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1. INTRODUCTION

In an earlier paper [1] the following abstract minimum effort control
problem was analysed.

ProBLemM I. Let B and R be Banach spaces and T a bounded linear
transformation from B into R. For each ¢ in the range of 7' find an element
u € B satisfying Tu = ¢ while minimizing | « ||.

For this problem to have a unique solution it was found to be both nec-
essary and sufficient that B be both reflexive and rotund. Adopting these
conditions attention is then focused on the development of a thorough chara-
cterization of the function 7 which sends every £ in the range of T into
its unique minimum norm pre-image %, € B.

The importance of this problem stems from a wide range of applications
(see 2], [3], [4], and [7] for example) in automatic control. The present paper
extends this initial problem in several ways, among which are the following:

ProsLem II. Let B, and B; denote rotund reflexive Banach spaces and R
any Banach space. 7' denotes a bounded linear transformation from B,
onto R. F denotes a bounded linear transformation from B into B, . For an
arbitrary fixed ¢ € R find the u, € By which minimizes the functional J(x)
over the set T-1(¢) C B, where;
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(@) J(u) =||Fu| F is also one-to-one and onto

(b) J) =1u—4g] i € B, a fixed element

(© J@) ={Ful®+|u|?

(d) J@) =1{Fu-—9|2 4| u—=&|2 (4,9)anarbitrary tupletof B, X B, .
In each of these cases, however, it is shown that the new versions of the
problem are only apparently more general than the initial problem itself.
In fact each version of Problem II may be reduced by simple and direct
procedures to Problem I.

In the analysis of Problem II several facts, which shall now be summarized,
will be useful. From [1] we have:

LemMMa 1. Let C = T(U)C R denote the image of the umit ball U C B.
Then C is a convex, circled, weakly compact, neighborhood of 0 € R. Hence the
Minkowski functional p

p(€) = infA > 0: £€1C}
is defined and finite on all of R and satisfies
€+ 0 < p(é) + (D)
P(AE) = | A | p(é).

For each ¢ 5 0 in the dual of a rotund reflexive Banach space B there
exists a unique vector @ in B which satisfies (G, ¢> = | ¢ ||. We shall refer
to @ as the extremal of . With this convention the main results of the first
reference is summarized in Theorem 1.

THEOREM 1. Let £ 0 be an element of R. Then there exists a umique
element N in the unit sphere of R* such that

T'(€) = p(§)T*N.
The functional N is uniquely determined by the conditions

(@) IN=1
(i) C lies to the left of the hyperplane

S ={{eR:{ N> =[p§)] K& NY}
If B is a complex space this last requirement is replaced by

Re(<4, ND) < Re(K[p(§)] 7%, N>)  all [eC.

The vector N deserves in a natural way to be called the outward normal
to C at [p(£)]-1€. Our second theorem is proved in the appendix.
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TueoreM 2. Let By, B, be rotund, smooth, and reflexive Banach spaces
and F a bounded linear transformation from B into B, . Let B denote the space

B, equipped with the norm | | given by
P = (> [P + [ Fx )2
Then B is rotund, smooth, and reflexive with B* = B,* and the extremal x* of

an x € B is given by
¥ = K@)l %,
where K is the one-to-one, norm preserving, and antihomogeneous operator
(that is, K(Ax) = AK(x)) defined by
K(x) = || x|l x + || Fx | FX(F).

2. Tue SoruTioN TO PrROBLEM II

In this section four theorems will be presented which summarize the main
results concerning the solution to Problem II. In each case it will be self-
evident that Theorem 1 above is indeed the key to the solution. Consider
first Problem II(b). With the function 7' defined as before the solution to
this problem is given by

THEOREM 3. Problem 1I(b) has the unique solution u, given by
u, = TWE — Td) 4 4.
Proor: Itis clear that #, maps into £ under 7 and if u is any pre-image of £
under T, then T(u — 4) = ¢ — T implies, by definition of 7", that
fu—d| =T — TR = llu, —
It follows that u, is a solution of I(a) and since this last inequality is strict
unless u — @ = T'(¢ — T4i), we see that u, is the only solution.

