THE UNIVERSITY OF MICHIGAN
COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS

Department of Communication Sciences

Technical Report

THE BEHAVIOR OF ADAPTIVE SYSTEMS WHICH EMPLOY
GENETIC AND CORRELATION ALGORITHMS

John D. Bagley

ORA PROJECT. 01252

supported by:

DEPARTMENT OF HEALTH, EDUCATION,. AND WELFARE
PUBLIC HEALTH SERVICE
NATIONAL INSTITUTES OF HEALTH
GRANT NO. GM-12236-04
BETHESDA, MARYLAND

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

December 1967

“@’\ 0,;"’\

ML |

This report was also a dissertation submitted in
partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in The University of
Michigan, 1967.

TABLE OF CONTENTS

Page

LIST OF 'TABLES . . . + &« & & v vttt e e e e e e e e e e e e e v e Y
LIST OF FIGURES & & v v v v v v i e vt e e e e v e v oo Vi
ABSTRACT . . . & & v v v i e e e e e v e e e e e e e e e e e e . L vid
1. INTRODUCTION . + v v v v v v v v v v v v et e e e e e e e w1
1.1 Motivation v v v v v v v v v v e e .1

1.2 Preview . v v v v v v i e e e e e e e e e e e e e e e e S

2. A PARADIGM FOR ADAPTIVE SYSTEMS 8
2.1 Plan . 8

2.2 Orientation . 8

2.3 Definitions . . C e 9

2.4 Recursive Connectlon Equatlons B)

2.5 Composite Definitions T V4

2.6 Guidepost v v h h h e e e e e e e e e e e e e e e .20

3. SOME APPLICATIONS AND IMPLICATIONS OF THE PARADIGM 21
3.1 The Learning Machine of Friedberg 21

3.2 The Checker Player of Samuel 28

3.3 Adaptive Data Clssifiers 36

3.4 Guidepost L0 0 h e e e e e e e e e e e .. 39

4. ON META-ENVIRONMENTS B 3 |
4.1 Idealization of the Meta- Env1ronment 5 |

4.2 A Partition of Meta-Environments —— The TEA 43

4.3 An Alternative Partition — The SCF Y

4.4 Relationship Between TEA and SCF Partitions of MEs B 1

4.5 The Game of Hexapawn — An Example 47

4.6 Simulated Meta-Environments B 2 |

4.7 The Generation of Depth One Slmulated MEs T A

4.8 Higher Depth Simulated MEs 63

4.9 Guidepost v i 0w e e e e e e e e e e e .. 66

5. THE CORRELATION ALGORITHM — DESCRIPTION 68

5.1 Introduction & ¢ ¢ v ¢ v v v v 4 e v e e e e e . . 68
5.2 The Experience Array « . v 4 v o v v oo+ .. 69
5.3 The Recorder Algorithm 70
5.4 The Generator Algorithm 73
5.5 The Column Selector « v v ¢« v v v v v v v o . 175
S.6 The Row Selector . . . & v v v v v v v v v o v o v v v v . T6
5.7 Hints e £
5.8 Guidepost v v b o e e e e e e e e e e e 19
6. THE CORRELATION ALGORITHM ——-QUANTITATIVE CONSIDERATIONS 80
6.1 General - 1
6.2 Phase I Con51derat10ns O 1
6.3 Phase II Considerations O . 1
6.4 Phase III Considerations — General 1

iii

Page

6.5 The Level One Adaptor vs Depth One MESoovevvonen 93

6.6 The Level One Adaptor vs Higher Depth MEs Veeeeans 106

6.7 Implications for Real World Meta-Environments 110

6.8 Adaptors with Level Greater Than Onecvevvuvnvenen 111

6.9 Applications of Higher Level Adaptorsc.ccvieuuvenen 113
6.10 Random Column Selection............ovuvun. e i 116
6.11 Non-Random Column SeleCtionvvvvrivinnrnnnnenenenons 124
6.12 Phase III SUMMATY . itvuvnirnnenrnrnnsosoennansnenoencnsnss 131
6.13 Analysis SUMMATY +ovvvvereeenenonesoonsnonosnsnscasasnsoas 131 .
6.14 Some Pru:tical Considerationscevvvvvvenvnnnns .o 132
6.15 GUIdEPOS . hii ittt it it i i i i i i i i i i e 132

7. THE GENETIC ALGORITHM —— DESCRIPTIONccviiiriivnnnnennnnnnn 133
7.1 INtrodUCTION tuvuiivnienenrnornononoonenensonsasnssasnsnnas 133

7.2 Biological Preliminariescveeiiiinvnneneerncnnoenoas 132

7.3 Algorithmic Preliminariescevievieneneonenananaons 135

7.4 Conjugation .uuevueireenesneesnonnconrenosassnsonesnsosnnns 136

7.5 Phenotype EXpressionciviiiiiiiiiiiniiiineiiiiiiaaans 136

7.6 Environmental SeleCtion ...iviuiierriiniinnevonroronasanens 137

7.7 GametOgeNESIS .+ vvvutniteireeinnrtrenenoenonenosasneineonnons 138

7.8 GULAEPOST ittt ittt it i i e i i e i i e e 143

8. THE GENETIC ALGORIT:M — QUANTITATIVE CONSIDERATIONS 145
S R ¢ o o ¢ D b e S 145

8.2 The SImulation ..vvveirviirivniriinnerenanes e 147

8.3 Principle Experimental Resultsccieiiiiieninvnnanas 152

8.4 Population SizZeiiveiiiiiiiiiiiiiiiiiiiiioiiieonaanonn 156

8.5 Selection FaCtOTS ..ivviirnerunernreninennsonseoneonnsannas ‘156

8.6 Dominance e 164

8.7 Crossover P 166

8.8 Mutationviiiiviiiiiiiiiiiiiiiiiiiii s PP 166

8.9 Inversion e casesarevees 168
8.10 Practical Considerationseeveierervoronnenocooonnseoas 170
8.11 GULIdepPOST teviiiiiiiiinnterenenrnariontoroneacoas Cevenas 171

9. CONCLUSION .t ttvveesnvevunnennnnenenonsnsesononsoosonsnsasasnnens 172
V' 11117 o 172

9.2 What NeXt? t.viitiininiiiiinnoinernennerenosnesanronsansnns 173
BIBLIOGRAPHY . ivvvvuinttneenenenonensnnenosonensnssensennnenensacns 176

TABLE OF CONTENTS (concluded)

iv

LIST OF TABLES

Table Page
3.1.1 Summary of Paradigm Applicationsc.ccococeocanoccanen 24
3.1.2 Extent Reduction of Various COmputersocessoecco 25
4,4,1 Definition of the SCF.(2) ME Subfunctionscoococoooe 45
4,4,2 Complete Definition of the ME Functionocceococns 46
4.5.1 Utility Value ASSIigNmMENt ...oooooocoooosorooosossoososos 49
4,5.2 Hexapawn Board Coding (Part 1) ..e.eeeovooscooncennscs .. 50

Hexapawn Board Coding (Part 2)ccerssscoccnscsossss 51
Hexapawn Board Coding (Part 3) «..oeevoscocscosncconoons 52
Hexapawn Board Coding (Part 4)ccocecconsnoocosoocs 53
4,5.3 Computer vs Opponent No. 1 ...cieunivceocecnuncoccooonns 55
4.5.4 Computer State Table Sorted by Controlling Parameter ... 56
4,5.5 Definition of Depth 1 ME Subfunctions cooono oo 56
4,5.6 Computer vs Opponent NOo. 2 cc.ocoooncooncaocnoonn eeonoenn 57
4,5.7 Definition of Depth 2 ME Subfunctlons oooooooooooooooooo 58
4,5.,8 Computer vs Perfect Opponent (No. 3) ...c.coeovvoccooaans 59
4,5,9 Computer vs Opponent No. 4 ...co:cucoooocnoconooncsosooas 60
4,7,1 Random Adaptor vs ME(1)ccccovoocencnconcacoannacans 63
4,8.1 Example of a Defective ME(2) ATTayocecovcocosoncocs 64
4,8.2 Desired Distribution of Utility Valuesccccconconone 65
4.8.3 Actual Distribution of Utility Valuesccoococcocnn 65
4,8.4 Example of a Constrained ME(2) Arraycooocoscovoos 66
6.2.1 Phase I Direct Computationcoocoocoocooosoacos ses oo 83
6.2.2 Phase I Normal Approximation Computation (Part 1) 86
Phase I Normal Approximation Computation (Part 2) 87
6.3.1 Phase II Computations (Part 1) ..c..ccooeceocannonoooanco 91
Phase II computations (part 2)oceooococncosocoanoan 92
6.5.1 CA(1) vs ME(1) With A2 = 35 ..eiuerenuenenronoccnccncnss 98
6.5.2 CA(1) vs ME(1) with A2 = 20 4 oo eeceacecsaccoaacoo 99
6.5.3 CA(1) vs ME(1) with A2 = 4 .. c.ccveoooonococaoosoaooncan 100
6.5.4 CA(1) vs ME(1) with AZ = 0 cc.vccvccocoocoooosnnsoonancs . 101
6.5.5 CA(1) vs ME(1) with A2 = -4 .. . civiiociocoonoonnoansns 102
6.5.6 CA(1l) vs ME(1) with A2 = =20cvvcceococncososoosooas 103
6.5.7 CA(1) vs ME(1) with A2 = -24...cccoveeuconioocooonnaan .. 104
6.5.8 Trials Required for CA(1l) to Maximize ME(1l)
as a Function of € ..ceocococoocoooovoooncoonocsoncoanans 106
6.10.1 Number of Column Selections Per Trialcoceccoo0s 118
6.10.2 QT(F) as a Function of F for Various Levels 119
©6,10.3 CA with Random Column Selectionccocovocesooooocoons 125
6.11.1 CA with Maximum Element Column Selectorcooocc00 127
6.11.2 CA with Maximum Relative Deviation Column Selector 129
6.11.3 CA with Total Deviation Column Selectorccccoococns 130
6.13.1 Summary of Results for the Correlation Adaptor 131
8.2 List of All Experimental Results (Part 1) ..ccooococsos 149
List of All Experimental Results (Part 2) 150
List of All Experimental Results (Part 3)ccooc0n 151

