
Vol. 45, No. 5, 1971 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 

INTERACTIONS OF SUBSTRATE AND NON-SUBSTRATE EFFECTORS 

WITH p-HYDROXYBENZOATE HYDROXYLASE FROM PSUEDOMONAS i-t FLUORFSCENS 

T. Spector T- and V. Massey 

Department of Biological Chemistry, University of Michigan 

Ann Arbor, Michigan, 48104 

Received September 15, 19’71 

SUMMARY 

3,4-Dihydroxybenzoate (3,4-DOHB), 2,4-dihydroxybenzoate (2,4-DOHB), and 
benzoate facilitate the interaction of p-hydroxybenzoate hydroxylase with TPNH. 
The two dihydroxybenzoate effecters form 1:l complexes with the enzyme, inducing 
large spectral perturbations and fluorescence quenching. The dissociation 
constants for 2,4-DOHB and 3,4-DOHB are 0.15 and 0.50 mM respectively. During 
the reaction of enzyme with TPNH and oxygen, all the 2,4-DQHB, 15% of the 
benzoate, and none of the 3,4-DQHB is hydroxylated. 

A feature common to a number of flavoprotein-hydroxylases is the ability 

of their hydroxylatable substrates to induce a facilitated interaction of the 

enzyme with its specific pyridine nucleotide. The substrate thereby acting 

as an effector, causes a marked stimulation of the rates of the oxidation of 

the pyridine nucleotide, the uptake of oxygen , andthe anaerobic reduction 

of the enzyme-bound flavin moiety by the pyridine nucleotide. This feature 

has been demonstrated for salicylate hydroxylase (1,2), melilotate hydroxylase (3), 

orcinol hydroxylase (4), and p-hydroxybenzoate hydroxylase (5-7). Recently, 

certain substrate-analogues, which are not hydroxylated during the enzymatic 

reaction, were also demonstrated to behave as effecters for their corresponding 

hydroxylase enzyme. The non-substrate effecters include benzoate for 

salicylate hydroxylase (2), m-cresol for orcinol hydroxylase (8), and 6-hydroxy 

nicotinate for p-hydroxybenzoate hydroxylase (7). A third situation in which 

only a fraction of the effector is hydroxylated was reported for resorcinol 

with orcinol hydroxylase (8). In general, non-substrate effecters are said 

to "uncouple" the hydroxylation reaction (2,7,8). 

In the case of p-hydroxybenzoate hydroxylase, a number of compounds 

have been shown to be effecters for the various species of this enzyme isolated 

from different bacterial strains (5,7,9). However, with the exception of the 

substrate, p-hydroxybenzoate, and the non-substrate, 6-hydroxynicotinate, no 
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attempt has been made to distinguish which of these effecters are hydroxylatable 

substrates and which are uncouplers of the hydroxylation reaction. 

In the studies presented here a number of compounds were screened for 

their ability to act as effecters of p-hyroxybenzoate hydroxylase isolated from 

Pseudomonas fluorescens. Two of the compounds, 2,4-dihydroxybenzoate 

(2,4-DOHB) and 3,4-dihydroxybenzoate (3,4-DOHB), were determined to be effecters, 

and were capable of inducing marked changes in the environment of the enzyme. 

Spectrophotometric and fluorescence studies were performed to detect the 

effector-induced changes, and to determine dissociation constants for the 

enzyme-effector complexes. Product analysis revealed that 2,4-DOHB is a 

substrate and effector whereas, 3,4-DOHB is a non-substrate effector, i.e., its 

binding to the enzyme results in more rapid oxidation of TPNH, but it itself is 

not hydroxylated. Benzoate, the third effector, is mainly a non-substrate 

effector, being hydroxylated less then 5%. 

RESULTS 

Screening Assay for Effecters: The initial screening of potential - 

TABLE I 

EFFECT OF YARIOUS COMPOUNDS ON THE RATE OF TPNH OXIDATION 

COMPOUND OBSERVED CATALYTIC PERCENT INHIBITION AT 
VEMCITY HYDROXYLATION HIGH CONCENTRATIONS 

p-nydroxybenzoate 1,900 100 (5,6) yes (5,10,11) 

3,4-Dihydroxybenzoate 197 0 

2,4-Dihydroxybenzoate 31 100 

6-Hydroxynicotinate 12 0 

Benzoate 2 15 

None < 0.5 

(7) 

yes 
no 

yes 

? 

(7) 

The following compounds showed no detectable effect: 2,5-Dihydroxy- 
benzoate; 2,6-Dihydroxybenzoate; 3,5-Dihydroxybenzoate; m-Hydroxybenzoate; 

salicylate; p-Cl-Benzoate; p-Br-Benzoate; p-F-Benzoate; p-I-Benzoate; 

o-I-Benzoate; p-Nitrobenzoate; p-Methoxybenzoate; p-Aminobenzoate; Benzamine; 

p-Toluate; Benzene sulfonate and Phenol. 