The next problem to be considered is II{c). If F' is a mapping from B, into B,
the subset B(F) of B, x B; defined by

B(F) = {(#, v) : v = Fu, u € By}

is called the graph of F. If addition and scalar multiplication in By, X Bj are
defined in the usual way then from [1, Llemma 1] it follows that B, X B, is a
rotund reflexive Banach space when endowed with the norm

[, )P = [l [ + 1] v [I%.

Moreover when F is linear and bounded B(F) is a closed subspace of B; X B,
and hence also a rotund reflexive Banach space.
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Let us now define the transformation G : B(F)— R by
Gl(u,Fu)] = Tu, ueb,. *)

G is evidently well-defined and linear. It is also easily shown that G isbounded.
Observe now that Problem II{c) asks for a vector (#, Fu) in B(F) such that
G(u, Fu) = ¢ and such that

J) = lu P + || Fu|® = i(u, Fu)|P.

is a minimum. In other words, Problem II(c) reduces to Problem I with
G : B(F)— R replacing T : B,— R as the operator of prime interest. We
summarize these remarks in the following theorem.

THEOREM 4. Problem II(c) has a unique solution u, for each ¢ € R, namely,
u, is the abscissa of the vector G'(£) in B(F).

ReMARK 1. We can view this reduction in a slightly different manner
which will prove useful.
Let us introduce a new norm | | on B, by writing

Ll = (Ll + || Fu |27

and let B denote B, equipped with the norm | |. Then B inherits rotundity
reflexively and smoothness from B, and B, (see Theorem 2). Problem II(c)
now asks to find the u € B for which Tu = x and | # | is a minimum and is
thus recognized again as Problem I.

This latter viewpoint suggests immediately that Problem II(c) can be
phrased in its most general form by equipping B, X B, with any norm with
respect to which it is reflexive and rotund (for instance see [1, Lemma 1]).
Then if J(u) consists of a norm on B(F) induced by any eligible norm on
B, X B, the result is equivalent to Problem I.

For example, the minimum effort problem with J(x) given by either of

J@) = llul|? + | Ful? (1 <p < )
Jw)  ayllul? +apllu|l|lFul
+anlull|[Full +apliFul? a;>0 4,j=1,2

where the matrix [a;;] is strictly positive is equivalent to Problem I. Finally,
it is clear that Problem I also contains the case in which J(u) is of the form

Jay = S\ Falr (=1

where F; : By — B; are given transformations.
The proof of Theorem 4 suggests also the solution to Problem II(a).



540 PORTER AND WILLIAMS

TueorREM 5. The unique solution of I1(a) is given by

g = pp(EFH(F*(T*n))
where
pr(€) = inffd > 0: £ € ACy}
Cp={Tu:|Fu| < 1}.

and v is the unique vector in R* satisfying
@ linl =1
(i1) <& = [[F*T*n |l

Proor: Since F71 is a bounded linear transformation from B, into B,
it has a conjugate (F~')* sending By* into B;*. For #, € B, , f, € B,;* we have

Sty (FVFYfo) = KFYuy , F¥fy) = (FFuy o) = g, fop
hence (F-1)*F*f, = f, . Similarly, for u, € B, , f, € By*

Sy , FXEY S = (Fuy , (FYY = F Py, f) = <uy, fo
hence F¥(F-1)*f, = f, . These equations show that F* has a bounded inverse
and that (F*)-1 = (F-1)*.

Now the unique solution #, of II{a) is given by
ug = pr(€)(T*n)

where 7 is the unique vector of norm 1 in R* satisfying
&y =|T*| = sup Ku, T*n)|
[|Fulj=1
and (T™*y) is the extremal of 7%y with respect to the norm |u | = || Fu||

on B. Now with bars denoting the usual extremals in B, and B, respectively,
the extremal %’ of # in B is given by!

u' = F*(Fu).
It follows that
T u \' . T*y
P = e = (7)== ey
Hence
Fug = | T*n [PF*(T*y).

