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ABSTRACT

A prototype local monotonicity-based strategy codified in
the program ACCME (Automated Constraint Criticality by
Monotonicity Evaluations) was tested on a subset of the problem
bank compiled by Hock and Schittkowski for nonlinear programming.
Under similar conditions, two otner codes were tested:
generalized reduced gradient (GRG2 by Lasdon et al) and
sequential quadratic programming (VMCON by Argonne National
Laboratory). The results of this study are presented with some
discussion. Although ACCME is only a demonstration code lacking

numerical refinements, its performance was judged fairly

competitive to the other two.



INTRODUCTION
The present work addresses the manner of solving numerically
the .general nonlinear programming (NLP) problem

minimize f(x)
subject to gj(g) = 0, 3 =1, .. ., m (1)
g4(x) <0, 3 =(m+1), . . ., p

where f and gJ are scalar obJecéive and constraint functions of
the n-vector x. This formulation arises in design optimization
models where typically the number of inequality constraints is
large, Moreover, many inequalitv constraints are often active
(critical) at the optimum. This motivates development of
strategies for iaentifying active constraints and thus solving
the problem with reduced number of degrees of freedom. These
active set strategies are sometimes consiaered partiéularly
attractive for design optimization problems, because for example
they may offer better insight for the optimal design or may
handle better large numbers of inactive and/or redundant
constraints [1].

The method of monotonicity analysis was introduced for .
identifying active constraints in a global sense, a priori (see
e.g. [2] énd references therein). The strength but also the
difficulty in this method is the analytical, often complicated,
algebraic manipulations, which allow global conclusions to be
reached. A first attempt to implement the method on the computer
was done by Zhou and Mayne [3] in an interactive mode. Fully

automated procedures using monotonicity arguments and reduced
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gradients were reported by Zhou and Mayne [4] and Azarm and
Papalambros [5,6] and extensively studied by Zhou [7] and Azarm
[8]. The focus in the former's work was to use monotonicity for
improving several existing NLP codes, while in the latter's work
was in extending the global procedure, as for example in coupling
global and local rules in the active set strategy [5]. The
results presented here are based on the work in [6,8] using the
progrém ACCME (Automated Constraint Criticality by Monotonicty
Evaluations).

In the following sections we first summarize previous
comparative studies and describe the classification of the 4o
test problems selected from the compilation by Hock and
Schittkowski (abbr. H & S) [18]. The numerical results are
presented for ACCME, GRG2 [13] and VMCON[16], followed by
comparison and discussioﬁ.

PREVIOUS MAJOR COMPARATIVE STULIES

In the last two decades, 2 considerable number of papers has
been written for comparison 6f nonlinear constrained optimization
programs. Here we summarize the most compreﬁensive studies.

A paper by Colville [9] is the first major comparatife'study
done in 1968. He used a ranking scheme which was based upon the
computer times required for a solution, and the number of test
problems solved by a given program from a set of eight test
problems. In that study it was pointed out that the number of
objective and constraint function evaluations was not a good
indication of the performance of a given program. The conclusion
of the study [10] was that the large-step gradient methods, such

as generalized reduced gradient, performed in a measurable way
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better than the other methods tested.

Comprehensive comparative results, for problems in
engineering design, were presented by Sandgren [11] in 1977. A
variety of constrained optimization techniques, including linear
approximation methods, interior and exterior penalty methods,
were tested on a set of thirty problems. The ranking criterion
was the ability to solve problems within a reasonable amount of
computational time. The general conclusion of the study was that
generalized reduced gradient methods solved a greater percentage
of the test problems and were much faster than the other types of
methods tested. Finally, the most recent comprehensive
comparative evaluation of nonlinear programming codes was made by
Hock and Schittkowski [12] in 1983. They compared the
performance of 27 nonlinear constrained optimization programs on
a set of 115 test problems mostly from acfual realis%ic
applications. The final conclusion of the study was fhat the
sequential quadratic programming methods performed better,
followed by the generalized reduced gradient, augmented
Lagrangian, and penalty methods. A study of optimization methods
for structural design performed by Belegundu [1] is also of.
interest, since it points out the utility of active set
strategies if finite element analysis models are usedf

The results of these major comparative studies suggest that
algorithms which are based upon the generalized reduced gradient
(GRG) and sequential quadratic programming (SQP) techniques are
generally bettér than the other techniques tested. Therefore it
is desirable to have some measure of thé performance of ACCME in
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comparison with nonlinear programming codes which are based on
GRG and SQP techniques. GRG2 is one such code, which was
developed by Lasdon and Warren [13,14], and is based on the GRG
algorithm as suggested by Abadie and Carpentier [15]. VMCON is
the other code, which was developed at the Argonne National
Laboratory [16] and is based on a SQP algorithm of a type
sﬁggested by Powell [17]. Both GRG2 and VMCON have been
extensively tested and are considered generally efficient and
reliable.