Table

CoO 00 00 Co OCo OO0 OO OO OO0 CO OO0 00 OO OO0 OO CO OO0 OO0 OO0 C0 0o OO
OCOWOoLNNJVTuTunTuTnTUTUTIVTUTE BB UKW
NN NN WONFE OONOUTESE RN WD DN

Figure

(52 Iy

~N
~N

NN

LIST OF TABLES (concluded)

Genetic Adaptor vs Depth 1 MEcoviiiiiiiieonss
Genetic Adaptor vs Five Distinct Depth 2 MEs
Population Tests in Depth 1 ME without Mutation
Population Tests in Depth 1 ME with Mutation
Population Tests in Depth 2 ME with Mutation
Selection Tests without Mutation Bl =T
Selection Tests with Mutation Bl =Tccocuennns
Selection Tests without Mutation Bl = 100
Selection Tests with Mutation Bl = 100 beesnsaenns
Selection Tests in Depth 1 ME with Mutation Bl = 100 ..
Alternate Selection Tests without Mutation Bl =T
Alternate Selection Tests with Mutation Bl =T
Alternate Selection Tests without Mutation Bl = 100 ...
Alternate Selection Tests with Mutation Bl = 100
Crossover Tests in Depth 1 ME without Mutation
Crossover Tests in Depth 2 ME without Mutation
Crossover Tests in Depth 2 ME with Mutation
Mutation Tests with Bl = T ... iviiiiiieininieorncneonss
Mutation Tests with Bl = 100couiiiiiiiorncnonnnns
Inversion Tests in Depth 1 ME without Mutation
Inversion Tests in Depth 2 ME without Mutation
Inversion Tests in Depth 2 ME with Mutation

LIST OF FIGURES

Structure of the Paradigmovovviviiiiiiianns,

Level One EXperience AIrTaycovevcoensnsonesassnsns
Level Two Experience ATrrayc.oeceveevsvacasnonns

Offspring Produced as a Result of a Single Crossover ..
Consequences of a Single Inversioncovvenvnns

vi

Page

154
154
157
157
157
160
160
162
162
162
165
165
165
165
167
167
167
168
168
169
169
169

Page

71
71

140

ABSTRACT

A mathematician may be motivated to develop a theory purely from
considerations of the theory itself, but a scientist formulates a theory
with the intent that, under some natural interpretation, the theory will
say something useful about some aspect of the observable world. A prac-
titioner, on the other hand, is usually strongly motivated to solve
a particular problem and less interested in the development of a theory.
This thesis is intended to be a scientific study of some of those aspects
of the real world which have been termed "adaptive', and attempts to
develop some aspects of a theory which adequately mirrors and hopefully
gives some insight intc adaptive behavior.

One of the characteristics of the emerging field popularly called
artificial intelligence (we prefer, and will use exclusively, the less
controversial term adaptive systems) is the prevalence of the practi-
tioners. Although this is to be expected and is indeed typical of any
new area of inquiry and although much of the work being done has some
value in itself, it does present difficulties both for the non-specialist
who has a need to understand the significance of the ongoing efforts and
for the theoretician who would like to be able to model them.

Accordingly, one of the first tasks of the scientist is that of
systematization. To that end, we have developed a framework or paradigm
which encompasses much of the work that has been accomplished in the field
of adaptive systems. This paradigm effectively separates the learning
algorithm from the heuristic aspects which lie in a meta-environment.

We then define a concept of meta-environmental depth which is
intended to reflect the degree of interaction among the parameters of
the meta-environment. We present an example of meta-environment which
includes the game of Hexapawn and show how its depth can be made to depend
upon the strategy chosen by a fixed opponent.

Next we describe a correlation adaptor which is a prototype and ex-
tension of adaptlve algorithms which have appeared in the literature and
develop expressions which can be used to determine the results of inter-
action of correlation adaptors of arbitrary level with meta-environments
or arbitrary depth. These expressions are evaluated for a special case
of simulated meta-environments and the mean number of trials required for
their maximization under a variety of conditions is computed. These
results indicate that the level of the correlation adaptor must be closely
matched to the depth of the meta-environment and that it is of limited
use for meta-environments of depth greater than three.

Next we formulate an alternative algorithm based upon the mechanism
of natural genetic systems and demonstrate by means of simulation experi-
ments that the genetic adaptor does well in both depth one and depth two
meta-environments when compared to the correlation adaptor. The price
paid for this versatility is quite small and, under certain conditions,
the genetic adaptor is superior even to the matched correlation adaptor.

vii

Finally we determine the effects of a limited range of variation
of the control coefficients upon the optimizing behavior of the genetic
adaptor.

In general, the results obtained in this thesis (particularly those
pertaining to the genetic adaptor) have implications for two general
areas — the theory and practice of problem solving and the theory of
natural genetic systems.

viii

1. INTRODUCTION

1.1 Motivation

A mathematician may be motivated to develop a theory purely from
considerations of the theory itself, but a scientist formulates a theory
with the intent that, under some natural interpretation, the theory will
say something useful about some aspect of the observable world. A prac-
titioner, on the other hand, is usually strongly motivated to solve a par-
ticular problem and less interested in the development of a theory. This
thesis is intended to be a scientific study of some of those aspects of
the real world which have been termed "adaptive,'" and will attempt to de-
velop some aspects of a theory which adequately mirrors and hopefully gives .
some. insight into adaptive behavior.

One of the characteristics of the emerging field popularly called
[Fein, 1964]* artificial intelligence (we prefer, and will use exclusively,
the less controversial term adaptive systems) is the prevalence of the
practitioners. Although this is to be expected and is indeed typical of
any new area of inquiry and although much of the work being done has some
value in itself, it does present difficulties both for the non-specialist
who has a need to understand the significance of the ongoing efforts and
for the theoretician who would like to be able to model them.

Accordingly, one of the first tasks of the scientist is that of system-
atization. To that end, we have developed a framework or paradigm which
encompasses much of the work that has been accomplished in the field of
adaptive systems. Since this paradigm lies at the base of all of our
succeeding work, we feel that it is appropriate that we begin by presenting

a brief statement of our aims..

*References to the bibliography are indicated by square brackets which
enclose the author's name and the year of publication.

We wish ultimately to be able to deal with '"real world" problem
environments which are by their very nature exceedingly difficult. In
fact they are usually so difficult that any system that we propose to deal
with them is almost certainly doomed to defeat unless it is able to take
advantage of all of our a-priori knowledge of the environment and all of
the intuition, insight, experience, heuristics, ingenuity, and downright
dirty tricks that we can muster. On the other hand, it seems undesirable
to have to begin afresh on each new problem with which we are faced. We
would like to be able to learn something from our problem solving experience
so that we might be able to formulate and prove (or at least demonstrate
the feasibility of) some general statements concerning classes of adaptive
systems and environments. In short, we would like to have a theory of
adaptive systems in order to guide us in building systems so that our.
reliance on ad-hoc rules and empirical relations is minimized and so that
we will have a reliable guide wherever and to whatever extent this is
possible.

With these considerations in mind, we have formulated a paradigm
with the hierarchical structure shown in Figure 1.1. The bottom layer,
containing the box labelled "E" represents the real problem environment.
The second layer which contains the boxes labelled ner, 0" and "H" is
intended to be the repository of all of the a priori and heuristic infor-
mation that is at our disposal. The adaptor, "A", located in the third
layer is the embodiment of the adaptive algorithm. It is constrained to
operate in a meta-environment. consisting of the real problem environment
as well as those tools, contained in the second layer, which we have deem-
ed to be the most effective vis-a-vis that environment. In the meta-
environment, the adaptor's task is to maximize the estimated utility

provided by the Utility Estimator, '"U". Since all of the specialized

S

| 5

Y
In

A O

Y

I5

A
Op

B
v s
A
I Ig 0g Iy
E

FIG. 1.1 STRUCTURE OF THE PARADIGM

ad hoc knowledge of the real environment is contained in the second layer,
we can begin to deal with the remainder of the'system, the adaptor, in
more general terms and are able to consider its broader and more far-reach-
ing aspects. Clearly, the performance of a systém, any system, depends
upon both the environment and the inventory of tools and methods which

the system has at its disposal. Thus any attempt to compare two systems
against the same real environment should strive to distill the essence,

the adaptors, of the complete systems from the pre-programmed information
and make the comparison on the basis of identical available tools.

The present paradigm is quite limited in terms of what we would ulti-
mately like to be able to achieve. It is clearly possible to conceive of
a much more general adaptive system — one which has the ability to, in
effect, build and modify its own tools. Such a system would be much less
dependent upon any information (or misinformation) that we are able to
supply it initially and could be expected (if properly designed) to do
well in a broad class of environments. Among other features, it would
have the ability to find a best recoding of the information it receives
from the environment and would be able (in our terms) to change the
functioning of its own computer. We have chosen to concern ourselves
with the more limited class of adaptive systems outlined here in the hope
of being able to provide some insight into the design of practical system
to solve real problems that arise in the near future. One way of looking
at this work is to consider that we have concerned ouwselves with the
efficient use of heuristic methods. One might say that we are investi-
gating what Newell and Simon [1964] refer to as simple learning techniques
{although their simplicity is, for the most part, only an illusion).

They look upon these techniques as the '"final polishing to be applied to

any heuristic program." We agree with their general notion, but it
appears to us that the selection of such techniques may be equally as
important as the selection of the heuristics for any particular problem.
Surely, at this stage of knowledge (or ignorance), we cannot afford to
neglect either aspect.

Next, we must add a disclaimer. Although we have stated that we are
ultimately concerned with the solution of real problems and we have
attempted to show how the topics of this thesis are related to the solu-
tions of such problems, the aim of this thesis is to investigate certain
characteristics of adaptive algorithms. In order to achieve a measure of
generality and wide range of application for the results, we will postulate
both adaptors and meta-environments that will bear little detailed resem-
blance to the adaptors one would build or the specific meta-environments
one would meet in practice. The reason for this is not hard to see. In
seeking to deal with essentials, we have omitted consideration of many
of the details of specific adaptors which enable them to deal with specif-
ic meta-environments. Likewise, we will postulate idealized meta-environ-
ments which mirror only certain aspects of real meta-environments. We are
convinced that those aspects which we have chosen to consider here are
significant to the real world so that the results we obtain can be applied
with profit. We hope that we will have convinced the reader by the time

we have concluded this work.