But then

e = Fag = (T% PP (T) = Fe(T %),

(| Fu, |

1See the proof of Theorem 2 in the Appendix.
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Since || Fu, || = | u; | = | pr(€)(T*n)| = px(€), this completes the proof of
the assertion concerning #, .
The second part of the theorem follows from the obvious equality

* —1 *,
o | — sup KB T _ o KEw Ty
s, [Full ol

Finally we consider Problem 1I(d) which brings the present line of
development to fruition. To study Problem II(d) we introduce the graph
B(F) of F in the product space B; X B, and the transformation G : B(F)— R
as previously defined. Let @ = (4, 7). Then with this change in notation
Problem II(d) asks for a w = (¥, Fu) in B(F) such that G(w) = ¢ and
|w — |7 is 2 minimum. Now if % € B(F) we recognize this latter problem
as precisely Problem II(b) (with B(F), G, and w replacing B, T, and u
respectively) and hence using the solution of that problem, we see that

(ue , Fy) = G'(§ — Gb) + (4, I'h)

defines the unique solution of II(d).

If & does not belong to B(F) (i.e., if §  Fi) then we cannot appeal to
Problem II(b), but it is easy to see that II(d) still has a unique solution.
For this, let M, be the subset of By X B, defined by

{(u, Fu) — (4, %) : G(u, Fu) = &}.

Evidently M, is closed and convex, and B; X B, being rotund and reflexive,
M, has a unique element (u, Fuy) — (4, §) of minimum norm. That is,
there exists a unique vector %, in B, with Tu, = £ and

J(ug) = (o , Fuo) — (%, 9|
— min{|(u, Fa) — (& H)I? : G, Fu) = £}
== min{ J(u) : Tu = §}.

We have proved part of the following theorem:

THEOREM 6. Problem II(d) always has a unique solution u,. If y = Fil
this solution is determined by

(ue , Fug) = G'(§ — Tit) + (4, 9).

If B, = H, and B, = H, are Hilbert spaces and if P is the orthogonal projection
of H, X H, onto the graph H(F) of F, then u, satisfies

(u; , Fu;) = G'(¢ — Ti) + (u, Fa)
where (4, Fi) = P(4, §).
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Proor: It remains only to prove the assertion concerning the Hilbert
ce case. Let o — f“f(}: — T\ + (7 F‘u\ — (u m\ Then 2. M. and
wy ) AAAN KD WO = ""5 arive

ﬂ
vvvvvvvv el Wy LR R T A

since (I — P)(4, 9) is orthogonal to H(F) we havc
o |® = 1| G'(§ — Ta) + (i, Fit) — (i, P)|?

i i (*)
= G'(§ — Ta){? + Iz, Fa) — (4, P)i?
Aleos 36 20— IT catlafios £ T\ PR TS RO SR 7 AN (= Ty
£3180, il ¥ € 11y SAUSIICS U\U, I'U) — ¢, i€n nc veClor (u, £'4) — \u, £'1) maps

Hence G(u, Fu) = ¢ implies
I(w, Fu) — (& 9P = (w, Fu) — (&, Fa) + (&, Fa) — (4, )P
1(u, Fu) — (@, Fa){* + |i(&, Fi) — (&, )P (**)

I

> I QHE TR L (g Ba) . (4 M2
=AY S L&JI T Iy 2Ry A\ Y-
It follows from Egs. (*) and (**) that w, is the smallest element in M, and
ence that e — {1 ) — (1. ¥). This comnpletes the proof
nencee nat %@y U, DU \%, ). 1308 COmpieics tnc proot