TEST PROBLEMS

All three algorithms, ACCME, VMCON, and GRG2 were tested on
a set of 40 test problems selected from Hock and Schittkowski
(abbr. H&S) primarily with inequality constraints and
representing increasing level of complexity [18]. Since the test
problems have different-structure, a classification ;umber is
defined. Following the practice of H&S with a slightly different

notation, we define the following sequence of letters:

0CS-N - (2)
The following list gives all possible abbreviations which.could
replace the letters 0,C,S, and N for the tested problems:
0: Information about the Objective function

O=L: Linear objective function

0

Q: Quadratic objective function
O0=P: Generalized Polynomial objective function
C: Information about the Constraint functions

C=B: Upper and lower Bounds on the variables only
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C=L: Linear constraint functions
C=Q: Quadratic constraint functions
C=P: Generalized Polynomial constraint functions
C=G: General constraint functions
S: Information about the Starting point
S=F: Feasible starting point
S=I: Infeasible starting point
N: Problem number in H&S

As an example, consider the following problem:

minimize f(x) = X X %q (3)
subject to
x2+ 2x2+ sz- 48 <0

1 2 3
startingﬁboint: (1,1,1)T
The objective function is Polynomial, the constraint is
Quadratic, the starting point is Eeasible; and it is{problem No.
29 in H&S, therefore we classify this problem by: |

PQF~29 ()

We now summarize the abbreviations used in Table 1 to

describe the test problems:

TP : Test problem number

OCS-N : Classification of the test problem

NV : Number of the variables

NEQ : Number of equality constraints

NC "~ : Total number of constraints, i.e., equalities

and inequalities

NACTC : Total number of active inequality and equality
constraints »



f(x ) : Objective function value at the optimal solution
The test problems considered in this study have 2 to 15
variables with 1 to 31 constraints, from which 7 problems have 1

to 3 equality constraints. In 22 of the tested problems, there
are as many variables as there are active constraints (satisfied
as equalities at the optimum). The problems were selected on the
basis of having primarily inequality constraints. This is
obviously the only case of interest in terms of comparison with
ACCME.
NUMERICAL RESULTS

The codes were tested in double precision FORTRAN, at the
Michigan Terminal System's Amdahl 5860 Computér. The tests were
done under similar workload conditions of computer, since
measured execution time may vary depending on the load on the
machine. All intermediate printouﬁs for the codes were
suppressed. Thus the output included only initial data and final
results. Tolerances used in various parts of the three codes were
uniformly taken to be (10”4,

Numerical partial derivatives required in ACCME and VMCON
for the objective and constraint functions, were computequy a
combination of forward and central differencing techniques. In

the case of GRG2, the central differencing option of that code

was used, which puts the method in a relative disadvantage.

ACCME Test Results

Detailed numerical results of the ACCME testing are listed
in Table 2. The abbreviations used in the table are described

here:



TP : Test problem number

NLSOLV : Index number for equations solver
NLSOLV=1 [19,20]
NLSOLV=2 Newton method [21]

NLSOLV=3 Least Square method [22,23]

NF : Number of objective function evaluations

NG : Number of constraint function evaluations

NDF : Number of gradient evaluations of objective
function

NDG : Number of gradient evaluations of constraint
function

ET : Execution time in seconds, compilation and

loading time is not included

£(x,) Objective function value at the optimal solution
obtawned by ACCME

VMCON : An "X" in this column indicates the ACCME reached
a solution using VMCON program

A letter "F" in the table indicates the féilure of tﬁe algorithm
for a specified problem, or execution time greater thén ten
seconds.

