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1. INTRODUCTION 

In an earlier paper [l] the following abstract minimum effort control 
problem was analysed. 

PROBLEM I. Let B and R be Banach spaces and T a bounded linear 
transformation from B into R. For each 6 in the range of T find an element 
u E B satisfying Tu = f while minimizing 1 j u 11. 

For this problem to have a unique solution it was found to be both nec- 
essary and sufficient that B be both reflexive and rotund. Adopting these 
conditions attention is then focused on the development of a thorough chara- 
cterization of the function T+ which sends every [ in the range of T into 
its unique minimum norm pre-image u, E B. 

The importance of this problem stems from a wide range of applications 
(see PI, [31, [41, and [7lf or example) in automatic control. The present paper 
extends this initial problem in several ways, among which are the following: 

PROBLEM II. Let B, and B, denote rotund reflexive Banach spaces and R 
any Banach space. T denotes a bounded linear transformation from B, 
onto R. F denotes a bounded linear transformation from B, into B, . For an 
arbitrary fixed 5 E R find the u( E Bo which minimizes the functional J(u) 
over the set T-l([) C B, where; 
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(4 J(f4 = IlFu II 
(b) J(4=Ilu-~ll 
(4 J(u) = IlFu II2 + II u Ila 

F is also one-to-one and onto 

zi E B, a fixed element 

(d) J(U) = 11 Fu - 5 iI2 + I/ u - zi Ii2 (t&j) an arbitrary tuplet of B,, x B, . 
In each of these cases, however, it is shown that the new versions of the 
problem are only apparently more general than the initial problem itself. 
In fact each version of Problem II may be reduced by simple and direct 
procedures to Problem I. 

In the analysis of Problem II several facts, which shall now be summarized, 
will be useful. From [l] we have: 

LEMMA 1. Let C = T(U) C R denote the image of the unit ball V C B. 
Then C is a convex, circled, weakly compact, neighborhood of 0 E R. Hence the 
Minkowski functional p 

p(t) = inf{A > 0 : 5 E XC) 

is de$ned and jinite on all of R and satisfies 

P(f + 5) G P(5) + P(5) 

P(G) = I x I P(0 

For each IJI # 0 in the dual of a rotund reflexive Banach space B there 
exists a unique vector Q in B which satisfies ($, y) = I] v 11. We shall refer 
to @ as the extremal of p. With this convention the main results of the first 
reference is summarized in Theorem 1. 

THEOREM 1. Let f # 0 be an element of R. Then there exists a unique 
element N in the unit sphere of R* such that 

T+(5) = p([)T*N. 

The functional N is uniquely determined by the conditions 

(9 II Nil = 1. 
(ii) C lies to the left of the hyperplane 

S = {t; E R : (5, W = [P(WYE, W} 

If B is a complex space this last requirement is replaced by 

Re(<b, N>) Q W<lz%W% N)) all 5 E C. 

The vector N deserves in a natural way to be called the outward normal 
to C at &([)I-15. Our second theorem is proved in the appendix. 
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THEOREM 2. Let B, , B, be rotund, smooth, and rejlexive Banach spaces 
and F a bounded linear transformation from B, into B, . Let B denote the space 
B, equipped with the norm ~ 1 given 63 

/ ,y i = (iI .y I~2 + IIE;x ~12)lP. 

Then B is rotund, smooth, and rejlexive ,with B* = B,,* and the extremal x’ of 
an x E B is given by 

x’ == K(x)/1 x I 

where K is the one-to-one, norm preserving, and antihomogeneous operator 
(that is, K(hx) = k(x)) defined by 

K(x) = /I x I/ x + iIFx IIF*( 

2. THE SOLUTION TO PROBLEM II 

In this section four theorems will be presented which summarize the main 
results concerning the solution to Problem II. In each case it will be self- 
evident that Theorem 1 above is indeed the key to the solution. Consider 
first Problem II(b). With the function T+ defined as before the solution to 
this problem is given by 

THEOREM 3. Problem II(b) has the unique solution uc given by 

u* = T+([ - Tti) + ii. 

