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1. INTRODUCTION 

Let A denote the algebra of functions analytic on the open unit disc 
D = {Z : 1 .a 1 < I} and continuous on D, the closure of D. Let A” denote 
the algebra of functions f such that f and all its derivatives belong to A. By 
identifying each function in A” with its restriction to 30 = {z : 1 z ( = l}, 
A” may be regarded as a closed subalgebra of P(aD), the space of complex- 
valued infinitely differentiable functions on 80. A closed subset E of aD is 
said to be a strong interpolating set for A” if for every q~ E P(aD) there exists 
f E A” such that 

!!$ (eie) = dip, x (4, 

for all j = 0, 1, 2,... and all ei8 E E. We give here a characterization of the 
strong interpolating sets for A”. 

Our solution to this interpolation problem is in terms of the function 

p(z) = ~(2, E) = inf{l 2 - w / : w E E}, 

the Euclidean distance from z to E. 

THEOREM 1.1. A closed set E C aD is a strong interpolating set for A” ;f and 
only if there exist constants Cl and C, such that 

(1.1) 

for all a < b. 

556 



THE INTERPOLATING SETS FOR A” 557 

We remark that (1.1) is equivalent to the condition that the harmonic 
extension u of - log p(eie, E) into D satisfy 

u(reie) = O(log &-) , r --f I-. (1.2) 

(See Lemma 3.3.) 
The solution to the corresponding problem for A and C(aD), the space of 

continuous functions on aD, was given by Carleson [2] and Rudin [ 111. They 
showed that the closed sets E C aD with Lebesque measure zero are the 
ones with the property that for every cp E C(aD) there exists f E A such that 
f(e”“) = v(eie) for all eie E E. 

The closed sets of measure zero in i3D are also the (proper) boundary zero 
sets of the functions in the space A. Theorem 1.1 shows that the situation 
is different in A”. Namely, the (proper) boundary zero sets of the functions 
in the space A” are precisely those closed subsets EC aD for which 
- logp(eie, E) is integrable on aD ([l, 9, 13, 141). Such subsets of aD are 
called Carleson sets. Clearly, (1.1) is a more restrictive condition on 
- log p(eie, E), so that in A” not all Carleson sets are strong interpolating 
sets. 

2. THE DUAL PROBLEM 

We are going to prove Theorem 1.1 by stating it in terms of functional 
analysis, formulating the equivalent dual problem, and then solving the dual 
problem. The proof is based on the one given by Glicksberg [3] for the 
analogous problem for A. 

Let E be a closed subset of aD and let I(E) denote the ideal of all functions 
in P(aD) which vanish, together with all their derivatives, on E. Also, let 
I,(E) = I(E) n A”. Consider the quotient map from Cm(aD) onto 
P’(aD)/i(E), and denote the restriction of this map to A” byg. The problem 
of characterizing the strong interpolating sets may be stated: for what closed 
sets E C aD does g map A” onto Cm(aD)/I(E) ? 

There are two obvious comments to be made. First, if =!% is onto, then 
I,(E) # (0). For, let F E A” be such that F(eis) - e-is belongs to I(E). Then 
G(z) = 1 - zF(z) belongs to IA(E) and obviously is not identically zero. 
Consequently, if W is onto, E must be the zero set of a nontrivial A” function; 
that is, a Carleson set. 

Second, note that if E is a proper closed subset of aD, then the range of 9 
is dense in P(aD)/I(E). To show this, is suffices to show that if K is a proper 
closed arc in aD, then the A” functions restricted to K are dense in C”(K). 
By Runge’s Theorem the functions eine, 72 = 0, i- 1, f 2,..., belong to the 
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closure in C”(K) of the set of A” functions restricted to K. The proof is 
finished by observing that the finite linear combinations of the functions 
eine, n = 0, h 1, & 2 ,..., are dense in Cm(K). 