Certain observations concerning the contents of Table 2 are
in order:

Execution time is generally one of the factors considered
most important in the performance evaluation of a code in a
successful run. From Table 2, it is clear that execution time
does not always follow the same trends as the number of function
evaluations., For example, in problem No. 4, where the number of
constraint function evaluations were 525, 385, and 525, the

execution times were 0.059, 0.062, and 0.103 seconds respectively

for the three different nonlinear equation solvers. This becomes

7



more obvious in problem No. T, where the number of function
evaluations is the same for different equation solvers while
execution time is different. The general observation is that in
26 of the 40 test problems, the execution times did not follow
the trends of number of function evaluations. This does support
the Collvile Study [7], in the sense that the number of function
evaluations is not an accurate measure of algorithm performance.
With regard to the type of equations solver, i.e., 1
(NLSOLV=1), 2 (NLSOLV=2), ana 3 (NLSOLV=3) in Table 2, the
indication is that using 1 or 2 resulted to reduced execution
time compared to method 3 for most of the tested problems.
Comparing method 1 with 2, it is readily seen that for larger
problems method 2 resulted to reduced execution time for
convergence of ACCME compared to 1. Also, in terms of number of

function evaluations the second method performed betger.

VMCON and GRG2 Test Results

Numerical results of tested problems for VMCON and GRG2 are
listed in Table 3. The abbreviations used are the same as in
Table 2. In terms of number of objective or constraint function:
evaluations, VMCON performed much better than GRG2. 1In fact only
in 4 of the test problems, GRG2 had slightly smaller number of
function evaluations than VMCON. In terms of gradient
evaluations, GRG2 and VMCON performed about the same. VMCON also
had Smaller execution time than GRG2 for most of the test
problems.

Note that in VMCON a sequence of quadratic programming

subproblems is solved, where the objective function is an



approximation of the Lagrangian and the constraints are linear
approximationé to the original constraints. These subproblems
generally estimate a search direction which is used in a
subsequent one-dimensional minimization for a combination of
objective function and constraint infeasibilities. If the
quadratic programming subproblems approximate the original
problem closely and ndnlinearities in the problem are Such that
obtaining a feasible point is net a difficult task, then VMCON
would generally require only a few function evaluations to find
the solution. On the other hand, GRG2 uses the active constraints
to express the basic variables in terms of the nonbasic ones,
thus the original problem is changed to a reduced one for which a
search direction is found. An important part of the
computational effort in GRG2 is devoted to an attempt to return

to the constraint surface at each step.

DISCUSSION

As stated previously, éxecution time for a given tolerance
in a successful run, is one of the main and most common criteria
for evaluating the efficiency of a constrained optimization.code.
Execution times for all the tests are reproduced in Table 4. As
seen from the table, ACCME performed competitively compared to
VMCON and GRG2. In terms of number of function evaluations,
ACCME performed significantly less well compared to the other two
codes, Tables 2, 3. In terms of number of unsuccessful runs,
ACCME performed almost as well as GRG2 and VMCON, a reason for
this being the existence of three different options of nonlinear

equation solver available to the user in ACCME.



For some of the test problems, ACCME performed poorly
compared to VMCON and GRG2. Some reasons explaining this
behavior are described below:

(1) Nonlinear Equation Solver

Iteration procedures in the equation solvers may not
converge or may produce some oscillation about the solution if
the starting point is not properly chosen. This may happen
especially if the starting point is far from the solution. 1In
ACCME, it is quite possible to move from one corner of feasible
region to another, thus demanding a large step from equation
solver. If the equation solver does not converge, it may cause
ACCME to go through a few more steps in order to compensate for
that.

(2) One-Dimensional Search

In ACCME the one-dimensional éearch is done by ;he Golden
Section method. Although the method is quite reliable, the rate
of convergence is only linear and convergence may be slow. Also,
the fact that this one—dimenéional search is done in the space of
active inequality and equality constraints, ﬁay substantially
affect the number of function evaluations.

(3) Descent Method

In ACCME, if no new constraint is found active in a given
iteration, the program switches to a descent routine, which is
basically a Simple gradient method in the space of the active
inequality and equality constraints. These constraints may be
very nonlinear, therefore causing the descent method to take a

large number of very small steps towards the optimum.
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(4) Feasible Point Search

Large step moves in ACCME may result to an infeasible point.
1f_the number of consecutive iterations resulting to infeaéible
points is greater than 2, a default value, then ACCME attempts to
find a feasible point. This is carried out in the following
order:

(1) Deactivation of all inequalities, if any.

(2) Minimization of the sum of squares of constraint
violations using the Davidon-Fletcher-Powell method [ZM]
Fletcher-Powell method [24].