1.2 Preview

Chapter 2 contains the formal development of the aforementioned
hierarchical paradigm and gives precise definitions of such concepts as
adaptor, environment, meta-environment and the like. Each definition is

followed by an informal description of its intended interpretation.

Chapter 3 proceeds to examine the details of three different examples
of problem environments along with the adaptive systems constructed by
skilled practitioners to deal with them. The Learning Machine of
Friedberg [1958], the Checker Player of Samuel [1958], and various Adap-
tive Data Classifiers by several experimenters are fitted in detail to
the paradigm and more importantly, we demonstrate how the paradigm is
able to give important insight into these efforts.

Chapter 4 deals with meta-environments and with systematic methods
with which to represent and classify them. The concept of meta-environ-
mental depth is introduced, formalized, and illustrated by means of an
example. A generation procedure for simulated meta-environments is given.

Chapter 5 contains a description of a particular class of adaptive
algorithm which we have termed the correlation adaptor. This adaptor
typifies many of the adaptive algorithms which have been propounded in
the literature, but is considerably more general.

Chapter 6 examines the consequences of interaction between corréla-
tion adaptors of various levels and meta-environments of various depths.
Analytical results are given for both the general case and for the
specific case of the simulated meta-environments.

Chapter 7 describes a different class of adaptive algorithm —
the genetic adaptor. This adaptor, as the name implies, is inspired by
biological mechanisms. The emphasis is, however, on the specification
of an adaptive algorithm rather than on a strict imitation of the biolog-
ical situation although the natural process is modeled whenever feasible.
The result should be of interest both to the practitioner and to the
theoretical biologist.

Chapter 8 contains the results of simulation experiments in which

the various genetic adaptors were immersed in simulated meta-environments

of depths one and two. In addition, the results of limited experimenta-
tion on the control coefficients of the adaptor are given and interpreted.
Chapter 9 concludes this thesis with a summary of its contents and

a look toward the future. -

2. A PARADIGM FOR ADAPTIVE SYSTEMS
2.1 Plan

Our plan is to introduce, in this chapter, the bulk of the formal-
ism that we shall need in order to give the discussion a concrete basis
and to pave the way for the main parts of this thesis.

The next section provides a brief overview of the paradigm. Follow-
ing that, the formal definitions are given. Each is followed by an in-

formal interpretation as an aid to the reader's intuition.

2,2 Orientation

Figure 1.1 illustrates the Adaptive Universe to be described in this
section, We shall pass lightly over that figure proceeding from the
bottom to the top.

E is intended as the environment of the adaptive system. As such
it contains both the description of the problem and a payoff or.utility
function. It is a finite automaton of the Moore type with an associated
utility function Ug-

C, the computer, is a function and is the agent which acts directly
upon the environment. It receives inputs both from the environment and
from the adaptor. U is the utility estimator which supplies an estimate
of the action which the computer performs on the environment. It is
a finite automaton of the Mealy type. H, the hint computer, is a function.
Its purpose is to supplement the computer by supplying additional infor-
mation to the adaptor.

A is the adaptor whose output, OA’ directs the activity of C and
whose input includes the estimate of success provided by U. Ais

a Mealy type finite automaton as are A', A", ... etc. which perform

similar functions on a higher level.

Dynamically, the interaction of the units of the universe proceeds
as follows. . C consults the environmental output (OE) as well as the pa-
rameters supplied to it by A, (OA) and on this basis generates a move

(0 This move causes a change in E which is reflected in its output

o
E).- The change is evaluated by U and the evaluation OU together with
the additional information generated by H, (OH) is sent to A. A, then
readjusts the parameters of C, (OA) in such a way that, hopefully, C's

future moves become better as measured by U. C then generates another

move and the process continues.

2.3 Definitions

Before we begin the formal definitions of the units of the adaptive
universe, we will find it useful to introduce a number of general defini-
tions and notational conventions,

Definition: A Moore [1956] Model of a finite automaton is a sextuple:
‘1& B <Ia’ Qa’ Ou’ an’ 4y Oa>
where Ia is a finite nonempty set (Input symbols)
Q is a finite nonempty set (Internal states)
0 is a finite nonempty set (Output symbols)

Q € Qa finitial state)

is a function: G Qa X Iu > Qa (transitionifunction)

o 1is a function: 0, ° Q, ~ Oa (output function)

Definition: A Mealy [1955] Model of a finite automaton(lé is the same as
the Moére Model except that the output function o& has as its domain

Q& X I& and has as its range O& and, in addition, an initial output
symbol O_ € 0, is specified.

0
Notational Convention: We shall define the elements of the adaptive

universe in terms of the definitions given above. Subscripts will be

10

used to denote specific units (e.g. QA are the states of the Adaptor).
Definition: An Adaptive Universe @ is an n+5 - tuple:
where Q= <E, C, U, H, YA, A'y, ..., A(n)>
Definition: E (the environment) is a triple:
R CHRTN
where aﬁ is a Moore model finite automaton and;
U, is a finite subset of positive integers (utility values)

E

u. is a function; up QE x I

B > UE (Utility function)

E
subject to the following considerations:

We allow qg to be a partial function because every move might not be
applicable to every state. There may be constraints imposed by the 'rules
of the game'". We will confine our attention to computers which generate
only legal moves, a restriction which makes it unnecessary to include QE
in the domain of A It will become evident when the eguations which
~govern the interconnections are written that IE is itself a function of
Q- Under interpretation, this means that the moves or transformations
supplied by the computer have been computed on the basis of, and are
applicable to, the present environmental state so that the transition
function need only consider changes. The dependence on QE is included
explicitly here only in the interest of uniformity of exposition.

0E has the same cardinality as SE and is restricted to be 1:1 onto
in order that each state be given an unique description. In all of the

finite environments which we consider u, is, in principle, computable

E
although there may be practical difficulties. See, for example, the
comments on the Checker Player in Section 3.2,

E is the environment — the real problem that we wish to solve. The

input to E, IE’ is a move or transformation. E's outputs are of two types:

11

(1) a description of the internal state of E,(OE) and (2) an indication
of the utility of the move with respect to the current state, (UE)° There
are three points to be noted about this utility: (1) It is a true utility
and gives an absolutely correct rating of move-state pairs; (2) Because of
this, it may be difficult or inconvenient to compute so that it is not in
general available to the rest of the formal system although it may be
available to the theorist or experimenter who is supervising the situation;
(3) It is a local utility in that it evaluates single move-state pairs as
opposed to a global utility which ranks complete strategies or sequences

of moves.

It is often the case that the local utility is used to compute a global
utility which is in turn used to judge the performance of the system. Thus,
for example, one might wish to discover how well the system does in genera-
ting sequences of moves and in particular those sequences which enable the
system to gain the maximum amount of utility in the least number of moves.
It is even possible for one to go a step higher and attempt to determine
how well the system does vis-a-vis entire sets or sequences of environmental
problems (see for example Friedberg's [1959] problem number 14). We shall
concentrate our efforts on evaluation of systems with respect to the
number of trials which they require to converge to a point of maximum
utility.

Definition: C (the computer) is a triple; C = <§C’ Ocs od>
where ¢ is a function; oc ¢ IC > OC \

C generates moves, (OC), on the basis .of the information it receives
from the environment and the adaptor. The discussion following the defini-
tion of a strategy in the following section should serve to further clarify
the nature of the Computer.

Definition: U (the utility estimator) is a Mealy type automaton,

12

and
g €Y

T is an estimator of the utility of the action which the computer
performs on the environment. This estimate (OUJ is fed back to the
adaptor, A, and is the only indication of the worth of its generated pa-
rameter values that A receives. The inputs to ﬁ}(lﬁ) are derived from
the outputs of A and the state description of E and thus, U'might con-
ceivably be the same as U. Since it has the same inputs as C, U could
imitate the computation of C, determine the move, and use this information
together with the state description to compute the true utility.

The task of the Adaptor is to maximize the value of the estimated
utility (which may or may not be a good estimate of the true utility).
Note that the restriction to adaptors which maximize U really involves no
loss of generality since if, for example, the environment requires tpe
minimization of some quantity, appropriate adjustments may always be made
in the definition of U, Thus the utility estimator provides a quantity
for the adaptor to maximize even in those cases where the true utility

may be impractical to compute. Ultimately, however, the performance of

the system will be judged by some deus ex machina on the basis of the

true utility so that no small part of the difficulty in setting a real
problem into this context involves the judicious choice of the utility
estimator,
Definition: A (the adaptor) is a Mealy type automaton:

A=
and

OA = VP = {OA s OA y cocs OA ‘} (parameter value
1 2 vP

13

vectors often abbreviated PVV)
where:

P is a finite nonempty set; P = {Pl, P v PP}

2° o0

(parameters) and associated with each Pi € P, there is

a finite nonempty set; vt o= {Vi, V;, coosy Vi} (parameter
values)*
P i
V is a finite set; V = { JV~ and each OA € OA is a function;
i=1 j
0A : P >V such that
J

* ®

oAj(pi) € v! for all i

A is the adaptor whose output (OA) is a parameter value vector which
directs the activity of C and whose input includes the indication of
success provided by the utility estimator U. The goal of A is very ele-
mentary — it must maximize the value of feedback given to it by U by
adjusting the parameter values. A, in turn, may depend for its operation
upon the settings of various parameters which are controlled by higher
parameter value vector generator A' as well as by hints given by the hint
~ generator, H.

Definition: A' (the seCondary adaptor) is a Mealy type automaton,

T
We have made the assumption that each parameter may assume the same
number, v, of values. This assumption holds in each ot the examples
given in the following chapter and really involves no loss of generality

since duplicate or dummy values may be added to value sets.
* %
Keeping this restriction in mind enables us to simplify the notation

considerably by eliminating redundant superscripts. We shall ncrmally
do this, writing for example;

OA.(Pi) = VK where the obvious meaning is;

J

OAj(Pi) Vi,
It will often be the case that parameters not only have the same number
of values but they also have the same values. That is:

V=2V! for any i (1 £1i s p).

In these cases, the simplified notation is especially appropriate.