Let &@‘(a@ denote the dual space of C’(aD); that is, 9’(Z)) is the space 
of Schwartz distributions on aD. Let I( (respectively I,(E)I) denote all 
the distributions T E Q’(aD) such that T(f) = (f, T) = 0 for all f E I(E) 
(respectively I,(E)). Let GZ denote the analytic distributions; that is, 

GY={TEW(~D): T(f) =Oforallf EAT}. 

An equivalent form of the interpolation problem is given by the following 
proposition. 

PROPOSITION 2.1. Let E be a proper closed subset of aD. Then W is onto if 
and only if every T E I,.,(E)l can be decomposed into the sum of two distributions, 
T = T1 $ T, , with T1 E a and Tz E I,(E)l. Moreover, whenever such a 
decomposition exists, it is unipe. 

Proof. We have seen that 9%’ : A” ---f Cm/I(E) has dense range. Hence 9%’ 
is onto if and only if W has closed range. By the closed range theorem for 
Frechet spaces[7, p. 3081, W has closed range if and only if the dual map 
9Z’ : (Cm/I(E))’ -+ (A”)’ h as closed range. Identifying (Cm/I(E))’ with I( 
and (A”)’ with 9/csl we conclude that W’ has closed range if and only if 
(I(E)1 + a)/@ is closed in 9’/a that is, when I( + GY is closed in 9. 
It is easily seen that I,(E)I is the closure in 9’ of I( + GY. Thus BJ is onto 
if and only if I( + Q? = I,(E)l. 

Finally if T E I( n GZ then set F(z) = T(l/(z - s)). As T EI(E)~, F is 
analyticoffE.AlsoT~~impliesFrOin]z) >l.HenceF=O.SoT=O 
and I( + GZ is a direct sum. 

3. PROOF OF THEOREM 1 .l 

We are going to prove Theorem 1 by making use of the criterion of Pro- 
position 2.1. Half of this proof requires a close study of the distributions 
T EI,(E)I and makes use of results proved in [13]. 

Every T E 9’(aD) has a Fourier series T(e@) = C,“=;-, d,eiae, convergent 
to T in the strong topology of 9(aD), where d, = (e-“ne, T). Let B’ denote 
the closed subspace of 9(aD) consisting of those distributions with vanishing 
positive Fourier coefficients. The space Cm(aD) is the topological direct sum 
of A” and the closed subspace of C*(aD) functions with vanishing non- 
negative Fourier coefficients. Thus .W(aD) is the topological direct sum of B’ 
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and the distributions with vanishing nonpositive Fourier coefficients,i.e., 
the analytic distributions. Thus B’ may be indentified as the dual of A”. Note 
that if f(z) = CL0 a$’ belongs to A” and T(eie) = CL0 b,e-ine belongs 
to B’, then T(f) = (f, T) = Cl,, a,b, . 

For each T E B’, the transform T(c) = (fr , T), wheref‘(z) = [({ - a)-l, 
is a function analytic in (K U {co}) - D with log ( T(5)\ = O(log(l 5 / - 1)-l), 
j 5 1 -+ l+. If T has Fourier series cI=, b,e-ine, then T(c) = xzz0 b,c-” is the 
Laurent expansion of T(c) for 1 5 1 > 1. Also, T may be recovered from T(4) 
as follows. The functions T,.(eis), r > 1, regarded as elements of B’, converge 
to T in the weak topology of Y(aD), that is, for all g E C”(aD), 

T(g) = (g, T) = ily & Jy,g(e@) T(reie) d0. (3.1) 

Moreover, if T(c) is analytic in (6 u (co}) - D and 

log I W)l = Wodl 5 I - l)-7, I5 I--tlf, 

then (3.1) defines a distribution T E B’ with T(c) as its transform. 