PROOF: It is clear that uE maps into 6 under T and if u is any pre-image oft 
under T, then T(u ~ ti) = f - Tzi implies, by definition of T+, that 

II u - 6 II > II T+(t - TQ = II q - 22 II 

It follows that u6 is a solution of I(a) and since this last inequality is strict 

unless u - zi = T+(E - Tzi), we see that u6 is the only solution. 
The next problem to be considered is II(c). IfFis a mapping from B, into B, 

the subset B(F) of B, x B, defined by 

B(F) = {(u, v) : v = Fu, u E B,} 

is called the graph of F. If addition and scalar multiplication in B, x B, are 
defined in the usual way then from [ 1, Lemma l] it follows that B, x B, is a 
rotund reflexive Banach space when endowed with the norm 

Il(u, 411” = II u II2 + II v HZ. 
Moreover when F is linear and bounded B(F) is a closed subspace of B, x B, 
and hence also a rotund reflexive Banach space. 
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Let us now define the transformation G : B(F)-+ R by 

G[(u,Fu)] = Tu, UEB,. (7 

G is evidently well-defined and linear. It is also easily shown that G is bounded. 
Observe now that Problem II(c) asks for a vector (u, Fu) in B(F) such that 
G(u, Fu) = 6 and such that 

is a minimum. In other words, Problem II(c) reduces to Problem I with 
G : B(F) ---f R replacing T : B, -+ R as the operator of prime interest. We 
summarize these remarks in the following theorem. 

THEOREM 4. Problem II(c) has a unique solution ug for each 5 E R, namely, 
uE is the abscissa of the vector G+(t) in B(F). 

REMARK 1. We can view this reduction in a slightly different manner 
which will prove useful. 

Let us introduce a new norm 1 1 on B, by writing 

I u I = (II u II2 + IIFu /12P2 

and let B denote B, equipped with the norm / j. Then B inherits rotundity 
reflexively and smoothness from B, and B, (see Theorem 2). Problem II(c) 
now asks to find the u E B for which Tu = x and / u / is a minimum and is 
thus recognized again as Problem I. 

This latter viewpoint suggests immediately that Problem II(c) can be 
phrased in its most general form by equipping B, x B, with any norm with 
respect to which it is reflexive and rotund (for instance see [l, Lemma I]). 
Then if J(u) consists of a norm on B(F) induced by any eligible norm on 
B, x B, the result is equivalent to Problem I. 

For example, the minimum effort problem with J(u) given by either of 

J(u) = II u Ilp + IlFu Ilp (1 <P < a) 
J(u) aI1 II u II2 + al2 II u II IIFu II 

+ a21 II u II IlFu II + a22 IlFu II2 aij 30 i,j= I,2 

where the matrix [aii] is strictly positive is equivalent to Problem I. Finally, 
it is clear that Problem I also contains the case in which J(u) is of the form 

J(u) = 2 IlFiu IP PO = I) 
i=O 

where Fi : B, -+ Bi are given transformations. 
The proof of Theorem 4 suggests also the solution to Problem II(a). 
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THEOREM 5. The unique solution of II(a) is given by 

uc = pF( [)F-‘(F*-l( T*$) 

where 

pF(l) = inf{h > 0 : [ E ACF) 

C’, = (Tu : IIFu 11 < I}. 

and 7 is the unique vector in R* satisfying 

0) II 17 II = 1 

(4 (6,~) = IIF*-lT*rl II- 

PROOF: Since F-l is a bounded linear transformation from B, into B, , 
it has a conjugate (F-l)* sending B,* into B,*. For us E B, ,fi E B,* we have 

(us 5 (F-‘)*F*hf,) = (F-% , F*f,) = <FF-‘u, ,fi> = <us ,fi> 
hence (F-l)*F*f2 = fi . Similarly, for ui E B, ,fi E B,* 

(~1, F*(W*f,) = 0% , F)*f,) = <F-‘u, , fi> = (~1, fi> 
hence F*(F-l)*f, = fi . Th ese equations show that F* has a bounded inverse 
and that (F*)-l = (F-l)*. 