14

A=l
The definitions and interpretations are analogous to those of A above.

A' adjusts the parameters of A in an attempt to optimize U, and in
fact there may be a complete hierarchy of similar devices A", A'"', etc.
One would expect that the parameter adjusters which occupy higher positions
in the hierarchy would be more deliberate in their action. That is, the
need for higher level adjustments becomes apparent only on a much longer
time scale (in terms of the number of environmental interactions), so that
the higher level parameters tend to change less frequently. We will usually
consider systems in which the time scale is such that the parameters of
A remain fixed throughout the period of interest.

A", A"', etc. may be similarly defined and interpreted.

Definition: H (the hint computer) is a triple:
H = <jH; OH’ OH>
where oy is a function; Oy ° IH > OH

The hint computer has been included to reflect a common situation
in which hints, (OH) are supplied to the adaptor by a device which has
access to both the computer and the environment (here through IH), Hints
may take a.great variety of forms and may indicate, for example, which of
the parameters were actually used by the computer or which had values that
contributed positively to the result, or they may suggest a direction or
magnitude of change for certain parameter values. Because of this diver-
sity, the role of hints will be coﬁsidered primarily in a qualitative
manner in the discussion of previous work in Adaptive Systems. The con-
sideration of hints is but one of the many areas in which additional

work remains to be done.

15

2.4 Recursive Connection Equations

The connection equations given in this section may be deduced
immediately from the preceeding definitions and Figure 1.1. We have
included them explicitly here primarily in the interest of completeness.

We have taken the liberty of deliberately introducing a bit of
ambiguity at this point in order to simplify the notation. Let T be
a set of ordering parameters (time if you will) such that
T=(0,1,2, ..., t-1, t, t+l, ...) —a countable set of non-negative
integers. Theniéorresponding to each set Q defined in the previous
section, we should define a function €L; T - Q. Instead, we shall use
the symbol Q ambiguously to mean both the function (2) whose domain is
T and the set (Q) which is the range of that function. Thus, for example,
Q(t+1) = q(Q(t), I(t)) will be written, when strictly correct usage would
demand Q(t+1) = q(&(t),@(t)) whereQD(t) has-the obvious meaning. This
convention is straightforward and fairly common in the literature so that
its use here should cause no confusion.

Note here that Figure 1.1 as drawn continues indefinitely up off of
the page. In order to lend concreteness to this study and to tackle
a more realistic situation, we shall assume that OA,(t)is known for all
t 2 0. This has the effect of concentrating our attention to the layers
of»the diagram which are below A'.

Initial Conditions:

OA,(t) is known for all t 2 0

QWO = ¢
) = @,
%O = ¢
d,(0) = 0,

16

050 = 0

Wiring Equations: t 2 O

I5e) = Iy(e) =<B,(t), 0x(1)>

I,(8) = 0g(t)

I.(t)

1,(t) =<0, (8), O5(t), 0y(tD>

Static Equations: t 2.0

0() = 0, (I.(£))
0,(t) = 0, (T, (£)

05(t) = 9, (Qz(t))

Dynamic Equations: t > O

Q, (t+1) = q,(Q,(8), I,(t))

0,(t+1) = 0,(Q, (£, I,(t))

Qp(t+1) = ag(QG(t), I(t)
05(t+1) = og(Qg(t), Ig(t))
Qg (t+1) = qz(Qg(8), I (1))

Under interpretation, we may think of C as a digital computer whose
program is supplied by A,(OA) and whose data is taken from E,(OE)= C's
computation (OC) is fed to the environment causing a change of state.:
This change is reflected in the environmental output (OE) and is evaluat-
ed by the utility estimator and the hint generator in light of the current

program. The evaluation (OﬁQ and hint (OH) as well as the output of

*

As mentioned in Section 2.3, I_. is in reality a function of Q, — a fact
which’ can easily be made apparent by direct substitution in %he connec-
tion equations. IE(t) = oC(OA(t), oE(QE(t))

17

the secondary adaptor (OA,) are digested by the adaptor and used as

a basis upon which to change C's behavior.

2.5 Composite Definitions

The following definitions are composed from the preceding basic
definitions and have been formulated in order to enable us to refer to
various concepts which have strong intuitive significance and which can
be expressed as combinations of the basic units.

Definition: An admissible strategy, s, is a couple; s = <@, OA:>
where: C is a computer and :
0y € 0y is a parameter value vector.

Intuitively, ;e demand that a fixed strategy determine a unique
response (move) for each environmenﬁal state. An admissible strategy as

defined above generates, for each environmental output O the response

W 3
EJ

IEj = Ot(OAi, OEj)° This fixing of a strategy is accomplished by, in
effect, opening the feedback loop from the Adaptor. This concept enables
us to formulate an operational test to identify, in a concrete situation,
the entity which is performing the function of the computer. In short,
the computer is that device which, when given a fixed parameter value
vector (ecgu,,OAi) will compute a move (e.g., IEj) for each environmental
state description (e.g., OEj)ﬂ In general, a computer with a fixed PVV
is capable of responding to the environment — of playing the game —
although the response may not be very effective (as measured by 0).
Definition: A complete system, A is a quadruple; A = (A, C, ﬁ? H)
where: A is an Adaptor

C is a Computor

U is a utility estimator

and- H is a hint generator

18

Definition: A meta-environment, ME, a quadruple; ME = <§,«C, U, H>
where: E is an environment

C is a computer

U is a utility estimator

and H is a hint generator

The interpretation of these terms should be quite clear. The Complete
System is just that part of the universe (exclusive of the higher order
Adaptors) which acts upon the true environment. Similarly, the meta-
environment is that portion of the universe which is acted upon by the
Adaptor.

The next two definitions deal with matters that are a little more
obtuse and so appear to be given in a slightly less precise manner.
Definition: The extent of an environment, designated e(E), is an integer
and is the total number of distinct legal strategies which are applicable

to the environment E. Proceeding formally we note that if [I_]* is the

N
number of moves and [OE] is the number of states; then the number of
strategies is just:
e(E) = [IE][OE] —— the number of functions from the set of states to the
set of moves. Unfortunately this analysis overlooks the fact that for
most environments not every move is legal in every state. In such a case,
[IE][OE] certainly gives an upper bound for the extent, but often estimates
for the average number of attainable states or the average number of legal
moves from each state can be made so that a closer bound may be computed.
The next definition is similar, but deals with the meta-environment.

Definition: The extent of the meta-environment, designated by e(ME), is

an integer and is the total number of apparently distinct admissible

*
We use the notation [S] where S is a set to denote the cardinality of S.

19

strategies which may be employed by the computer of a meta-environment ME.
Since the admissible strategies of a computer are determined by the pa-
rameter value vector, the extent of a meta-environment is jﬁst the total
number of distinct parameter value vectors — i.e., e(ME) = vP.

One very crude estimate of the efficacy of the Computer can be obtain-
ed by comparing the extent of the meta-environment with the extent of the
environment. This estimate is crude and reflects only one aspect of the
computer — namely its ability to reduce (in most cases of interest) the
search by failing to distinguish among situations which are to be handled
as equivalent and by eliminating portions of the environmental space.

Thus one quality we would hope to find in an efficient computer is
that it greatly reduces the space to be searched so that the extent of
the meta-environment is much less than the extent of the true environment.
But this can be misleading because it's the way that utility is distributed
over an environment as well as the size of the space that renders it
hostile. Therefore, we expect that an efficient computer will restrict’
the search by lumping together those points which have the same or similar
utility and by restricting the search to fruitful areas.

The amount of preprogrammed information built into the Computer is
variable and is highly dependent upen the knowledge and ingenuity of its
constructor (the experimentor). For example, if in the judgement of
the constructor, there is not enough evidence upon which to formulate
a scheme to lump or restrict the environment, that decision may be left
to the Adaptor. However, each such decision which is '"passed upward"
increases the extent of the meta-environment and thus makes the task of
the Adaptor more difficult.

Perhaps we should reemphasize that the reason for introducing

formal definitions and connection equations at this point is to present

20

a general but concrete formulation of the universe we intend to investi-
gate. In later chapters, we will use this formulation as the basis for
various specializing and simplifying assumptions under which the results

will be obtained.

2,6 Guidepost

In this chapter, we have developed a formal paradigm for adaptive
systems. In the next chapter, we shall examine in detail three examples
of adaptive systems that have appeared in the literature. We shall show
how these fit into the general paradigm and how it is able to shed

additional light on the reported results.

3. SOME APPLICATIONS AND- IMPLICATIONS OF THE PARADIGM

3.1 The Learning Machine of Friedberg

We have been particularly influenced and intrigued by the work of
Friedberg [1958, 1959], so that it is fitting that we begin this chapter
with the consideration of that work. The following is not intended to be
a review or complete exposition (for such, the interested reader is
referred to Andrews [1962], Minsky [1961], or Solomonoff [1966]) but is
simplified and abstracted with the emphasis on the points that are perti-
nent to the paradigm.

Friedberg's universe consists of three interconnected units ('black
boxes" if you like), the first of which is a hypothetical stored program
digital computer known as the ''Slave." Programs for the Slave are written
by the second unit, the "Learner,'" and the two are tied together by the
third unit, the "Teacher." The Teacher poses a problem to the Learner
which responds by writing a program for the Slave which is then executed.
The Teacher examines the results and reports to the Learner whether or rot
the Slave has computed the correct solution to the problem. Typically,
the problem involves the computation of a simple Boolean function of a few
binary variables. The variables aé well as the value computed are stored
in a memory bank to which both the Teacher and Slave have access — the
Teacher to set initial values of the variables and to check the result,
the Slave to make the transformations. The Teacher generates values for
the binary variables either at random or in sequence and reports a ''success"
to the Learner whenever the Slave computers the correct‘value of the func-
tion for the given arguments. The Learner is designed so that it makes
& change in the Slave's program only when a failure has been reported.

Its ultimate goal is to generate a program which will enable the Slave to

21

22

compute the correct value for all combinations of argument values (i.e.,
to compute the desired function).