The Computation of G*

In Problems II(c) and II(d) the solution is found to require the use of the

minimum effort function G* which sends every ¢ € R back into (u, , Fu,) € B(F),
the nmmle minimum norm pre- 1maoe under G of £ in the amnh of F. ITmno

the functlon Tt as a model it is easy to state the condltlons necessary to

specify G*. In the actual formulation of this function however, several

nnnnnnn tad muahloma ~anne which wa chall naw daal with
dbbublalcu PlUUlClllD uLLul Wlll\,ll Y¥L Oliall 11UYY uUlal vvilil,

In Hilbert spaces the solution to Problem IT (that is Theorems 3, 4, 5, and 6)
may be written much more explicitly. Let us first restrict attention to the
computation of G* when the Banach spaces B, and B, are repiaced by the
Hilbert spaces H, and H, respectively. With regard to the space H, x H,
let us first note that

Lty s v1)s (1, 92)> = Sy, ) + {0y, v

defines an inner product on H, X H, which is complete with respect to the
norm induced by this inner product. Hence it follows that H, x H;, and
therefore also H(F) the graph of F in H, X H,, is a Hilbert space.

The solution of Problem I was given by restricting the transformation 7°
to the orthogonal complement of its null space. This restriction of 7' was
nonsingular and its inverse maps any £ in the range of 7 back into its pre-
image with minimum norm. This process will work as well for the present
situation and we shall proceed to locate the orthogonal complement of the
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null space of G. Notice first from Eq. (¥) that the null space of G, denoted by
Ng , is given by the set

Ng ={(u,Fu) : ue Nr}.

The complement of N¢; is then determined by the following lemma:

LemMa 2. Let Q and M denote the orthogonal complements of the null
spaces of the transformations G and T respectively. Then Q is given by

Q ={(u,Fu): (I +F*F)ue Mj}.

Proor: The proof of Lemma 2 is given by the following chain of set
equalities
O ={(u,Fu): (u,Fu) | (v,Fv)allve Np}
= {(u, Fu) : {u, v) + (Fu,Fv) = 0,ve Ny}
= {(u, Fu) : {u, v) + (F*Fu,v) = 0,ve Ny}
= {(u, Fu) : {(I + F*F)u,v) = 0,v€ N}
= {(u, Fu) : (I + F*F)ue M}.
Remark 2. It is occasionally convenient to deal with the set of abscissas

of elements in Q. This set will be denoted by S. It follows from Lemma 2
that S is given by
S = (I 4+ F*F)~Y(M).

Here the fact that (I 4 F*F) is invertible has been used. This follows from
the observation that since F*F is positive, the spectrum of I + F*F lies on the
real axis to the right of 1 and hence does not contain 0.

The solution to the Hilbert space version of Problem II(c) can now be
concisely formulated:

THEOREM 7. The unique solution u, of Problem II(c) for Hilbert spaces is
given by
u = (I +F*F)'T'p

where @ is the unique vector in R satisfying
¢ =T + F*Fy T,

Proor: Using the notation introduced above and appealing to the solution
of Problem I we see that (i, , Fu,) is characterized by

(1) (we, Fup)€Q
(ii) G(u, ,Fu,) = &.
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Now by the preceeding Lemma, (#, , Fu,;) € Q if and only if u;, = (I + F*F) v
for some v € M and it is clear that v is uniquely determined by u, . Since 7'
is a one-to-one mapping from R onto M, v = T'¢ for a unique vector p € R.

Theorem 6 has partially solved Problem II(d) for Hilbert spaces. To
complete the picture we shall need the easily verified lemma.

LemMma 3. Let (i, Fii) denote the orthogonal projection of (u, y) € Hy X H,
on the subspace H(F). Then i is determined by

@ = (I + F*F) Y{u + F*y].

This lemma together with Theorem 6 and the characterization of G* given
above yield the theorem:

THEOREM 8. The unique solution u, of the Hilbert space version of 1I(d) is
given by

u, = (I + F*Fy YTy + & + F*))
where 7 is the unique vector in R satisfying

£ = T(I + F*FY YT + & + F*y).

