , , +  . . .  + a t n - l + 2  

d r , + , , +  . . .  + , .  
d t  = - ~ " ( ' " - l ) ( t ) v " + ~ ' +  . . . . .  - ""  " 

- - f l n o ( t ) v . + ~ t + . . ,  +~._~+ i +F.+~,+ ... +~.(t) (46) 

Writing equation (44) in matrix form we obtain 

d v  
- -  = E ( t ) v  + F ( t )  
d t  

(45) 
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and F(t) is a column matrix in which the non zero elements are given by 

i 

f n  + ~, O~i(t ) = wi(t ) i = 1 . . . . .  n 
j = l  

(47) 

It is readily seen that the expanded system (45) is again a linear system excited by white 
noise and is in essence the same as equation (8). Therefore, we can summarize the above 
results into the following. 

Theorem 2. For the given system described by equations (8) and (41) with the white 
noise vector w(t) satisfying conditions (9) and (10) the fundamental solution, P(0, Zo/t, z), 
of the associated Fokker-Planck equation in the expanded state space of dimension N is 
again given by the expression (11) satisfying conditions (13) through (17) with n, C(t), D(t) 
and n(t) replaced, respectively, by N, E(t), L and F(t). 

The results developed in this paper can be applied to a wide class of control systems 
such as for the determination of average changes in trajectory and the performance index 
of optimal control systems due to random disturbances in plant parameters or noisy 
observation of state variables [5]. 

6. EXAMPLE 

Let us consider an optimal control system which can be considered as a single axis 
model of a vehicle with a reaction wheel [6]. The control problem is to transfer the vehicle 
from some fixed initial attitude to some fixed final attitude and the control voltage will be 
chosen such that the energy delivered to the servomotor is minimum. The equation of 
motion can be described by the following differential equations 

d x  I 
- x  2 

dr 

d x  2 
- -  = - x 2  + u ( z )  ( 4 8 )  
dr 

with the initial conditions, xl(0 ) =Xao, x2(0)=0 
The control problem is to find u(r) such that it transfers the vehicle from the initial 

state (Xlo, 0) to the final state (0, 0) and at the same time it minimizes the functional 

y T 

J = u ( u  - -  x2)d ' t"  (49) 
0 

for a given transition time T. 
It can be shown that the energy (49) is minimized if the control function u(r) assumes 

the following form 

36 r 2 x , - x a o  ] 
u(x, ,  x 2) =x2 +~-3x10 [2x2 - ( 6 [ T ) x l o ]  (50) 

[5] S. Y. C"nAN : Analysis of variations in optimal control systems subject to deterministic and stochastic 
disturbances. Ph.D. Thesis, The University of Michigan (1965). 

[6] I. FLOOOE-LOTz and H. MAaBAC8 : The optimal control of some attitude control systems for different 
performance criteria, 12-1 (1962). Joint Automatic Control Conference, New York. 
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Substituting (50) into (48) gives 

J:l =X2 

36 [- 2xl-Xlo 1 ~2=~x,oLmx;_(~,o ] 
If we let 

then equation (51) reduces to 

xt(0) =20 

x2(0) =0 

xl(T) =0 

x2(T ) = 0  

T=I0  

41 

(51) 

XI =X2 

The solution of (52) gives the optimal trajectory. 
If there is random noise n~ in the optimal control problem, the equations of motion 

will be 

~'1 ~Y2 

)2 =0"72[ yl + n l -  101 (53) 

where y's are the components of the actual trajectory of the system. 
Let us assume that the initial values of the system (53) are given by 

y1(0)=18 

Y2(0) = 0 ,  

then by combining equations (52) and (53) the equations of first variation along the optimal 
trajectory due to the presence of noise nl become 

ZI =22  

X 1 -- 10 l 
z2=0"72[x-~_ 6 (z ,+n , )  ( ~ z z j  (54) 

with the initial conditions Z l (0 )= -2  and z2(O)=O, where z~ = y ~ - x ~  and z2=y2-x  2. 
Equation (54) can be written in the following vector form, 

= C(T)z + D(T)n, (55) 
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where 

C(r) = 

S. Y. CHAN and H. CHUANG 

0 1 

0.72 -0 .72  xl - 10 
x2 - 6 (X  2 - 6) 2 

D(T) = 

0 0 

0.72 

x 2 - 6  

(56) 

and 

n(T)= I n~(t)- 
I 

1_ 0 - 

The expected values of zl and z 2 as well as their variances of the system (55) are given by 

and 
mj(t) =E[zi(t)] =~plj(t)zj(O), j =  1, 2 

2,~(t)=2 Ckr(t)4h~(t f2z(t k(t)~b21(t)dt r, s= 1, 2 
k. I 0 

(57) 

To generate the elements of ~O, the computer set-up is shown in Fig. 1 with the functions 
~b~k shown in Fig. 2. The generation of the matrix ~ is indicated in Fig. 3 with the results 
shown in Fig. 4. 