Friedberg's environment is the underlying bit-manipulation problem
contained in the Teacher. Environmental States are the states of the
memory bank and a move is the transformation to the memory which is made:
by an entire execution of the Slave's program. The true local utility is
awarded on the basis of a success or failure of the transformation for
a single set of arguments. Actually, Friedberg [1958] himself computed
a global utility when he determined that the program given in Chart 1 of
that paper would enable the Slave to perform the correct computation for
the subset of environmental states attainable from the given state. The
computer is the Slave and its inputs are the program and the description
of its memory bank. The utility estimator, contained in the Teacher,
~gives a true local utility and in this instance, Qﬁ has only one element.
A good case can be made for the notion that Friedberg actually had a global
utility in mind since he states that he is concerned with the fraction of
trials (i.e., environmental states) for which the program-Slave combina-
tion produces the correct transformation in terms of the local utility
estimator. This fraction is a global utility. The fact that the Learner
took no action until a trial was judged to be a failure can be interpreted
to mean that its action is based upon an estimate of global utility.

This. estimate is n/n+l = Ué where n is the number of successful trials
before a failure. If g ié the fraction of trials for which a given
prbgram will compute the correct answer, and if <ﬂé> is the expected value
of the estimated global utility, then it can be shown that <ﬁé>> <g.

That 1is, Ué is a pessimistic estimator of the global utility g.

The '""Teddy' system of the follow-up paper [Friedberg et al., 1959]

23

employs a somewhat different arrangement in that the Learner is informed
of participating instructions (those instructions actually executed or
referred to). This is one form of hint.

The Adaptor is contained in the "success number'" mechanism located
in the Learner. The programs are the parameter value vectors (PVV's),
where the instruction set corresponds to the parameter values and the loca-
tions to the parameters (i.e., v = 214 and p = 64). The adjustments which
could have been made by an A' unit were evidently set initially by the
experimenter and left unchanged throughout the course of the experiment.
Examples of these are the scaling parameters Sm’ Si’ and r, and the rate
of introduction of new instructions.

The complete system consists of the Learner, the Slave and that part
of the Teacher that signals success or failure while the meta-environment
consists of the Slave and all of the Teacher except that part which is
concerned with executive functions.

The highlights of this identification of the elements of the paradigm
with the elements of the Learning Machine along with similar identifica-
tions for the other papers considered may be found in Table 3.1.1.

Because of the way that a move is defined, the computation of the
extent of the environment is especially simple. There are no restrictions
so that a single move may take E from any state to any other state. Thus;

64 70 20
64)2 - 22 N 1010

e(B) = [0, 1% = (2
The computation of the extent of the meta-environment is equally
straightforward:
10

e(ME) = vP = 21H0 (22 < 10%70

The preceding computations as well as equivalent computations from

the next two sections are summarized in Table 3.1.2.

24

suot3zedTTddy w8ipeaed Jo Lxeuwuwns T1°1°S¢ OTqBL
Joxag
Jo
29a8e(
SOWT19WOS
SPTOYSSIYL (1® 30 MOIPTIM).
pue 3109JXJI00U] Wyl TIO3TY qIOoMION swoTqoxd SISTFTSSBTD ®BlEB(d
s1yStom Io Sut8ueyn 21807 UOT3BOTJTSSBID xoadepy
jIoM3oN - JO 39S 109X10) 1y3tom PIOYSaIyL uxolled SNOTJIBA
S3USTIJITFIS0)D I031BIDUDYH SIdNI9/Y) (Teonues)
wIs] TeIwou oniep Io3nduwo)n Jo IaLe1d
-A10d Fo 388 R R E=Tq| JUSIDTIFO0) peeyy->3007 awen oyl I9)o9y) {YlL
(1e 2o
aaniIed sweTqoxd Sxoqgpotay)
Xo uotierndruey SUTYDER
wexdoxd ss920Nng IoUIBOT oABTS 1Tg Sutuxee] oyl
AAd n JoLdvav JIILNdNOD INFWNOIIANH (xoyany) sndo

25

0oPUS LOWER BOUND OF e(E) UPPER BOUND OF e (ME)
70 20
Learning Machine 22 or 1010 10270
55 16
Checker Player 22 or 1010 lO36
]
25 10
| Adaptive Data 22 or 1010 10111
Classifier

Table 3.1.2 Extent Reduction of Various Computers

It should be clear at this point that the Slave does indeed reduce
the search space drastically. But if we look carefully at the nature of
experiment no. 1, we find that only a single initial bit and a single
final bit of the memory were considered by the Teacher in assigning utility.
This has the effect of partitioning the whole environment space (of func-
tions) into four equal subsets such that within each subset, each function
is equivalent with respect to the two bits considered and so is assigned
the same utility. Therefore, 25% of the environment points have a maximum
utility value. An equivalent measure on the meta-environment is the
utility density or in this case, the fraction of programs that were perfect
(stopped within the time limit and computed the correct function). This
fraction is almast impossible to estimate analytically although lower

bounds are easy to find (since in a few minutes, one can easily write

26

schemata for literally billions of perfect programs). It is not difficult
to obtain a statistical estimate of the utility density by simulation
methods — i.e., by taking a uniform random sample using a Homer type of
Learner. Although Friedberg did not record data which would enable this
estimate to be made it is evident that the density of perfect programs is
less than 1/4 by a factor of at least a thousand. Thus, if Friedberg had
really been interested in a solution to the bit-manipulation problem
(which he wasn't), he made a very unfortunate choice of computer. It
reduced the extent of the environment, but it reduced the utility density
by a considerable amount as well. This is an example of a poor choice of
a computer which immensely complicates the solution of a basically simple
problem. The net result was to generate an extremely difficult problem
(in the meta-environment) for the Learner.

It should be noted that the changes introduced in the sequel paper
[Friedberg et al, 1959] had the effect of both reducing the extent of(the
meta-environment and, more importantly, increasing its utility density.

In particular, "priming" reduced the extent of the meta-environment only
slightly (from 2896 points to 2893 points) but in doing so it increased

the utility density by eliminating mostly points of low utility. The
problem of hostile environments or meta-environments exists almost indepen-
dently of the problem of environments of large extent (the problem of
immensity, as Andrews [1962] terms it) for even though an environment may
be immense, it may not necessarily be hostile if a system can easily obtain
sufficient information from it. Thus, for example, having read Friedberg's
paper, one can easily write a perfect program for the Slave simply because
he has received sufficient information to do so. Even an environment with

a very low utility density may not be hostile if it is easy to avoid

27

the bad points and find the good ones, i.e., if the regularities of the
environment become apparent. We shall discuss environmental hostility
further in Chapter 4.

Having obtained some insight into the hostility of the meta-environ-
ment® we would now like to examine the effectiveness of Friedberg's
Learner in coping with it.

The Learner stores both the current program and an alternate program
(i.e., 2 instructions out of a possible 214 for each location) as well as
their associated success numbers. Even if we make the optimistic and
obviously false assumption that it is possible to store in these 128
success numbers all that can be known (with respect tobutility) about all
of the programs that can be formed by making all possible interchanges of
instructions begween the current program aﬁd its alternate, this would
mean that we would have. knowledge of 264 < 1020 programs out of the total
of (214)64 > 10265 possible programs. If we adopt the Learner's rate of
introduction of new instructions (one after each 64 failures) and if wei
assume that all trials are failures and that no duplicate instructions
are ever introduced and that we can obtain the same type of perfect-
knowledge of all the programs which can be formed by interchanges, then
we still will have ''explored" fewer than 10103 points of the meta-environ-
ment after a run of 150,000 trials. (It took 150,000 trials for the
Learner to find its first perfect program.) Thus the point should be clear
that even if we make the most optimistic and unrealistic assumptions
(which are really assumptions about the astuteness of the Learner and the

regularities of the meta-environment), it is possible for the Learner to

3
Minsky's [1961] apparent failure to appreciate the hostility of the meta-
environment has led him to be, perhaps, too harsh in his judgement of
Friedberg's Learner.

28

investigate only an insignificant fraction of the space even in 150,000
trials. Therefore, we should not be surprised at the apparent lack of
success of the Learner, for it is faced with a truly immense meta-environ-
ment which it explores very cautiously. These considerations of the area
which the Learner can know are apt to be misleading unless we bear in mind
that the Learner's objective is to find a maximum in the meta-environment
and not to identify it or to explore it thoroughly.

One of the obvious faults of the success number mechahism, and a fault
of which Friedberg was aware, is the fact that no provision is made to keep
track of the correlations associated with strings of instructions (sub-
routines, in effect). He tried to avoid the necessity for this by his
selection of an instruction set, but a close study of any of the published
programs will show that he was not outstandingly successful. The possibil-
ity of assigning success numbers to pairs of instructions was mentioned
but was not implemented because of the practical difficulties involved in
his immense meta-environment.

Apparently, from the structure of the Learner which made use of
active and inactive program strings, there was some attempt to mimic the
recessive-dominance structure of a genetic system. However, no provision
was made to imitate the recombination aspects of such systems for anything
except single instructions. One of the objects of this thesis is to
examine in detail two alternative algorithms which are designed to be
effective in meta-environments.where.utility may be profitably associated

with strings or sets of parameters rather than with single parameters.

3.2 The Checker Player of Samuel

We shall assume that the reader has a basic familiarity with the

original paper of Samuel [1959] and shall begin by associating the elements

29

of Samuel's universe with the elements of our paradigm.

Loosely speaking, Samuel's environment is the game of checkers played
against a well defined opponent. Board positions correspond to environ-
mental states and moves are the environmental inputs. The state transi-
tion function plays the role of a fixed well defined opponent. The output
function presents a description of the board position (state) to the
computer.

The game of checkers may be represented by a finite® directed tree
whose nodes correspond to board positions and whose edges correspond to
moves so that the edges radiating from a node represent the legal moves
from the board position associated with that node. Utility is assigned to
terminal board positions on the basis of a win, a loss, or a draw of the
. game and starting from those terminal assignments; assignments may be made
to each of the intermediate nodes on a minimax basis. (We may even dis-
tinguish between states which ''guarantee' the same result by assigning
a higher utility to those states which assume a quicker win or a slower
loss). Thus, in principle a utility may be assigned to each state-move
pair so that a true local utility is computable.