THEOREM 3.1. Let E be a Carleson set. A function T(c), analytic for 
( 5 1 > 1, is the transform of a distribution T E B’ n IA( if and only if: 

(i) T(t) can be continued analytically to 6 - E; 

(ii) there are positive constants C, K, N such that 

I T(5)/ d G(L WN + K 15131; 

(iii) ?$ j” log+ I T(reie)I d0 = j” log+ I T(eie)l d6; 
-77 -97 

and 

(iv) T(0) = 0. 

Proof. Suppose T E B’ n IA(E Then (i) is Lemma 5.5 of [13], and (ii) 
is Lemma 5.10 of [13]. To prove (iii) and (iv), we use the representation for 
T(z), I z ( < 1, which was derived in the proof of Lemma 5.5 of [13]. It was 
shown there that if f  E I,(E) and T E IA(E then the distribution fT is 
analytic and in fact is an A” function. Further, T(z) = (fT) @)/f(z) for 
j z 1 < 1. Choosing f to be an outer function in I,(E), it is clear that, as a 
function in the unit disc D, T has bounded characteristic and has no inner 
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function in the denominator of its canonical factorization. Consequently, 
(iii) is satisfied([lO, p. 821). To verify (iv) observe that 

m  

T(O) = (fT) (0) (,c, ) unbn 

f(o)= f(O) 
-Lfi_T)-0. 

f(O) 

where the a,, and b,, are the Fourier coefficients off and T respectively. 
Conversely, suppose (i)-(iv) hold. Condition (ii) implies that 

I w31 = WI 5 I - l>“>, 151-l+. 

As remarked above, (3.1) defines T E B’ with T(t) as its transform. For 
f EI,(E), Taylor’s formula with remainder shows that for any positive 
integer n, 1 f  (z)I = O(p(z, E)“), p(z, E) -+ 0, ( z ( < 1. Hence, by (ii) and 
the bounded convergence theorem, 

(f, 2’) = jin+ & Iv f  (8”) T(reie) d0 = & 1” f(eie) T(eie) dt?. 
-77 --?r 

It is well known (see e.g., [IO, p. 821) that (iii) implies thatf (z) T(z), 1 z 1 < 1, 
has bounded characteristic and, in addition, has the factorization 

f  (4 n4 = B(4 +4 w 

where B is a Blaschke product, S is a singular inner function, and F is the 
outer function with boundary values 1 F(@)l = 1 f(eie) T(de)j a.e. Since 
F(eie) is essentially bounded, f(z) T( ) z is b ounded for ) z 1 < 1. Thus, by 
Cauchy’s Theorem and (iv), 

(f, T) = Y& Iv f(e3 T(eie) de = f  (0) T(0) = 0. 
-77 

Hence T E I,(E)‘- and the proof is complete. 
In order to use Proposition 2.1 and Theorem 3.1 to prove the necessity 

part of Theorem 1.1 we need the following. 

PROPOSITION 3.2. Let E be a Carleson set for which (1.1) fails. Then there 
exists a function T(z) analytic on 6 NE satisfying (i)-(iv) of Theorem 3.1 
and such that 

fails. 

log I WI = O(l% I_‘, 2, ) ? I~l--tl-, 
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We use the following three Lemmas in proving this proposition. Let P(Y, t) 
denote the Poisson kernel; i.e., 

P(Y, t) = 
1 -Y2 

1 - 2Y cos t + Y2 * 

LEMMA 3.3. Suppose g is nonnegative and integrable on aD. Let 

u(reie) = & J” P(Y, t)g(ei@-t)) dt. 
-n 

There exist positive constants C, , C, such that for all 6 > 0, 

s ,t,G8g(ei(e-t)) dt < Cl8 log 6-l + C,S, 

if and only if there exist positive constants C,‘, C,’ such that 

u(re@) < C,’ log 1 _ y -.A.- + c;. 

(3.2) 

(3.3) 

Proof. Suppose (3.2) holds and Y  > 0. Set t, = 0 and tn = 2@(1 - Y), 

n = 1, 2,... . With N the least integer such that try 3 rr, write the integral 
defining u as the sum of the integrals over the sets 

For t E Ej , 

Ei = {t : tivl < 1 t 1 < tj}, j = 1) 2 ,...) iv. 