Now the unique solution uc of II(a) is given by 

~6 = PFMT*~I)’ 

where 7 is the unique vector of norm 1 in R* satisfying 

CL 7) = I T*rl I = ,,;‘t;p= Ku, T*rl)l P 1 

and (T*T)’ is the extremal of T*T with respect to the norm 1 u 1 = /I Fu I/ 
on B. Now with bars denoting the usual extremals in B, and B, respectively, 
the extremal u’ of u in B is given by1 

It follows that 

u’ = F*(K). 

F*(&) = U, = (a)’ = (T*+ = & . 
Hence 

But then 

Fu, = / T*q I-lF*-l(T*77). 

II2 II = Fu, = (I T*T I-IF*-l(T*v)) = F*-l(T*v). 

1 See the proof of Theorem 2 in the Appendix. 



MINIMUM EFFORT CONTROL 541 

Since I/J%, I! = 1 u* 1 = / pF(E)( T*q)j = p,(t), this completes the proof of 
the assertion concerning u( . 

The second part of the theorem follows from the obvious equality 

Finally we consider Problem ‘fI(d) which brings the present line of 
development to fruition. To study Problem II(d) we introduce the graph 
B(F) of F in the product space B, x B, and the transformation G : B(F) + R 
as previously defined. Let 6 = (~2, 3). Then with this change in notation 
Problem II(d) asks for a w = (u, Fu) in B(F) such that G(w) = 5 and 
/I w - ~2 !I2 is a minimum. Now if CJ E B(F) we recognize this latter problem 
as precisely Problem II(b) (with B(F), G, and w replacing B, T, and u 
respectively) and hence using the solution of that problem, we see that 

(uc , F& = G+([ - GC) + (zi,Fzi) 

defines the unique solution of II(d). 
If zi, does not belong to B(F) (i.e., if j # FC) then we cannot appeal to 

Problem II(b), but it is easy to see that II(d) still has a unique solution. 
For this, let MF be the subset of B, x B, defined by 

{(u, Fu) - (z&j) : G(u, Fu) = [}. 

Evidently ME is closed and convex, and B, x B, being rotund and reflexive, 
M( has a unique element (~1s , Fu,) - (2, j) of minimum norm. That is, 
there exists a unique vector 11s in B, with Tu, = 5 and 

I(4 = Il(uo ,h,) - @5)l12 
= min{lj(u, Fu) - (~2, JQ2 : G(u, Fu) = 5) 

= min{J((u) : Tu = [}. 

We have proved part of the following theorem: 

THEOREM 6. Problem II(d) always has a unique solution ul . If y = Fti 
this solution is determined by 

(z+, Fu,) = G+(.$ - Tz2) + (ti, 5). 

If B, = Hl and B, = H, are Hilbert spaces and if P is the orthogonal projection 
of Hl x H, onto the graph H(F) of F, then u5 satisJes 

(uc , Fu,) = G+(.$ - Tzz) + (a, Fzz) 

where (6, Fti) = P(t2,j). 
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PROOF: It remains only to prove the assertion concerning the Hilbert 
space case. Let ZQ = G+([ - 7X) + (ti, FZZ) -~ (ti, $). Then wO E M6 and 
since (I - P)(& j) is orthogonal to H(F) we have 

11 w. II2 = /I G+(t -- TZZ) + (ti,Fz?) -~ (~?,j)l/~ 

= II G+(S - =)/I2 + II(%Fc) -- (4 9)ll” 
(*I 

Also, if u E H1 satisfies G(u, Fu) = 5, then the vector (u, Fu) - (ZZ, Fti) maps 
into 6 - Tti under G and therefore 

ll(u,Fu) - (&Fc)ll 3 lIG+(E - =)ll. 
Hence G(u, Fu) = 5 implies 

ll(%JY - (4 ~)ll” = IN% w - (f&W + (c,q - (%j)l12 
= II@, F4 - (&WI2 + ll(&Jq - (%,jq12 (**) 
2 II G+(t - Tc)ll” + Il(% PC) - (f4Y)l12. 

It follows from Eqs. (*) and (**) that w,, is the smallest element in M, and 
hence that wa = (ul , FZQ) - (zi, 9). This completes the proof. 