Here, as with the Learning Machines, the experimenter usually judges
the system by computing a global utility — the success of an adaptor over
a succession of moves or a complete game. We can even conceive of a more
~general global utility which measures a system's success versus some set
or sequence of environmental opponents. Actually the ultimate goal would
be the development of a strategy — a mapping from board positions (environ-

mental states) to moves that guarantee a win (or a draw when a win is not

*

As Samuel did, we shall restrict our attention to games which are
restricted, by fiat, to a finite number of moves. Thus, a draw will
be one of the possible outcomes.

30

possible) against every opponent. Since Checkers, as we have defined it,
is a two person, finite game with complete information, we know that such
an optimum, minimax, strategy exists. A less ambitious but certainly
acceptable goal would be the development of a strategy that does well
against good human players but perhaps poorly against highly unorthodox
opponents.

Needless to say, such a computation is impractical since, as Samuel
[1959] noted if moves were explored at a rate of three per nanosecond, it
would take lO21 centuries to explore the complete game tree.

The computer employes a look-ahead procedure and a set of subroutines
which assign values to board positions. These subroutines are chosen to
rate board positions with respect to such factors as center control,
advancement, mobility and the like. There is a weight associated with
each of the subroutine terms and the sum of the weighted terms (the score
of the evaluation polynomial) is used to select moves by exploring tée move
tree a few moves ahead, computing polynomial scores and minimaxing back to
the present position. In short, given a board position and a set of
weights, the computer selects a move on the basis of the highest minimax
score; It is evident that with a fixed set of weights, the computer will
play a complete’game*: The weight vector is our parameter value vector
and it is the space of weight vectors which forms the meta-environment.

The measure of performance (the utility estimate) is given by
a factor which Samuel calls '"delta." Delta, in fact, measures something
apparently quite different from the utility of move-state pairs — it
measures the stability of the polynomial score as the game progresses.

The justification for the use of delta as an estimate of utility stems

*
This is an application of the operational test for the computer which we
~gave in the previous chapter.

31

from the fact that the further the game is played, the more obvious the
outcome becomes, so that the polynomial score can be considered to be

a more accurate reflection of the true utility as the game progresses.

The score of a perfect polynomial (one which assigned values to move-state
pairs which agreed with the true utility function so that it is a minimax
predictor) would remain constant throughout the entire game” (i.e., it
would give the same score at each node in the path it selected through the
game tree so that a polynomial score at any point gives the effect of

a look ahead to the end of the game). Thus a large value of delta is
undesirable and a small value desirable so that the goal of the adaptor

is to minimize the value of delta. The forced inclusion of a piece advan-
tage term with a fixed positive weight helps to assure that the polynomial
does measure factors which are relevant to the true utility. We have made
U a finite automaton rather than a function because of the necessity for
it to "remember'" the previous polynomial score. We should like to
emphasize that the value of delta is the only indication of utility given
to the adaptor. There is no special reward given even when the computer
has won a game.

Hints indicate to the adaptor which terms of the scoring polynomial
(parameters) were actually used (i.e., pertain to the present environ-
mental state) and whether their weights (the parameter values) should have
been increased or decreased in order to reduce the value of delta.

The Checker Pléyer's Adaptor is the embodiment of the polynomial
modification algorithm. To quote Samuel [1959, p. 219] "A record is kept
of the correlation existing between the signs of the individual term con-

tributions in the initial scoring polynomial and the sign of delta. After

This assumes an opponent who always makes the best possible move.

32

each play, an adjustment is made in the values of the correlation co-
efficients due account being taken of the number of times that each
particular term has been used and has.had.a non-zero value." .The correla-
tions are then used to select weights (parameter values) for the terms of
the scoring polynomial. The correlation record is preserved in the states
of the adaptor and, to recapitulate, changes in state are dictated by

the value of delta (estimated utility) and an indication of the relevant
terms and their contributions to the polynomial (hints).

As was the case with the Learning Machine, the functions of A' were
assumed by the experimenter when he adjusted the settings of various. pa-
rameters. Samuel discusses a number of the changes he was forced to make
after an initial series of tests in order to eliminate several sources of
erratic behavior. Typical parameters so adjusted were the span of re-
membered moves over which delta was computed and the rate of introducing
fresh terms.

As in our analysis of the Learning Machine, we will find it profit-
able to contrast the extent of the environment of checkers with the ex-
tent of the meta-environment presented to Samuel's adaptor. Unfortunate-
ly, the task of estimating the extent of the environment (i.e., the
number of strategies for the game of checkers) is mnot simple, however
we shall make two rather crude estimates.

Recall that there are 32 squares of the board used in the game of
checkers and that a square may be occupied by either a white piece,

a white king, a black piece, a black king, or be empty. Thus there are
532 conceivable board positions many of which could not occur as a result
of a legal play of the game of checkers. A strategy is a mapping from
board positions to moves, but it is not realistic to consider all legal

board positions to be the domain of the mapping, since, for example,

33

the sequence of initial moves generated by a specific strategy may insure
that a large number of legal board positions will never occur in a game
played by that strategy. Thus 532 > 1022 is much too large — let us
assume that it is a million times too large so that the average domain
of a strategy has cardinality > 10160 Newell and Simon [1964] have
estimated that there are, on the average, 10 legal moves from each board
position (i.e., the average range of a strategy has cardinality = 10,
Combining these figures, we obtain an estimate for the extent of the

o 1016
environment: e(E) > 10 .

On the other hand, following Newell and Simon [1964], we can attempt
to determine the number of strategies by a uniform tree which is an appro-
ximate of the checkers game tree. The disadvantage of such an approxi-
mation is that while the uniform tree becomes broader as the depth
increases, the game tree begins to narrow after a certain depth because
of merging which occurs when different sequences of moves lead to the
same state. Newell has estimated that the equivalent tree for checkers
has ah average branching B = 10 and an average depth D = 70. We use the
following reasoning to determine the number of strategies for both the
first and second piayer of a uniform B, D tree game.

h

At the kt step for the first player (i.e., the (2k—l)th move of the

geme), his opponent has already made k-1 moves and consequently may be

at any one of Bk“1 nodes. Thus at his kth step, the first player must

k-1

choose one of the B alternatives open to him for each of the B" ~ nodes

to which his opponent may have directed the play. That is, he must
k-1 .
choose one out of a total of BB functions. In all, the total number

of strategies for the first player for a complete game of D moves (assume
7-1 sk

D even) is érr'B . Similarly for the second player, there are a total
k=0

34

of 4¢B strategies. This line of reasoning, therefore, gives an esti-

k

34 34
2 1010 5 1010
k=1

strategies for the first player which is considerably larger than our
previous estimate for e(E). We shall use the least upper bound.

As is usual, an estimate of the extent of the meta-environment (the
apparent number of strategies availabie to the adaptor constrained to use
Samuel's look-ahead computer) is considerably easier to compute. Each
polynomial (PVV) specifies a single strategy, but there is no reason to
believe that the same strategy will not be specified by more than one
polynomial, so that the number of possible polynomials gives an upper
bound on the number of strategies which the complete system is capable of
playing. There are at most 38 terms, 22 of which are constrained to have
a weight of zero and the remaining 16 of which taken on any of a total of

36 possible weights. Thus

e(E) = (22)03616 < 3673610 = 3625 < 10%°

So again as with the Learning Machine, e(ME) is much smaller than
e(E) so that the computer has drastically reduced the size of the space
which must be considered. It is interesting to note as is clearly shown
in Table 3.1.2 that the extent of the environment and especially the
extent of the meta-environment of the Checker Player are much less than
those of the Learning Machine.

Because of the difficulty of estimating the true utility, we are at
a loss to give any estimation of the effect of the reduction of the search
space on the utility density. However, judging from the result, if the

utility density were reduced (and this seems extremely unlikely), other

35

effects more than compensated for the loss. As mentioned above, a third
effect of the computer layer is to make a transformation of the represen-
tation of the strategies so that regularities (with respect to utility)
in the strategy space become more apparent. The checker player illustrates
this effect admirably since meta-environmental strategies are expressed in
a language which has a useful type of continuity. This continuity assures
that "small changes yield small effects', i.e., polynomials which differ
slightly in a singlei term can be expected generate strategies which play
very similar games against most opponents and thus have a similar utility.
This fact enabled Samuel to design a learner which was able to take
advantage of the ordering of the parameter values to restrict the number
of permissible next values and make use of a hint generator which suggests
a direction of change.

The peculiarities of Samuel's adaptor, especially its use of hints
make it impractical to make a detailed investigation of the portion of
its meta-environment it was able to explore. However, it suffices to
say that Samuel's adaptor was capable of changing many parameter values
after each trial as contrasted to Friedberg's Learner which changed only
one per trial. Clearly, Samuel's adaptor was required to search a much
smaller meta-environment (1029 points versus 10270 points) which was
much more regular and it conducted the search much less cautiously. The
fact that the Checker Player was much more sugcessful than the Learning
Machine should not be surprising. The Checker Player shares with the
Learning Machine an inability to associate utility with pairs, triples,
etc. of parameters except in the few cases where parameters are formed
using binary combinations of more primitive terms. The success of the
Checker Player provides evidence that Samuel was reasonably successful

in choosing a set of orthogonal parameters, yet it seems natural to

36

speculate as to the relative merits of an adaptor which is able to asso-

ciate utility with combinations of parameters in a more systematic way.