ReEMARK 3. It is clear that Problem II(d) contains Problems II(c)
(#=9=0),IIb)(# =0,F =0),and II(a) (d =F = 0,F =0, u =F) as
special cases. This is reflected in the fact that Theorem 8 reduces under the
same conditions to Theorems 3, 4, 5, and 6 (Hilbert space case) respectively.

Let us now examine the general solution of II(c) in more detail. For this
let B denote the space B, equipped with the new norm

lul = (lel? + | Fu|P)!/2
As pointed out in Remark 1, Problem II(c) asks to find the unique vector

u=u; in B for which Tu = ¢ and |«| is a minimum. According to the
solution of Problem I, there is a unique vector n in R* of norm 1 for which

ug == pe(E)(T*n)'.

Using Theorem 2 this is equivalent to

| , R
K (5um) = (Gug) =T = 17

that is,

w = K+ (L2 ). )
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The vector 1 is determined by the conditions

@ lInll =1
(i) <&, m> = | T*y |
and finally, the Minkowski functional p, associated with the set
Co={Tu:lu| <1}
is given as usual by

Pe(€) = ir/l\f{)\ > 0: éeACq}.

Remark 4. It is not difficult to show that the solution for Problem II(c)
given by (") and conditions (i) and (ii) includes the several previous results.
Indeed if F = 0 then the right hand side of (') reduces to p(&)T*y. If B,
and B, are Hilbert spaces then K{(x) becomes (I + F*F)(x).

Aside from the expected difficulty in finding the set Cg, the introduction
of the transformation F into Problem I brings about two added complications,
namely, the inversion of the mapping K and the computation of the number
| T* |:

[<u, T*n)|
A (PTESADT,

As for the inversion of K it would seem that at best one can only hope for
an iterative technique for computing K—1. We will not pursue this problem
any further and suggest only that several techniques are available for inverting
a bounded one-to-one operator from one Banach space onto another (see
Anselone [5] for example).

Let us consider the problem of computing the number | T*y | as a function
of 9. The definition above gives one technique. Two others are given in the
following Lemma:

| T*n | = sup [<u, T*p)| =

LemMA 4. For each n in R* we have

L1 T* 2= sup | T*n —F*f |2 + | I
f9€B %

2. | T*q > = CK-Y(T*n), T

Proor: The second assertion follows from the fact that

1 T*q]
peld)

To prove the first assertion we revert back to the graph formulation of

KTy = ug = | T*n |(T*n)".
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Problem II{c). Here we consider the problem of finding the unique vector
(. , Fu,) in B(F), the graph of F, such that
Tu = G(u, Fuy = ¢
and for which
(e, Fu)l = (Il |[* 4 | Fu |2)'2
is a minimum. The solution is given by
(u; , Fu;) = aG*N
where
a = inf{A > 0: £ €ACq}
Co = {Glu, Fu) : |, Fu)| < 1}

and N is the unit (outward) normal to Cy at o2€.

Now G, being a mapping from B(F) onto R, will have a conjugate G*
mapping R* into B(F)*. Since B(F) is a closed subspace of B; X B,, its
conjugate space B(F)* may be identified with the quotient space!
B * x B,*/B(F)®, where B(F)", the annihilator of B(F), is given by

B(F)* ={(fy,fo) € By* X By* : {(u, Fu), (f1,/5)> = 0, all ue By}

It is a straightforward task to show that

B(F®) = {(—F*,, fs) : fa€ By*}.