The Computation of G+ 

In Problems II(c) and II(d) the solution is found to require the use of the 
minimum effort function G+ which sends every f E R back into (Us , Fu,) E B(F), 
the unique minimum norm pre-image under G of 5 in the graph of F. Using 
the function T+ as a model it is easy to state the conditions necessary to 
specify G+. In the actual formulation of this function however, several 
associated problems occur which we shall now deal with. 

In Hilbert spaces the solution to Problem II (that is Theorems 3,4,5, and 6) 
may be written much more explicitly. Let us first restrict attention to the 
computation of G+ when the Banach spaces B, and B, are replaced by the 
Hilbert spaces HO and HI respectively. With regard to the space H,, x Hr 
let us first note that 

defines an inner product on HO x HI which is complete with respect to the 
norm induced by this inner product. Hence it follows that H,, x HI , and 
therefore also H(F) the graph of F in N,, x HI , is a Hilbert space. 

The solution of Problem I was given by restricting the transformation T 
to the orthogonal complement of its null space. This restriction of T was 
nonsingular and its inverse maps any E in the range of T back into its pre- 
image with minimum norm. This process will work as well for the present 
situation and we shall proceed to locate the orthogonal complement of the 
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null space of G. Notice first from Eq. (*) that the null space of G, denoted by 
No, is given by the set 

No = {(u, Fu) : u E NT). 

The complement of N, is then determined by the following lemma: 

LEMMA 2. Let Q and M denote the orthogonal complements of the null 
spaces of the transformations G and T respectively. Then Q is given by 

Q = {(u, Fu) : (I + F*F)u E M}. 

PROOF: The proof of Lemma 2 is given by the following chain of set 
equalities 

Q = {(u, Fu) : (u, Fu) 1 (v, Fv) all v E NT} 

= {(u, Fu) : (u, v) + (Fu, Fv) = 0, v E NT} 

= {(u, Fu) : (u, v) + (F*Fu, v) = 0, v E NT) 

= {(u, Fu) : ((I + F*F)u, v) = 0, v E NT} 

= {(u, Fu) : (I + F*F)u E M}. 

REMARK 2. It is occasionally convenient to deal with the set of abscissas 
of elements in Q. This set will be denoted by S. It follows from Lemma 2 
that S is given by 

S = (I + F*F)-l(M). 

Here the fact that (I + F*F) is invertible has been used. This follows from 
the observation that since F*F is positive, the spectrum of I + F*F lies on the 
real axis to the right of 1 and hence does not contain 0. 

The solution to the Hilbert space version of Problem II(c) can now be 
concisely formulated: 

THEOREM 7. The unique solution u( of Problem II(c) for Hilbert spaces is 
given by 

u = (I + F*F)-lTtq, 

where v is the unique vector in R satisfying 

5 = T(I + F*F)-lT+v. 

PROOF: Using the notation introduced above and appealing to the solution 
of Problem I we see that (u( , Fu,) is characterized by 

(9 (UC 3 W E Q 
(ii) G(u, , Fu() = 6. 
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Now by the preceeding Lemma, (ug , 17uc) E Q if and only if u( = (1 + F*F)-lo 
for some v E M and it is clear that z1 is uniquely determined by u, . Since 7’ 
is a one-to-one mapping from R onto M, v == 7’$ for a unique vector 9 E R. 
The theorem now follows the definition G(uc , Fzl,) =m: l’ug . 

Theorem 6 has partially solved Problem II(d) for Hilbert spaces. To 
complete the picture we shall need the easily verified lemma. 

LEMMA 3. Let (zi, Fzi) denote the orthogonal projection of (u, y) E H0 x Hl 
on the subspace H(F). Then I is determined by 

u = (I + F*F)-l[u + F*y]. 

This lemma together with Theorem 6 and the characterization of G+ given 
above yield the theorem: 

THEOREM 8. The unique solution ul of the Hilbert space version of II(d) is 
given by 

ut = (I + F*F)-l(Ttrl + zi + F*$) 

where 77 is the unique vector in R satisfying 

[ = T(I + F*F)-~(T+T + zi + F*y). 

REMARK 3. It is clear that Problem II(d) contains Problems II(c) 
(ti = j = 0), II(b) (j = 0, F = 0), and II(a) (li = j = 0, F = 0, u = F,v) as 
special cases. This is reflected in the fact that Theorem 8 reduces under the 
same conditions to Theorems 3, 4, 5, and 6 (Hilbert space case) respectively. 