(5) Scaling

If the variables and constraints of a problem which is
supplied to ACCME are not properly scaled, this may significantly
alter the convergence of the program. A common difficulty is in
finding feasible solutions, which is due to large differences in
magnitude between values of constraint functions. A@"well
scaled" set of constraint functions should be balanced with
respect to each other, i.e.,, all the constraints should have
"equal weight" in the solution process (see e.g. [25]).
CONCLUS1ON

Interpretation of test results for NLP codes typically is a
source of arguments among researchers not only because of tést
conditions, but also because of often substantially different
motivation in the use of optimization techniques. One tends to
classify as good the algorithm having less difficulty in solving
problems of one's interest. The work of Hock and Schittkowski is
a substantial contribution to attempts at establishing some

measure of objectiveness.
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Evaluating ACCME as a general NLP software is rather
improper. In fact some of the difficulties discussed in the
prévious section are avoided by using the approach of Zhou and
Mayne. There however, only one monotonicity rule is used,
insteac of two as in ACCME. The second rule appears to be a
disadvantage in a purely local strategy. Yet when global
information is introduced (which generaly invalidateé convergence
proofs), the second rule becomes important [5,6]. In spite of
this and the fact that ACCME lacks numerical efficiency
refinements, its overall performance compares sufficiently
favorably to encourage further investigation in the utility of
monotonicity-based active set strategies.
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Table

1

List of Test Problems

TP OCS-N NV | NEQ | NC | NACTC f(x,)
1 QBF-3 2 0 1 1 0
2 PBF-4 2 0 2 2 2.666
3 LQI-10 2 0 1 1 -1
4 QQI-11 2 0 1 1 -8.498
5 QQF-12 2 0 1 1 -30
6 QPI-13 2 0 3 2 1
7 QQI-14 2 1 2 2 1.393
8 PQI-15 2 0 3 2 306.500
9 QQ1-18 21 0 4 1 5
10 PQI-20 2 0 5 2 38.199
11 001-22 | 2| o0 2 2 1
12 QQI-23 2 0 9 2 2
13 PLF-24 2 0 5 2 -1
14 PQF-29 3 0 1 1 -22.627
15 QQF-30 3 0 7 2 1
16 QQF-31 3 0 7 1 6
17 QPF-32 3 1 5 3 1
18 PQF-33 3 0 6 3 -4.586
19 LGF-34 3 0 8 3 -0.834
20 PLF-36 3 0 7 3 -3300
21 QQF-43 4 0 3 2 -44
22 || OQLF-44 4 0 10 4 -15
23 PBI-45 5 0 10 5 1



Table 1 (Cont.)

TP 0CS-N NV | NEQ | NC | NACTC f(x,)

24 LGF-66 | 3 | 0 8 2 0.518
25 PPI-71 | 4 | 1 | 10 3 17.014
26 LGI-73 | 4 | 1 7 4 29.894
27 PGI-74 | 4 | 3 | 13 3 5126.498
28 PGI-75 | 4 | 3 [.13 4 5174.413
29 QLF-76 | 4 | 0 7 7 ~4,682
30 001-83 | 5| 0 | 16 5 ~30665.539
31 QOF-84 | 5| 0 | 16 5 | -5280335.133
32 PLF-86 | 5| 0 | 15 4 -32.349
33 LQI-95 | 6| 0 | 16 6 0.0156
34 LoI-96 | 6| 0 | 16 6 0.0156
35 LoI-97 | 6| 0 | 16 6 3.136
36 LQI-98 | 6 | 0 | 16 6 3.136
37 || Lo1-106 | 8 | o0 | 22 6 7049,331
38 || QOF-113 | 10 | O 8 6 24.306
39 || o61-114 | 10 | 3 | 31 9 ~1768.807
40 || PoF-117 | 15 | 0 | 20 11 32,349




ACCME Test Results

Table

L2

NDF f(x,)
TP| |NLSOLV NF NG or ET VMCON
NDG ACCME
1 1 128| 266| 27]0.037 0
2 128| 153| 27(0.034 0
3 128| 200| 27[0.052 0
2 1 19| 40| 6/0.033 ~2.666
2 19| 26| 6/0.033 -2.666
3 19| 31| 6[0.044 ~2.666
3 1 120| 470| 26(0.074 -1 X
2 102| 440| 26/0.085 -1 X
3 200| 774| 41]0.147 -1
4 1 191| 525| 51|0.059 8.498 |,
2 191| 385| 51|0.062 8.498
3 191| 525| 51{0.103 8.498
5 1 83| 283[ 24{0.038 -30
2 83| 239| 24]0.037 -30
3 83| 429| 24/0.113 -30
6 1 792| 2037|220(0.185 0.999 | x
2 157 205| 8[0.048 ~1.082
3 157 205| 8[0.050 1.705
7 1 | 4053| 4053| 2[0.198 1.393
2 | 4053| 4053| 2/0.190 1.393
3 | 4053| 4053 2[0.210 1.393
8 1 19| 40| 6]0.035 306.5



Table 2 (Cont.)