Thus 

P(Y, t) < const 4-j(l - Y)-l. 

u(reie) < const(1 - Y)-’ j$O 4-j 1, t, <t ,g(eite+) dt. 
-.I 

The inequality (3.3) then follows by using (3.2) to estimate the integrals in 
the last sum. 

Conversely, suppose (3.3) holds. With Y  such that 6 = (1 - Y)/ 1/;, we have 
P(Y, t) $ + (1 + r)/(l - T) for 1 t 1 < 6. Thus 

, t, <e W, t) g(eice-t)) dt, 

> 1+y 
’ 4n(l -y) s g(ei(e-t)) dt. 

ItI?&? 

Now (3.2) follows from this and (3.3). 

409/36/3-7 
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LEMMA 3.4. Let E be a closed subset of aD, andfor k = 2, 3 let 

U,= zeD:l-_lxJ> 
I 

~(2, E)” 2” 
I 

. 

There exists #E Cm&-E) such that 0 d+(z) < 1 for all z ~6 -E, 

It(z) = 1 for x E lJ, , #(z) = 0 for z $ U, , and 

for all x E (I - E. 

Proof. If z E lJ, , then the distance from .z to the complement of Ua is 
clearly at least const p(z, E)2. Thus, it is well-known that such a function # 

exists. 
For the next lemma let Q denote an open subset of (r: and let p be sub- 

harmonic on 52. 

LEMMA 3.5. If v E Cm(Q) with 1 &x)l < Cl exp{C&)), z E Q, for some 
positive constants C, , C, , then there exists v E Cm(Q) such that &/a% = pl on 
Q and 

I v(4l G G'U + 1 2 I”)” exp(C2$(z)) 

4-4 
ZEE, 

where C,’ is a positive constant, 

+) = min(1, Q p(z, (I; - Q)}, and 4(z) = sup@(x + 5) : I 5 I < W>. 

Proof. This may be found in Kiselman [8]. It is a consequence of Her- 
mander’s L2 estimates for solutions to the equation &/a,% = p [4, Theorem 
2.2.1’1 and the estimate 

which is a special case of Lemma 4.4 of [6]. 

Proof of Proposition 3.2. Let 

deie) = log h , 

F(z) = exp I-$ fy, zg(eit) dt ,/ , 
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and u(z) = log 1 F(z)] . Then F is analytic for 1 x 1 < 1, and by Lemma 3.3, 

fails. 
Using the notation of Lemma 3.4, we claim that for some constant C > 0, 

1 
u(2) < log - 

Ph El 
+ c, Ixl< 1, z$U2. (3.4) 

To verify (3.4) write 

u(yeie) = & 1 p(Y, 0 - t)g(@) dt + & 1 P(,, 0 _ t)g(eit) dt, 
4 S2 

where 

and 

S, = eit E aD : n > 1 eit - 
I 

eisj >-$=p(a,E)/ 

S, z eit E aD : ) &t - ei@ 
I 

For eit E S, and reie $ Us , P(Y, 0 - t) < 1; therefore, the integral over S, is 
bounded by the Ll(aD) norm of g. The integral over S, does not exceed 
max{g(eit) : t E S,} which in turn does not exceed log p(reie, Q-1 + const 
for rC8 4 U, . 

Now take 4 as in Lemma 3.4 and define 

By (3.4), 

I P(x)I < Gex~Glog~@, W1h 2EKNE. 

Applying Lemma 3.5 with D = 6 N E and P(Z) = log p(z, Q-l, there exists 
v E C”“(cc; N E) such that 

av 
z=‘p and 1 v(z)\ < KU + ’ 2 I”)” p(z 

44 
Q-6 9 9 ZE&- E. (3.5) 

Set T(z) = z(+F - v). It is clear that T(z) satisfies (iv) and (i) of Theo- 
rem 3.1. Also, (3.5) implies (ii) since p(z) N 1 x 1 and +) = 1 when 1 2 1 
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is large. To show (iii) note first that e(z) = &p(x) when P(Z) < 1, so (3.5) 
and the integrability of log p(z, E)-l imply that 

lim 
r-i- s” log+ 1 w(reie)l d8 = Jn log+ ( o(eie)l dB. 