(Recall the analogous computation in the Hilbert space case above.) Thus the
vectors in B(F)* are cosets of the form

N , ,
(fr: /) = (hofo) + BE) ={(/i —F*% o + 1) : i € By}
and the norm of such a coset is
N .
ICfes ol = le};;*zﬂ(fl —F* o + 1)l
= inf (ILh—F B+ I fo A I
For (u, Fu) € B(F) and 5 € R* the computation

(G(u, Fu), n) = {Tu,ny = {u, T*p
= <(u’ Fu)9 (T*ﬁ, 0)>
= {(u, Fu), (T*n —F*, . f,')> (i € By*)

1See [6, p. 116], for example.
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N
shows that G*n is the coset (T, 0). Hence we have

u, T3]
G* =
G = 20 Wrale £ [ Fu e

G| = inf, (I T*n — F*fy (P + |2 IF)'
F9€By
where the sup equation is the definition of the norm of a function on B(F)
and the inf equation arises from the identification of B(F)* with
B,* x B,*/B(F)*. This completes the proof of 1.

We conclude this discussion of Problem II(c) by stating our results in the
following theorem.

THEOREM 9. The unique solution u, of Problem II is given by

U = K=1r* [ f;i% } n

where 1 is the unique vector in R* satisfying

(1) fInli =1
(i) <& = T*n |

and K is the mapping from B, onto B,* defined by K(x) = || x||# + || Fx||F*(Fx).
The numbers pg(€) and | T*n | may be computed from either of the following:

Pal) = (Il ue IP + || Fug [B)12
pe(€) = infd > 0: £€ACq}

- K, T*p)
[T = 8P e 1 Fu

[aT%n [* = <K=Y(T™*), T*n»
| T#n = inf [ T%n —F*, P + |1 I*
19€B 5
The set Co ={Tu:||ul? + ||Ful?® < 1} is a convex, circled, weakly compact,

neighborhood of 0 in R and has exactly one hyperplane of support through each
of its boundary points.



548 PORTER AND WILLIAMS
APPENDIX
In this appendix we prove the following theorem.

Tueorem 2. Let By, B, be rotund, smooth, and reflexive and let F be a
bounded linear transformation from B, into B,. Let B denote the space B,
equipped with the norm

)= (lx|*+ |[Fx [?)'/2
Then B is rotund smooth and reflexive with B* = B* and the extremal »' of
an x in B is given by
, _ =l % + || Fx | F*(Fx)
(=2 + || Fx 212

where the bars denote extremals in B, and B, respectively.
Proor: Since F is bounded we have
lalP <l +[1FxlP= x> <+ |F[P)«l?

so that | | is an equivalent norm on B; . Hence B and B, have the same
bounded linear functionals and, in particular, B is reflexive. If B(F) denotes
the graph of F in By X B, then (x, Fx)->x is a (linear) isometry on B(F)
onto B. Since B, X B, (with the obvious norm) is rotund (Theorem 1), its
isometric copy B is also rotund. Since smoothness is also preserved under
isometries and any subspace of a smooth space is smooth it remains only to
prove that B; X B, is smooth.

Now the dual of B; X B, may be identified with the space of pairs
(f1,f2) € By* X B,* with the norm

A )l = (LA A+ L PR

Since B;* and B,* are rotund by hypothesis, an application of Lemma 1
of [1] shows that (B, X B,)* is rotund and this is equivalent with smoothness
of B; X B,. _

Finally with K(x) = || x ||% + || Fx||F*(Fx) observe that

(i) <x, K@) = || x||<x, 2 + || Fx ||<Fx, Fx)
=|x2+|Fxl =|x
and for any y € B
(i) Ky, K(x))] = ||| % Ky, x) + || Fx [<Fy, Fx)|

<=yl +1F=x[l||Fy]
S (=P + I Fx B2y 1P I Fy P2 = 2|y
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In other words, the functional @(x) = K(x)/| x | has the value | x | at x and
is of norm 1 in B*, and therefore is the extremal of x in B.

Remark. It follows from the proof that | K(x)] = x| for each » in B
and that K is onto B*. The function X is also “‘antihomogeneous”:
| Al

K(x) = [ M |(Ax) = |A]|x] x = AK(x).

A
Finally K is also 1 — 1 for
lx]a" = K(x) = K(y) = |y |y
implies
lxf =1y
so that
x=lxjx" =[x|(x|*) =1y [ly]¥y) =2
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