NDF f(x,)
TP||NLSOLV| NF | NG | or| ET VMCON
NDG ACCME
2 19| 26| 6/0.043 306.5
3 19| 31| 6[0.045 306.5
9 1 120| 2094 16(0.132 5
2 F F| F|F F
3 67| 872| 12[0.366 5
10 1 25| 84| 6[0.040 38.198
2 85| 123| 14|0.057 40.198
3 25| 105| 6[0.063 38.198
11 1 43| 75| 9]0.035 1
2 43| 56| 9/0.035 1
3 43| 78| 9/0.045 1
12 1 19| 46| 6/0.045 2
2 19| 29| 6/0.059 2
3 19| 49| 6/0.066 2
13 1 19| 40| 6[0.055 -1
2 19| 26| 6/0.038 -1
3 19| 38| 6/0.060 -1
14 1 268| 749| 67/0.096 -22.627 | X
2 453| 963|113]0.132 -22.627 | X
3 212| 702| 53|0.154 -22.627 | X
150 1 77| 422| 10[0.073 1
2 98| 178| 10[0.050 1
3 98| 374| 10/0.091 1



Table 2.- (Cont.)
NDF f(x,)
TP| |NLSOLV| NF | NG | or| ET VMCON
NDG ACCME
16 1 183| 1016| 12(0.111 6
2 183| 419| 12|0.117 6
3 183| 703| 12{0.160 6
17 1 47| 127| 10(0.061 1
2 47| 67| 10[0.044 1
3 47| 123| 10{0.076 1
18 1 26| 54| 6/0.044 -4
2 26| 34| 6[0.040 -4
3 26| 47| 6[0.063 -4
19 1 34| 134| 80.054 -0.834
2 3¢| 71| 8l0.049 -0.834
3 34| 66| 8|0.054 0
20 1 34| 82| 8[0.044| -3300
2 34| 46| 80.043| -3300
3 34| 65| 8l0.065| -3300
21 1 F F| F|F F
2 | 1012] 2023|182|0.217 -44
3 370| 5254| 44(2.002 -44 X
22 1 53| 143| 10/0.073 -15
2 53| 64| 10[0.053 -15
3 53| 75| 10]0.061 -15
23| 1 76| 226| 12{0.070 1
2 76| 98| 12/0.077 1




Table 2. (Cont.)