-* -57 

Secondly, since F is an outer function in D, 

lim 
r-11- 

s” log+ ( F(reie)l dB = Jn log+ 1 F(eie)I de. 
-n -?T 

These two facts clearly imply (iii). Thus T(z) is the transform of a distribu- 
tion in B’ n I,(E)I. The failure of 

log 1 F(z)1 = O(log(l - 1 z I)-‘), Izl--tl-, 

taken together with (3.4) implies the failure of 

log I +)Wl = W&l - I x IF1h Ixl+l-. 

Hence, (3.5) implies the failure of 

log 1 T(x)/ = O(log(1 - 1 Z ])-I, lX(+l-. 

Proof of Theorem 1.1. First, suppose that (1.1) holds. We are going to 
show that there is a decomposition of the form described in Proposition 2.1 
for every T E I,(E)‘-. Then E is a strong interpolating set by that proposition. 
Since .9’(aD) = B’ @ @, it is enough to prove this for T E B’ n I,(E)‘-. 

Take T E B’ n I,(E)‘-. By (i) of Theorem 3.1, T(c) can be continued 
analytically to (5: N E. Moreover, (iii) of Theorem 3.1 implies that for 
1x1 <l, T(z)h as b ounded characteristic and has no singular factor in the 
denominator of its cannonical factorization. Thus 

log 1 T(reie)l < & 1” P(Y, 0 - t) log I T(eit)l dt, T < 1. 
--n 

Then by (ii) of Theorem 3.1, there are positive constants C, , Ca such that 

where 

u(x) = $1” P(r, 0 - t) log & dt, 
--n f  

is as in Lemma 3.3. Since we are assuming (1.1), Lemma 3.3 implies 

log I W4l = O(log &) , 12 I--+ l-. (3.6) 
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Because (3.6) holds, 

T-(g) = (g, T) = Jii+- & /: g(e@) T(reie) d@, g E cvq, 
?7 

defines an analytic distribution. We claim that T = (2’ - T-) + T- is the 
desired decomposition. It is immediate from (3.1) and (3.6) that the distribu- 
tion T - T- is supported on E. Thus, by Theorem XXX111 of [12], 
T - T- E I(E 

Conversely, let E be a Carleson set but such that (1 .l) fails. Then according 
to Proposition 3.2, there exists a function T(t) analytic in (5 N E satisfying 
(i)-(iv) of Theorem 3.1 but such that 

log I WI = O(log &) a I 3 I --+ 1-3 

fails. Now by Theorem 3.1, T(l) is the transform of a distribution 
T E B’ n I,(E)I. We claim that T admits no decomposition T = Tl + T, 
with Tl E 02 and T, E I(E Suppose such a decomposition exists. Taking 
f&z) = {({ - x)-l, it is routine to verify that the function T2([) = (fc , T,) 
is analytic on 6 N E. Since Tl E 12, 

T(5) = t fc , T) = (fc 2 Tl + Ts) = UC 9 Ts) = T,(5) 

for I 5 ] > 1. But T(5) is also analytic on (5 N E, so T(5) = T2(iJ for 1 5 ] < 1. 
Since T E B’, 

( fr I TJ = ( fc , 2” - TJ = - ( fc , T,) = - T&J = - T(l) 

for 1 5 1 < 1. Because Tl is a distribution, it is easily seen that 

log I(fr 7 TdI = Wgtl - I 5 I)-‘)> 151-l-* 

But this contradicts the failure of 

log I T(t)1 = O(log(l - I 5 1)-l>, I 5 I - 1-e 
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