Using a noise generator with an average spectral density o f  5.28 V2/cps. The theoretical 
values of the means and variance of the system (54) are plotted, respectively, in Figs. 5 and 6. 

In order to check the theoretical means as well as the variances of the system (54), the 
random noise n~ is applied to the system (54) as indicated in Fig. 3. The experiment is 
repeated for 100 times with a time interval of 10 sec for each run. From the date obtained 
by the Sanborn recorder the means and variances can be calculated according to the 
following formulas. 

i~ I00 j = I, 2 (58) 

1 oo [zj ' ( t )-  mj(t)] [z t ' ( t ) -  mk(t)] 
~.jk(t)---- ~ 100 i = l  
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FIG. 2. Experimental determination of the elements of the matrix ¥. 

where the superscript i indicates the ith run of the experiment. The results corresponding 
to several time instants are also plotted in Figs. 5 and 6. 

It  is found from Figs. 5 and 6 that the experimental results are in close agreement with 
theory. However, it should be pointed out that the method of confidence intervals cannot 
be used to compare the experimental and theoretical curves. This is due to the fact that 
the confidence intervals are exceedingly small and in fact that they are well within the limits 
of  experimental errors of the measuring instruments. 

7. CONCLUSIONS AND REMARKS 

In this paper, the fundamental solution of the Fokker-Planck partial differential 
equation arisen from stochastic systems is obtained by means of the combination of the 
method of  Fourier transform and the method of characteristics. This combinational 
method is distinct from the other methods [7, 8] used in solving stochastic optimal control 
problems in that the solution obtained by this method does not use the fact that the response 
of a linear system subject to Gaussian random input is also Gaussian. In view of this 
fact our method may be considered as a new proof  of  the Gaussian Invariant property of 
linear systems. 

The concept of  state for deterministic systems is well known. As a matter of fact, the 
concept was originated in the time of development of  classical mechanics. However, for 
stochastic systems, the concept of  state is still unsettled. Recently, STRATONOVlCH [9] of  the 
U.S.S.R. introduced the probability density function as the state of a stochastic system. 

[7] W. M. WONHAM: Stochastic problems in optimal control, R.I.A.S., Report 63-14. May 0963). 
[8] J. J. FLOmENTINE: Optimal Control of Continuous Time, Markov, Stochastic Systems. 
[9] R. L. STRATONOVICH: Conditional Markov processes, Theory Probab. Applic. 5, No. 2 (1960) 
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FIG. 4, Experimental determination of the matrix (b. 
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F~o. 5. The means of the system (54) as a function of dimensionless time T. 
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The variance of the system (54) as a function of dimensionless time r. 

This idea of using probability density function as the state of  a stochastic system was 
mentioned by BELLMAN [10]. The improved version of  STgATONOVICn'S work on the 
concept of  state was presented by KUSHNER [10, 11] and WOSHAM [12]. The key concept 
of  state is the separability of  the past f rom the future, consequently the concept of  the state 
for a stochastic system is equivalent to the method of  finding the minimum set of  variables 
such that by using this set o f  variables the system can be de'scribed as a Markov process. 
In this paper, we have shown that for a linear system subject to a stochastic input described 
by a set of  linear differential equations excited by white noise, the state of  the system may 
be defined as the original deterministic state of  the system adjoined by the deterministic 
state of  the set of  differential equations describing the stochastic input to the system. The 
above concept of  augmented state has been discussed by several authors; however, a 
specific definition of  state to a particular stochastic system such as ours, as far as we know, 
has not been given. 

[10] R. B~LLM^N: Adaptive Control Processes, Princeton University Press (1961). 
[! 1] R. KUSHNER: On the dynamical equations of conditional probability density functions, with applica- 

tions to optimal stochastic control theory, J. math. Analysi~ Applic. 8, 332 (1964). 
[12] W. M. WONt-LAM: Some applications of stochastic differential equations to optimal nonlinear filtering, 

R.I.A.S., Report (1964). 
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In  current  control  literature modeling theorems for stochastic systems often have been 

proved only mathematically,  experimental  verifications of the theorems are usually bypassed. 
However, it is well known unless the topics under  theortical study are purely theoretical in 
nature  such as controllabil i ty and observability, the success of a modeling theorem must  

be conformed with the experimental  data. Simply for this reason, our  analytical results 
were checked with our  simulated experimental  data, even though the experiment may be 
crude in nature.  