Let us now examine the general solution of II(c) in more detail. For this 
let B denote the space B, equipped with the new norm 

/ u 1 = (11 u Ii2 + // Fu l12)1/s. 

As pointed out in Remark 1, Problem II(c) asks to find the unique vector 
u = u( in B for which Tu = 5 and 1 u / is a minimum. According to the 
solution of Problem I, there is a unique vector 7 in R* of norm 1 for which 

ut :J= p&)( T*T)‘. 

Using Theorem 2 this is equivalent to 

K (a) = (&-)’ = (T*$’ = $& 

that is, 

ut = K-lT* [(N, 71 . (“1 
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The vector r] is determined by the conditions 

(9 II 77 II = 1 
(ii) (67) = I T*rl I 

and finally, the Minkowski functional p, associated with the set 

cG={Tu: (241 <l} 

is given as usual by 

PC(f) = iyf{h > 0 : 6 EhCo}. 

REMARK 4. It is not difficult to show that the solution for Problem II(c) 
given by (++) and conditions (i) and (ii) includes the several previous results. __ 
Indeed if F = 0 then the right hand side of (++) reduces to p(f)T*v. If B, 
and B, are Hilbert spaces then K(X) becomes (I + F*F)(x). 

Aside from the expected difficulty in finding the set C, , the introduction 
of the transformation F into Problem I brings about two added complications, 
namely, the inversion of the mapping K and the computation of the number 
I T*v I: 

As for the inversion of K it would seem that at best one can only hope for 
an iterative technique for computing K-l. We will not pursue this problem 
any further and suggest only that several techniques are available for inverting 
a bounded one-to-one operator from one Banach space onto another (see 
Anselone [5] for example). 

Let us consider the problem of computing the number ] T*y I as a function 
of 7. The definition above gives one technique. Two others are given in the 
following Lemma: 

LEMMA 4. For each 7 in R* we have 

1. I T*rl I2 = ,;zP* II T*rl -F*f, II2 + llfi II2 

2. I T*v I2 = (K”(T*v), T*q). 

PROOF: The second assertion follows from the fact that 

K-V*T) = # uE = I T*rl I(T*rl)‘, 
G 

To prove the first assertion we revert back to the graph formulation of 
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Problem II(c). Here we consider the problem of finding the unique vector 
(Us , Fuh) in B(F), the graph ofF, such that 

Tu == G(u,Fu) =: E 

and for which 

II@, Fu)l, = (11 u 11% j-- ,/ Fu 112)1’2 

is a minimum. The solution is given by 
-- 

(u* , Fu[) = aG*N 

where 

01 = inf{h > 0: (EhCo} 

C, = {G(u,Fu) : II(u,Fu)ll < l} 

and N is the unit (outward) normal to C, at a-l[. 
Now G, being a mapping from B(F) onto R, will have a conjugate G* 

mapping R* into B(F)*. Since B(F) is a closed subspace of B, x B, , its 
conjugate space B(F)* may be identified with the quotient space1 
B,* x B,*/B(F)O, where B(F)O, the annihilator of B(F), is given by 

W)O = {(fi ,fJ E B,* x B,* : ((u, W, (fi ,f2)> = 0, all u E 4). 

It is a straightforward task to show that 

B(F”) = {(-F*fi , fi) : fi E B,*). 
(Recall the analogous computation in the Hilbert space case above.) Thus the 
vectors in B(F)* are cosets of the form 

(fa, = (fi ,fi) + B(F)” = {(fi -F*f,‘,f, + fi’) : fi’ E %*I 

and the norm of such a coset is 

Ildh = ,i,:,f*, ll(fi -F*f,‘,f, +fi’)ll 

= ,& (llfi - F*f,’ II2 + llfi +fi’ l12Y2. 

For (u, Fu) E B(F) and 7 E R* the computation 

<G(u, W 7) = (Tu, T> = <u> T*+ 

= <(u, Fu), (T*rl, 0)) 

= ((u,Fu), (T*T - F*f,‘,f,‘D 

‘See [6, p. 1161, for example. 