Assay conditions: 1.0 umole of the above compounds were individually 

added to cuvettes containing 100 lJmoles Tris-HCl buffer, pH 8.0, 0.45 nmole 

TPNH, and various catalytic amounts of p-hydroxybenzoate hydroxylase. Total 

volume of 3.0 ml. The reaction was observed as a decrease in optical density 

at 340 mu, 25'. Catalytic velocity is expressed as moles TPNH oxidized 

per minute per mole enzyme. 
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effecters of p-hydroxybenzoate hydroxylase was performed by observing the 

effect of each compound on the rate of TPNH oxidation in the presence of enzyme. 

The results, given in Table I, show the narrow specificity of this enzyme. 

It is of interest that no inhibition of the rates of TPNH oxidation is 

seen when the concentration of 2,4-DOHB is increased to 2 mM. This finding 

is in contrast to the inhibition seen with 3,4-DOHB in concentrations above 

1 mM and the similar inhibition reported at high concentrations of p-hydroxy- 

benzoate (5,10,11) and 6-hydroxynicotinate (7). 

Measuring the stoichiometric relationship between the amount of 

dihydroxybenzoate compound added and the amount of TPNH oxidized revealed 

interesting differences between the effecters. When TPNH was present in excess, 

it was rapidly oxidized until the amount consumed reached a 1:l stoichiometry with 
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Fig. 1. Spectrophotometric titration of p-hydroxybenzoate hydroxylase with 
2,4-WHB. Left ordinate; difference spectrum. Both reference and 
sample cuvettes contained 1.0 ml of 34.7 uM enzyme, 0.033 M tris HCl, 
pH 8.0, and 0.3 mM EDTA. Points a-f and the final curve (...-) were 
recorded after adding the following concentrations of 2,4-DCHB to 
the sample cuvette; 0.03, 0.06, 0.21, 0.45, 0.70, 1.18 and 1.65 mM. 
The absolute spectra (right ordinate) were then obtained by recording 
the sample (-s-s--) against buffer, and the reference against 
buffer (-1. 
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the amount of 2,4-DOHB initially present. However, the oxidation of TPNH then 

continued at a very slow rate beyond that point. When varying amounts of 

3,4-DOHB were added to an excess of TPNH, all the TPNH was always readily oxidized. 

The slowness of the rate of TPNH oxidation in the presence of benzoate 

rendered stoichiometric relationships difficult to evaluate. 

Evidence for an Enzyme-Effector Complex -- 
Effector-Induced Alterations in the Enzyme's Absorption Spectrum: 

The addition of either 2,4-WHB or 3,4-WHB to p-hydroxybenzoate hydroxylase 

was found to result in pronounced spectral changes. The absolute and dif- 

ference spectra obtained by titrating the free enzyme with 2,4-DOHB and 

3,4-DOHB are shown in Figs. 1 and 2 respectively. The method of Benesi 

and Hildebrand (13)was used to determine by extrapolation the extinction 

coefficients of the enzyme-effector complexes. From such plots, dissociation 

I I 
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Fig. 2. Spectrophotometric titration of p-hydroxybenzoate hydroxylase with 
3,4-DOHB. Procedure was the same as in Fig. 1. Enzyme concentration; 
42.9 NM. Sequential concentrations of 3,4-DOHB; 0.10, 0.25, 0.40, 
0.64, and 1.13 mM. Difference spectrum (-*-'-). Absolute spectra: 
complexed enzyme (- ), uncomplexed enzyme (....a). 
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constants were determined and the actual data points were compared to 

theoretical curves drawn for those dissociation constants. The method is 

shown in Fig. 3 for the titration with 2,4-D3HB. The increase in extinction 

coefficient for this enzyme-effector complex over that of uncomplexed enzyme 
-1 -1 was 2,340 M cm at 477 mu, - and the data points fit a curve drawn for a 

dissociation constant of 0.17 mM with 1:l binding with the enzyme. The 

increase in extinction coefficient similarly determined for 3,4-DOHB at 
-1 -1 470 mu was 1,400 M cm . - The binding was also 1:l with a KD of 0.54 mM. 

t 

Of I I I 
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Fig. 3. Spectrophotometric determination of binding constants for 2,4-DOHB. 
Insert; treatment of data points (477 mu) of Fig. 1 to obtain 
maximum absorbance change. Main fig.; - theoretical curve 
calculated for a dissociation constant of 0.17 mM, 1:l binding with 
the enzyme. (01, actual data points. 
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Fig. 4. Fluorometric determination of the binding constants for 3,4-WHB. 
Insert; treatment of data obtained from fluorescence titration to 
obtain maximum quenching by 3,4-DOHB. Conditions: 5.9 PM p- 
hydroxybenzoate hydroxylase, excitation at 450 rnp, emission at 
530 mp. Main fig.; - theoretical curve calculated for a 
dissociation constant of 0.47 mM, 1:l binding with the enzyme. 
(o), actual data points. 
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Quenching of the Protein-bound FAD Fluorescence: Both 2,.4-DOHB and 

3,4-DOHB produced a near complete quenching of the enzyme's flavin fluorescence. 