3.3 Adaptive Data Classifiers

Finally, we shall apply the paradigm to systems which use networks
of threshold elements ‘to:classify ddta. Such systems have been proposed
and constructed for a variety of purposes: character recognition,
weather forecasting, speech recognition, electrocardiogram analysis, etc.
The work of Widrow [1962] and the group at Stanford Electronics Labora-
tories 6n the Adaline and that of Rosenblatt [1962] and the group at
Cornell Aeronautical Laboratories on the Perceptron are examples of the
effort being applied to systems of this type. Related schemes have been
proposed by Uhr § Vosseler.[1961] and Bleosoe § Browning [1959] among
others.,

Basically, the problem is to partition an input set (whose elements
may be thought of as patterns) into a number of subsets (e.g., charatters)
by means of a network composed of threshold logic devices. More concrete-
ly, inputs to the network (elements of the set to be partitioned) may
be thought of as being projected on a retina of photocells each of which
is connected to an input (or inputs) of the network. The signal appear-
ing: at the output. of the network is interpreted as a label of the
class to which the input pattern belongs. The amplification factors and
threshold levels of the threshold logic elements are adjusted during
a training period which consists of a sequence of presentations of
patterns from the input set. The network is said to converge if the
desired response is obtained to each pattern presentation of interest
following the training period. The principal goal is to characterize

those network organizations, training rules and input spaces for which

37

convergence exists and for which the rate of convergence is, in some
sense, optimum,* A further goal is to develop systems which generalize
— i.e,, correctly classify patterns on which they have not been trained.
There are few concrete results relating to the attainment of this goal.
Next we shall identify the elements of the universe of the Adaptive
Data Classifiers with the elements of our paradigm. The environment
consists of the set of patterns which is to be partitioned so that the
environmental output (state description) is a representation (usually
a binary string or array) of the pattern under consideration. The environ-
mental input (move) is the computer's ''guess' of the correct class to
which the pattern belongs and the true utility indicates whether or not
this classification is correct. The environmental transition function
controls the sequence in which patterns are presented. The computer is
the network of threshold logic devices some or all of which may have
variable weights associated with their input wires as well as variable
threshold values. These weights and threshold are the parameters and
the settings which they may assume are the parameter values. This
identification of the network with the paradigm's computer is in full
accord with the operational test given in the previous chapter. For,
when given a set of weights and threshold levels, the network will indeed
compute a move for (i.e., make an identification of) each environmental
output. The utility estimator, besides indicating whether or not
a correct identification has been made, often provides to the computer

the differences between the weighted sums of the inputs and the threshold

%*

Mayes [1963] gives a complete analysis and establishes bounds on the
number of adaptations required for convergence by various adaptive
algorithms.

38

values of individual threshold devices (i.e., an estimate of how right

or how wrong the identification is). In addition, hints are usually
supplied which identify the relevant parameters (since this is just

an identification of the active threshold devices, it is closely related
to the environmental state description). The Adaptor embodies the train-
ing algorithm or reinforcement control system which aims, in essence, to
partition the input or measurement space by means of hyperplanes. The
adaptors treated in the literature differ in the precise way that correc-
tions are applied to weights and thresholds during the training period.
For example, the amount of change may be fixed or it may depend upon

the error indication given by the utility estimator, or corrections may
be made as a result of each trial or only after unsuccessful trials.

As in the previous sections, we shall find it profitable to compare
the extent of the environment with the extent of the meta-environment.
Thus far in this section, we have dealt in general terms with what is in
reality a class of systems (the Perceptron — Adaline class if you will).
However in order to make the following discussion more concrete, we
will concentrate our attention on the simplest member of that class —
the single threshold device with K binary inputs and one binary output.”
As we have noted in previous sections, the selection of a specific
computer has the effect of restricting the performance of the system.

In the present case, the selection of a threshold logic device network
limits the system in that it can only partition the input space with
hyperplanes. The extent of the meta-environment is just the number of
strategies or functions from an input space of cardinality 2K to a move

space of cardinality 2. Clearly e(E) = 22K on the other hand

"
This tactic is regularly employed by the proponents of such systems.

39

the development of a similar formula for threshold logic devices is still
an open question, however, 2K2 has been given [Fein, 1964] as a crude
upper bound on the number of such functions. That is e(ME) < ZKZU For
K = 35 (a reasonable sized retina for character recognition),

2K2 = 2352 < 10111 while 22K = 2235 < 101010 so that once again, the
choice of computer has limited the strategies to such an extent that the
system can be effective on an extremely small proportion of the potential
environments. Whether this selection of a computer has been appropriate
for the class of environments to which ‘the Perceptrons and Adalines have
been applied (i.e., whether the use of these devices has increased or
decreased the utility density of such environments) is difficult to
determine because of the lack of both a good theory and quantitative
experimental results. It is true, however that the use of such computers
has produced meta-environments which have the same continuity property
encountered in the Checker Player meta-envircnment. This has certainly
been of some advantage. As shown in Table 3.1.2, for this example,
although the extent of the environment is the smallest of the three

cases studied, the extent of the meta-environment for the Adaptive Data
Classifier is larger than that of the Checker Player. We find that the
adaptor is capable of changing many parameter values after each trial

and therefore explores its meta-environment quite freely. Similarly

we note that although Uhr and Vossler [1961] make use of restricted
binary combinatorial parameters, no attempt has been made to develop
adaptors with a general capability of associating utility with combina-

tions of parameters.

3,4 Guidepost

Having considered a paradigm encompassing adaptive systems and

40

their environments and having shown how the research of a number of
other workers in this area fits into the framework we have developed,

we wish next to consider in detail the meta-environments in which they

may be. immersed.

4, ON META-ENVIRONMENTS

4,1 1Idealization of the Meta-Environment

Chapter 2 contains a precise and formal definition of a meta-
environment. The definition was made complete and very general in order
to make evident its connections to the real world. At this point, we
shall make several simplifications of that model in order to reduce its
complexity to a level which is suitable to the goals and scope of this
investigation.

Recall that the meta-environment as defined was intended to include
everything beneath the line B-B' in Figure 1.1. Our first simplification
will be to ignore the hint generator. This has been done not because hints
are not an underexplored and potentially fruitful area for investigation
but because we have chosen to concentrate our efforts on other aspects
of the problem.

In formulating the paradigm in Chapter 2, our intent was that the
adaptor A would introduce a strategy (PVV) to the computer C. The com-
puter would then employ this strategy in generating tactics with which to
confront the environment E. Although we made note of the fact that
a global utility might be computed, we specified the estimated utility
OU-was,in fact an estimate of the local utility and therefore a measure
of the "goodness'" of the tactical moves of the computer. At this point,
it should be apparent that our main intereét lies in the interaction
between the adaptor and the meta-environment. This being the case, we
will assume that the estimated utility Oﬁ-available to the adaptor is
indeed a global utility. It indicates how well a program computes the
desired function rather than how well a single instruction operates.

It indicates whether the complete game has been won or lost rather than

41

42

how good a single move was. It indicates how well the pattern recognizer
evaluates a complete alphabet rather than a single character. Further we
shall assume that this evaluation takes place over a sufficiently large
number of observations that the effects of the states of the computer and
environment can be effectively ignored. This means that Oﬁ-is an estimate
of the utility of the strategy as it is applied to all conceivable states
to which it is applicable. Note that the strategy may itself restrict
the range of states which both the computer and the environment may attain.
All of this has the effect of forcing the meta-environment to be a function
which evaluates the strategies of the adaptor. Thus the task of the adaptor
is to generate those PVVs which maximize the meta-environmental function.
Note that both the domain (parameter value vectors) and the range (esti-
mated utility values) of the meta-environmental function are finite so
that there is no question of the existence of an adaptor which will
maximize the meta‘environment — an enumerative adaptor will surely do so.
Adaptors will be judged on the expected or average number of trial PVVs
they must generate before they generate one which maximizes the meta-
environment. A ''good" adaptor is one which is able to maximize a meta-
environment after having generated few PVVs.

Now, function maximizing is an old art and the essence of the art
lies in choosing constraints which partition the class of functions which
are to be maximized. Conventionally these constraints concern such things
as the modality of the function, the existence of derivitives, continuity,
convexity and the like. In this thesis, we have chosen to concentrate
our attention on one particular aspect of the meta-environment and this
aspect has dictated the choice of constraints.

The aspect of meta-environments that we shall be concerned with deals

with interaction between parameters. Historically this has been recognized

43

as a particularly knotty problem and has been attacked by Samuel [1959], Uhr
and Vossler:[1961] and others. .Anyone wha has had:the expefience trying to
obtain an optimum picture on a television receiver by adjusting size,
linearity, contrast, and sync controls which interact with one another

zhould have an appreciation for the problems involved.

4.2 A Partition of Meta-Environments — The TEA

Let us suppose that we are to maximize a ME function each of whose
parameters are orthogonal or independent. It is clear that the maximiza-
tion may be accomplished by the following relatively straightforward
procedure: 1) Choose a parameter and select arbitrary values for all
the other parameters. 2) Vary the values of the chosen parameter to
obtain a relative maximum utility value. 3) Hold the chosen parameter
at a value which relatively maximizes the utility and choose anothex
parameter which has not been previously chosen. 4) Go to step 2 and
repeat the process until all parameters have been assigned values. The*
parameter value vector thus chosen will be one which maximizes the meta-
environment.

The algorithm just described is indeed enumerative; but it does not
enumerate all possible parameter value vectors. The fact that it works
implies that the computer and its parameters were matched to the environ-
ment in a very special way. Consequently the maximum of the resultant
ME could be found by enumerating parameters individually. This is
certainly a very special case but one whose existence has been assumed
by various workers in the field of adaptive systems., Friedberg [1959]
made this assumption when he had his learner associate ''success numbers'
with individual instructions rather than with sequences of instructions.

Similarly in the Checker Player and in various Adaptive Data Classifiers,

44

we find that the main emphasis is on associating ''goodness'" with
individual parameters rather than with pairs or triples, etc. of pa-
rameters.

In an: analogous manner, we can define a sequence of algorithms which
seek the maximum of a function by enumerating pairs, triples, etc. of
parameters. Let us call these "Tuple Enumerating Algorithms' (TEAs).

The algorithm which enumerates individual parameters will be denoted
TEA(1); that which enumerates parameter pairs will be denoted TEA(2) and
so on. The purely enumerative algorithm which enumerates all possible
PVVs is just TEA(p). We may then use the TEAs as a device to define pre-
cisely what we mean by parameter interaction. A ME will be said to be of
depth d when it can be maximized by a TEA(d) but not by any TEA(d') where
d'< d. It should be apparent that this definition of depth does parti-
tion the set of all MEs (which have the same domain and range) and that
this depth partition is meaningful to the problem of parameter interaction.
It is also effective since it has been stated constructively. However as
a practical matter, it is too unwieldy to be used in the analysis or
synthesis of MEs for either simulation or theoretical work. For that
reason, we have been rather informal in the definition of the TEA and we

shall define another related partition on the class of ME functions.