(fi’ E B2*) 
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shows that G*q is the coset (T*T, 0). Hence we have 

II G*rl II = ,,:F$ (II T*rl - F*f,’ II2 + llfi’ l12Y2 1 

where the sup equation is the definition of the norm of a function on B(F) 
and the inf equation arises from the identification of B(F)* with 
B,* x B,*/B(F)O. This completes the proof of 1. 

We conclude this discussion of Problem II(c) by stating our results in the 
following theorem. 

THEOREM 9. The unique solution ug of Problem II is given by 

u E = K-lT* [$+I rj 

where 71 is the unique vector in R* satisfying 

(9 II rl II = 1 

(4 (6,~) = I T*rl I 

and K is the mapping from B, onto B, * de$ned by K(x) = /I x IIf -k jj Fxi/F*(&). 
The numbers p,(f) and 1 T*T j may be computed from either of the following: 

PC(~) = (II ug II2 + II Fu, l12Y2 

PC([) = inf(X > 0 : 5 E AC,) 

Il<u, T*rl)l! 

IiT*? I2 = (K-1(T*?7), T*+ 

I T*v I2 = ,‘:Btl II T*rl -F*f, /I2 + llfi l12. 
2 2 

The set Co = {Tu : jl u !I2 + Ij Fu /I2 < l} is a convex, circled, weakly compact, 
neighborhood of 0 in R and has exactly one hyperplane of support through each 
of its boundary points. 
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APPENDIX 

In this appendix we prove the following theorem. 

THEOREM 2. Let B, , B, be rotund, smooth, and rejexive and let F be a 
bounded linear transformation from B, into B, . Let B denote the space B, 
equipped with the norm 

I x I = (II x /I2 + IIFX lIz)l’e 

Then B is rotund smooth and reflexive with B* = B,* and the extremal x’ of 
an x in B is given by 

xI = II x II x + IIFX IIF*@) 
(II x !I2 + II Fx l12P2 

where the bars denote extremals in B, and B, respectively. 

PROOF: Since F is bounded we have 

II x /I2 < II x II2 + IlFx II2 = I x I2 d (1 + IIF 112)11 x II2 
so that I I is an equivalent norm on B, . Hence B and B, have the same 
bounded linear functionals and, in particular, B is reflexive. If B(F) denotes 
the graph of F in B, x B, then (x, Fx) -+ x is a (linear) isometry on B(F) 
onto B. Since B, x B, (with the obvious norm) is rotund (Theorem l), its 
isometric copy B is also rotund. Since smoothness is also preserved under 
isometries and any subspace of a smooth space is smooth it remains only to 
prove that B, x B, is smooth. 

Now the dual of B, x B, may be identified with the space of pairs 
( fi , f2) E B,* x B,* with the norm 

Ilul ,fi)ll = (llfi II2 + !lfi /12Y'2- 
Since B,* and B,* are rotund by hypothesis, an application of Lemma 1 
of [I] shows that (B, x B,)* is rotund and this is equivalent with smoothness 
of B, x B, . 

Finally with K(X) = 11 x IJf + /I Fx IIF* observe that 

(i) <x, W)) = II x ll<x, i> + IlFx lI(Fx,~) 
= II x It2 + II Fx II = I x I2 

and for any y E B 

(ii) KY, W4)I = I II x KY, i> + IlFx II<FY,~)I 
< II x II - II Y II + IlFx II II FY II 
< (II x II2 + IlFx l12)1’2(lly II2 ,’ II Fy l12V2 = I x I I Y I- 
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In other words, the functional G(x) = K(x)/1 x ( has the value 1 x / at x and 
is of norm 1 in B*, and therefore is the extremal of x in B. 

REMARK. It follows from the proof that / K(x)/ = j x / for each x in B 
and that K is onto B*. The function K is also “antihomogeneous”: 

K(k) = / /\x j(hx)’ = 1 h / I x / y x’ = hK(x). 

Finally K is also 1 - 1 for 

/ x j x’ = K(x) = K(y) = I y I y’ 

implies 

lx/ = IYI 

so that 

x = 1 x / x* = / x I(1 x 1 x’)’ = j y I(1 y / y’)’ = y. 
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