Rt~nnn~---Le present article se rapporte/~ l'analyse stochastique de syst~mes d6crits par des 
b..quations diff~rentielles lin~,aires avec des perturbations al6atoires, qui interviennent souvent 
dans l'~tude du comportement variationnel d'un syst6me de commande optimale le long de sa 
trajectoire nominale, en raison de perturbations ah~.atoires dans les param~tres de l'installation 
ou d'erreurs de mesure dans les variables d'~tat. 

Le vecteur al~.atoire peut ~tre un vectvur de bruit blanc ou peut ~trv engendr~ par des 
~quations diff~rentielles exeit~'es par un bruit blanc. Le r~sultat g~n~ral, obtenu au moyen de 
I'~quation de Fokker-Planck, ne rev/:ie pas seulvment la propriet~ de stabilit~ du syst~me 
mais permet ~galement de d~terminer stochastiquement l'~tat du syst/:me/~ chaque instant. 
Une v~rification experimentale est constitu~ par la simulation d'un syst~me du second ordre 
sur un calculateur analogique et le r~sultat trouv~ est conforme/t la th~orie. 

Zusammmfassung--Div Arbeit befasst sich mit einer stochastischen Analyse yon Systemen, 
die dutch line.are Differentialgleichungen beschriebcn werden und stochastischen St0rungen 
unterworfen sind. Eine solche Problemstellung tritt bei der Untersuchung des Vvrhaltens vines 
zeitoptimalen Reg¢lungssystems entlag seiner Nennphasenbahn bei Anwesenheit yon 
zufSJligen Schwankungen der Regelstreckenparameter und yon Fehlern bei der Messung der 
Zustandsvariablen auf. 

Der zuflUlige Vektor kann ein Vektor yon weissvm Rauschen sein oder durch vine mit 
weissem Rauschen gest0rte Differentialgleichung erzeugt werden. Unter Benutzung der 
Fokker-Planck-Gleichung zvigt das allgemeine Ergebnis nicht nur die Stabilititseigen- 
schaften des Systems, sondern gestattet auch, fiir jeden Zeitpunkt die Bestimmung des 
Zustandes des Systems in stochastischem Sinne. Die experimentelle Nachpriifung durch Simu- 
lation vines Systems zweiter Ordnung auf einem Analogrechner zvigt vin mit der Theorie 
iibereinstimmendes Ergebnis. 

AOCTpmcr--HacTosLuaa CTaTbS OTHOCHTCH K BepOYlTHOCTHOMy aHaJIH3y CHCTeM OnHCblBaelvuMx 
.rlHHe~/allvlH ~ IH~pepeHI~HaYi~H ypaBHeHHm~/H C C$1yqalihtldMH HOMeXaMH, XOTOp~e qaCTO 
BcTpexlalOTCH npH H3yxieHHH BapHal/HOHHOFO HOBCHJ~[IU! CHC'reMI~I ownlMaJ~HOrO ynpasnem~s 
B~OJII~ ee HOMHHaJI]~HOg~ TpaegropHH, H3 3a c n y ~  noMvx B napaMerpax o6'eKTa HnH-)Ke 
H3 3a H3MepHTebHIdX norpemsocrett B KoopmmaTax COCrOmUm. 

CJlyqaRltld~ BegTop MOXeT 6blTl, ]legTOpOM ~.21oro lllyMa ELKI/-Xe MOXeT 6blTb CO3J]LaH 
~g0pepepeHi/Ha.~Hbi~ y p a B H e ~  B o 3 6 y ' J ~ e ~  ~ myMOM. 06~ pe3yJl]bTar, 
no~y~emu~ nyTeM ypanHeH~q ~oxxepa-Hnasga, TOm, gO o6Hapy2mnneT CSOI~CTBO 
yCTOA,mm~rH CHCTeM~ HO H nO3BOJl~eT ~ OIIpC~JIKTb I~powrHOCTHOe COCTOJlHEIC 
CHCT~M/al B Ka.T~L/~ MOMenT BDeMCHH. ~cnepm~vwra~Has npoBepga cocroaT B 
MoneampoBaH~t CHCTe~ nToporo nopa~ga Ha aHanoroaoi~ s~mc~mTem, HOi~ ManmHe H 
Hai~IeHH~il pe3yJu, TaT COOTBeTCTByeT TCOpHH. 