The total extent of fluorescence quenching, the stoichiometry of the binding, 

and the dissociation constants were determined in the same manner as 

demonstrated in Fig. 3. The maximal quenching was determined to be 80% for 

2,4-DCHB, and 99% for 3,4-COHB. Their respective dissociation constants 

were 0.13 mM and 0.47 mM. In both cases the data points fit the theoretical 

curve drawn for a 1:l binding ratio of effector : enzyme. Fig. 4 shows the 

treatment of the data obtained from the titration with 3,4-DOBB. 

Product Analysis 

Fate of Effecters: Each effector was allowed to react with p-hydroxy- 

benzoate hydroxylase and excess TPNH. The oxidation of TPNH was followed 

to completion spectrophotometrically. The benzoate compounds were extracted 

in ether at acid pH, and analyzed as their silylated derivatives by gas- 

liquid chromatography. The product of the 2,4-DOHB reaction appeared as one 

peak which was identical to that for 2,3,4-trihydroxybenzoate. In addition, the 

isolated product of this reaction had a UV spectrum identical to authentic 

2,3,4-trihydroxybenzoate. 3,4-DOHB remained unchanged, eluting identically 

as a sample of the unreacted compound with no other peaks that would correspond 

to a trihydroxylated product. Benzoate remained mainly unchanged, with less 

than 5% eluting at a peak corresponding to either m-hydroxybenzoate or 

salicylate. The latter compounds were indistinguishable by this technique. 

Thin layer chromatography (benzene:propionate:H20; 2:2:1) with ferric chloride 

indicator was used to distinguish the trace amounts of hydroxylated product 

as m-hydroxybenzoate. 

Bole of Oxygen: It has been shown for salicylate hydroxylase (2), 

and orcinol hydroxylase (8) that in the presence of non-substrate effecters, 

the product of the reaction with O2 if H202. In such a reaction, if catalase 

is added at any time during the reaction, 50% of the consumed oxygen should 

be returned to solution. Catalase present at the start of the reaction returns 

the oxygen as the reactions proceeds, thereby halving the observed rate of 

oxygen uptake. 

Catalase was used here to demonstrate the lack of H202 production by the 

known substrate, p-hydroxybenzoate, and the formation of H202 by the known 

non-substrate effector, 6-hydroxynicotinate. Similarly, H202 was detected in 

the reaction with 3,4-DOHB, but was not produced in the reaction with 2,4-DOHB. 

DISCUSSION 

The physical techniques employed in this study demonstrate that both 

2,4-WHB and 3,4-DQHB elicit notable changes in the environment of this 
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enzyme. The alterations in the visible absorption spectrum of the native 

enzyme were fairly similar when produced by either effector. The alterations 

were also similar to those produced by 6-hydroxynicotinate, (7) but quite 

dissimilar to those of p-hydroxybenzoate (5,10,12). However, the difference 

spectra of the enzyme-effector complexes in the case of the dihydroxybenzoic 

acids were of greater magnitude than those of the other effecters. 

The ability of 2,4-DOHB and 3,4-DOHB to quench the flavin fluorescence 

of native p-hydroxybenzoate hydroxylase is also shared by p-hydroxybenzoate (9,lO). 

In contrast, 6-hydroxynicotinate causes a 1.8 fold enhancement of the 

fluorescence (7). 

It becomes obvious that while these techniques can be used to 

demonstrate the formation of an enzyme-effector complex, they cannot be 

used to predict which effector will be hydroxylated when TPNH is added to 

the aerobic solution. Neither does the observance of the stoichiometry 

between the initial concentration of effector and the final concentration 

of TPNH oxidized during the reaction serve to make this distinction. This 

is because the products of the two hydroxylatea substrates also cause the 

oxidation of TPNH. In the case of p-hydroxybenzoate, its product is 3,4-DOHB, 

which has been shown above to be itself an effector. 2,3,4-trihydroxybenzoate, 

the product of reaction with 2,4-DOHB, when added to a solution of TPNH under 

the standard assay conditions described above, slowly oxidizes the TPNH in the 

absence of enzyme. An apparent 1:l stoichiometry can be seen if the con- 

centration of enzyme is manipulated so that the rate of oxidation of TPNH 

occurs significantly faster with the substrate than the product, and 

differential rate extrapolation is used to determine the end point. However, 

the most definitive method for distinguishing which effector is also a 

substrate is clearly product analysis. 

The results indicate that the enzyme will only hydroxylate efficiently 

the 3 position of a para-hydroxy-substituted benzoate compound. 6-HY&COXY- 

nicotinate presumably binds to the enzyme in such a way that the non- 

hydroxylatable nitrogen simulates the number 3 carbon of the benzoate 

compounds. Otherwise, it too would likely be hydroxylated. Although the 

para-hydroxyl group seems necessary for efficient binding and the induced 

facilitation of the enzyme-TPNH interaction, very weak facilitation and 

partial hydroxylation can be seen in its absence in the case of benzoate. 
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