NDF fx,)
TP||NLSOLV| NF | NG | or| ET VMCON
NDG ACCME

3 76| 120| 12[0.074 1
24 1 57| 594| 8/0.082 -0.518

2 136| 656 12[0.120 -0.518

3 34| 66| 8/0.055 0.518
25 1 121| 1675| 12(0.156 17.014

2 123| 557| 12{0.091 17.014

3 43| 106| 8[0.082 19,348
26 1 | 3259| 3423| 16/0.350 29.689

2 | 1079| 1109| 12{0.143 29.687

3 3254 3357| 16|0.377 29.689
27 1 | 7548| 9854| 8|1.248| - 5126.497

2 128| 829| 9/0.196 5126.497

3 |20893{20950| 20|2.657 5126.497 | X
28 1 |17978|19016| 8|2.296 5174.411

2 [11411|11659| 6|1.432 5174.411

3 |27963(28020| 19|3.467 5174.411 | X
29 1 187| 2034 14[0.189 -4,682

2 187| 591| 14[0.110 -4,682

3 187| 1867| 14[0.565 -4,682
30 1 233| 517| 20/0.116| =-30665.5

2 | 233 284 20(0.097| -30665.5

3 233| 377| 20/0.163| -30665.5
31 1 76| 260]| 12/0.090|-5280335.0



Table 2 (Cont.)
NDF f(x,)
TP| |NLSOLV| NF | NG | or| ET VMCON
NDG ACCME
2 76| 112| 12]0.081|-5280335.0
3 76| 155| 12|0.126|-5280335.0
32 1 | 1265|16227| 98|3.324 -28.452
2 287| 974| 22{0.302 -32,349
3 288| 2231| 22{0.128 -32,349
33 1 85| 321| 12(0.162 0.0156
2 85| 99| 12/0.138 0.0156
3 85| 255| 12{0.242 0.0156
|| 1 85| 321| 12]0.163 0.0156
2 85| 99| 12]0.140 0.0156
3 85| 255| 12|0.228 0.0156|
35 1 244| 496| 12(0.134 4.07
2 244| 284| 18(0.112 4.07
3 244| 347| 18|0.154 4.07
36 1 244| 96| 12/0.135 4.07
2 244| 284| 18(0.112 4.07
3 244| 347| 18(0.153 4.07
37 1 | 6898| 6972| 38|1.592 7049.25 X
2 | 6277| 6298| 35|1.361 7049.25 X -
3 |15223|15571| 38|2.423 7049.25 X
38 1 508| 9754| 34|1.369 21.989 | X
2 447| 1535| 31[0.483 21,989 | X
3 938| 3307| 55/2.169 21.989 | X



Table .2 (Cont.)
NDF f(x,)
TP | |[NLSOLV NF NG or ET VMCON
NDG ACCME
39 1 929115083 76|2.794 -1896.9
2 359 1468| 26|0.634 -1896.9
3 F F F F
40 1 F F F. F
2 215317488 | 95|8.622 32,348 X
3 481 621| 30(1.432 32.348 X
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Execution Time for ACCME, VMCON, GRG2

Table

4

ET

TP ACCME
GRG2 | VMCON

NLSOLV=1 | NLSOLV=2 | NLSOLV=3

1 0.037 0.034 0.052 0.060 | 0.059
2 0.033 0.033 0.044 0.060 | 0.027
3 0.075 0.085 0.147 0.066 | 0.049
4 0.059 0.062 0.103 0.065 | 0.046
5 0.038 0.037 0.113 0.062 | 0.039
6 0.185 0.048 0.050 0.068 | 0.069
7 0.198 0.190 0.210 0.066 | 0.041
8 0.035 0.043 0.045 0.065 | 0.033
9 0.132 F 0.366 0.086 | 0.049
10 0.040 0.057 0.063 | 0.068 | b.072
11 0.035 0.035 0.045 0.060 o;oss
12 0.045 0.059 0.066 0.079 | 0.046
13 0.055 0.038 0.060 0.067 | 0.049
14 0.096 0.132 0.154 0.070 | 0.051
15 0.073 0.050 0.091 0.073 | 0.093
16 0.111 0.117 0.160 0.086 | 0.086
17 0.061 0.044 0.076 0.076 | 0.039
18 0.044 0.040 0.063 0.071 | 0.044
19 0.054 0.049 0.054 0.089 | 0.065
20 0.044 0.043 0.065 F 0.048
21 F 0.217 2.002 0.099 | 0.069
22 0.073 0.053 0.061 0.094 | 0.086



Table 4 (Cont.)
ET

TP ACCME

GRG2 | VMCON

NLSOLV=1 NLSOLV=2 NLSOLV=3

23 0.070 0.077 0.07¢ | 0.093 | 0.095
24 0.080 0.120 0.055 | 0.099 | 0.068
25 0.156 0.090 0.082 | 0.113 | 0.067
26 0.350 0.143 0.377 | 0.107 | 0.054
27 1.248 0.198 2.657 | 0.166 | 0.112
28 2.296 1.432 3.467 | 0.146 | 0.117
29 0.189 0.110 0.565 | 0.097 | 0.075
30 0.116 0.097 0.163 | 0.157 | 0.079
31 0.090 0.081 0.126 | 0.120 | 0.087
32 3.324 0.302 0.128 | 0.144 | p.101
33 0.162 0.138 0.242 | 0.132 | 0.079
34 0.163 0.140 0.228 | 0.120 | 0.080
35 0.134 0.112 0.154 0.135 | 0.151
36 0.135 0.112 0.153 | 0.136 | 0.154
37 | 1.592 1.361 2.423 | 0.361 | 1.33
38 1.369 0.483 2.169 | 0.162 | 0.337
39 2,794 0.634 F 0.309 F
20 F 8.622 '1.432 | 1.346 | 1.248
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