4,3 An Alternative Partition — The SCF

Of all of the ME functions of p arguments, there are some for which

the following equation holds: f(pl,pz,ou,,p) = fl(pl) +‘f2ﬁp2) ¥ oass t fp(pp)°

p
We shall call these ME functions Sum Canonical Functions of type one

denoted SCF(1). For other ME functions, the following is true:

E(ysPys-ooopy) = £15(P1Py) * £15(pypg) + eo + £y (P) ,P) where ot

all of the subfunctions may be further broken down into SCF(1l) subfunctions.

45

Those functions will be said to be of SCF(2) type. It is clear that
this notion may be readily extended to define MEs of type SCF(3), SCF(4),
etc. and that the resulting scheme does partition the class of all ME
functions. This SCF partition does turn out to be much more desirable
since it may be used in practice for both the synthesis and the analysis
of MEs. The question remains as to the relationship between the TEA
partition which reflects that quality of the ME which we wish to study
and the SCF partition which we have the tools to deal with. That ques-

tion will be taken up in the following section.

4.4, Relationships Between TEA and SCF Partitions of MEs

If a ME function is SCF(1), then it must be TEA(1). This is easily
seen since the tuple enumerating algorithm need only maximize each of
the subfunctions in turn and their sum will surely be the maximum of
the ME function. The generalization of this relationship which states
that if a function is SCF(a), then it must be TEA(B) where B < a does
not hold in general. However, it is true for the subset of SCF functions
called simulated MEs described in section 4.6.

We would hope that the converse of this relationship would hold,
but unfortunately this is not true and that can best be shown by a simple
counter-example. Let f be a ME function of three binary valued parameters
with the following SCF(2) form: f(Pl’PZ’PB) = flz(pl’P2) + f23(P2,P3)

where f12 and f23 are defined by Table 4.4.1.

Value Subfunction Value
Pair f12 f23
00 5 0
01 7 2
10 0 3
11 2 4

Table 4.4.1. Definition of the SCF(2) ME Subfunctions

46

P1 P2 P3 f
0 0 0 S
0 0 1 7
0 1 0 10
0 1 1 11
1 0 0 0
1 0 1 2
1 1 0 5
1 1 1 6

Table 4.4.2 Complete Definition of the ME Function

The reader may verify that theé ‘complete function as defined by Table
4.4.2 will be maximized by the TEA(1) algorithm.

The reason for the relationship between the SCF and the TEA parti-
tions (as well as the secret of constructing counterexamples like the
one given) can be seen most easily by examining the nature of the parti-
tion. The TEA is a very specialized criterion which is relevant to
a single aspect of the ME function — that of the relationship of thé
parameters to the maximum points. On the other hand, the SCF criterion
applies to the description of the whole function. In the example given,
those values which render the ME intractable to description as a SCF(1)
do not affect its maximum value. In other words, every subfunction may
be broken down or if it cannot, the only terms which prevent the break-
down are those which do not effect the maximum. Viewed in this manner
it can be expected that although counterexamples are easy to construct,
most '"natural" MEs which are SCF(d) will also be TEA(d). In the example
~given in the next section, the three MEs which are exhibited will turn
out to have identical SCF and TEA depths. In succeeding sections, un-
less otherwise stated, the term depth will be used to refer to the parti-

tion induced by the SCF and a ME which is of type SCF(d) will be referred

47

to simply as a ME{(d).

4,5 The Game of Hexapawn — An Example

Thus far we have given a definition of meta-environmental depth. As
motivation, we have mainly appealed to the reader's intuition. In this
section we will give an example in order to illustrate that our notion
of depth does have some relation to the real world. The example will
consist of a computer to play the game of Hexapawn (the environment)
against a fixed opponent. We will then exhibit three opponents such that
the meta-environment is of depth 1, 2, or 3 depending upon which opponent
is being challenged.

Hexapawn is a game played on a 3 x 3 portion of a chess board by two
players each of whom has three pieces which may be moved like the pawns
in chess. The object of the game is to have one of your pieces reach the
opponent's home row or to render the opponent incapable of moving. Each
game must terminate with a win or a loss; there are no ties. Details of
the game (as well as of a correlation type adaptor to play it) may be
found in Gardner [1962]. It suffices to state here that it is a simple
game (about as difficult as tic-tac-toe) but one which may easily be
extended to any desired level of complexity (Octapawn, Decapawn, etc. -
and even to modified games of checkers).

The players of the game will be designated as the "first mover" and
the "second mover" for obvious reasons. The first mover will be the
computer whose strategy may be adjusted by the adaptor. The second
mover, the computer's opponent, will be represented by a fixed strategy
and different opponents by different fixed strategies. The states of
the game are related to board position and move number and moves cause

a transition from one state to another. There are two classes of states;

48

non-terminal states from which another move is possible and terminal

states from which no other move can be made and which end the play.
The game states will be given labels in the sections below. However, in
order to avoid superfluous terminology, moves will be denoted by the
states to which they lead rather than by some additional designation.
Terminal states represent plays that have been either won or lost.
Throughout this section, the orientation will be fhat of the first mover
so that a win is a win for the first mover and a loss is a loss for the
first mover. In order to simplify the game tree, there will be some
consolidation of terminal board positions so that end positions which
represent the same result as far as winning or losing the play are con-
cerned will be assigned the same terminal state. The utility value
which is fed back to the adaptor is derived from the terminal state
attained. In order to enrich the range of utility values (a strictly
binary won or lost indication is rather sterile) we shall make a distine-
tion in terminal states based upon the move in which the play was termi-
nated. This is meant to reflect the notion that an early win is better
than a later win and that a deferred loss is better than a precipitous
loss. As a further state consolidation measure, if a non-terminal board
position can lead only to a single terminal state regardless of the
choices on subsequent moves of either player, that board position will
be assigned to the terminal state to which it must lead. The terminal
states are denoted by two characters. The first is a letter — either
a W or an L which indicate a win or a loss. The second is a number
which indicates the move on which the termination occurred. There are
five terminal states and these will be assigned utility values as shown

in Table 4.5.1.

49

State Utility Value
W3 5

W5 4

W7 3

L4 2

L6 1

Table 4.5.1 Utility Value Assignment

As a result of the consolidation outlined above, each non-terminal
state must have at least two branches extending from it. In the complete
game tree, there are 46 non-terminal states. 23 of these (labeled A - W)
represent board positions which may be encountered by the first mover.

The remaining 23 (labeled 1 - 23) represent board positions which may be
encountered by the second mover. Table 4.5.2 gives the pictures of the
board positions represented by each of the non-terminal states. The first
mover's pieces are represented by the character "0". This table may be
used to construct the complete consolidated game tree. A strategy for
either mover consists of a choice (that is a one of the successor states)
for each state which it can encounter.

We will next describe a parameterized computer so constructed that
each parameter value vector will specify to the computer a strategy for
the first mover. This strategy may then be tested against the fixed
opponent by playing the game. The utility value obtained from the
terminal state will be the value of the ME function for the given PVV.

By enumerating all possible PVVs and computing the values of the ME func-
tion by playing the game, we can obtain the entire ME function in explicit
form., By examining this function, we can readily determine the depth of
the ME. In our example, we shall describe a fixed computer and demon-

strate that the associated ME may be of depth one, two or three depending

50

LABEL PREDECESSOR

A

B 01
C 01
D 01
E 02
F 02
G 02
H 02
I 03
J 03
K 03
L 04 09

BOARD SUCCESSORS

XXX
000
X X
X
00
X X
oX
00
XX
00
XX

X0
00

01 02 03

04

05

W3

W3

09

13

06

08

W3

L&

L6

L4

W3

06

08

10

12

14

16

W3

17

18

19

20

TABLE 44542 HEXAPAWN BOARD CODING

L4

07

11

15

W3

L4

(PART 1)

51

LABEL PREDECESSOR

M 05
N 06 09
0 07
p 16 08
Q 10 14
R 11 15
S 11
T 14
u 16 19
v 17
W 18

TABLE 46542 HEXAPAWN

BOARD SUCCESSORS

00X W5 W5 W7

X
0
X
OXX W5
0
X
0X0 W7
0
X
XX0 22
0
X
X W5
0]
X
X L6
0
X
OoX 21
0
X
X0 22
0
X
XX 23
0
X
0X0 W5
0
X

21

W5

W5

L6

W5

Lé

W7

W5

W5

X00 W7 W5 W5

BOARD CODING

(PART 21

52

LABEL PREDECESSOR BOARD SUCCESSORS

XXX
01 A 0 B C€ D
00
XXX
02 A 0 E F G
00 H
XXX
03 A 0 I J K
00
X X
0% B X0 W5 L4 L
0 Lé
X X
05 C 00 L4 M W5
0
XX
06 D H 00X W5 N
0
XX
07 D 00 Ws O L4
0
XX
08 E I X00 W5 P
0
XX
09 F OX L N L&
0 L4
X
10 F 0 L4 Q
0
XX
11 F 0 S R
0
XX
12 F X0 L4 L4 L6
0

TABLE 4e542 HEXAPAWN BOARD CODING (PART 3)

LABEL

13

14

15

16

17

18

19

20

21

22

23

53

PREDECESSOR BOARD SUCCESSORS

XX
G OX

0
XX

G 0]

0
XX
G 0
0

XX

G X0
0]

XX

I 00
0]

X X

J 00
0

X X

K OX
0

X

L X0
X

N S 00X
X

T P X00
X

U OX

L6 L4 L4

L&

L&

W5

W5

L6

Lé

Le

W7

L6

W7

W7

L6

W7

TABLE 4¢5¢2 HEXAPAWN BOARD CODING

L&

L4

L6

Lé6

(PART &)

54

only upon the fixed strategy of the opponent second mover.

Our object in formulating the computer for playing the game of
Hexapawn has been to give an example of MEs of various depths and not to
demonstrate an efficient way to generate a computer to play board games.
As a result, we have taken a very direct approach to the computer. The
computer is controlled by three parameters each of which can assume one
of four values. Thus there are 43 = 64 possible parameter value vectors.
Each of the states which the first mover can encounter has one of the
parameters associated with it and the value which that parameter assumes
determines the move that will be made when the computer encounters that
state. The move table for our specific first mover computer is shown in
the upper left corner of Table 4.5.3. As can be seen, state A is controlled
by parameter 1 and will cause a move to states 01, 02, 03 or 0l as Pa-
rameter 1 takes on values V1, V2, V3 or V4 respectively, State B is
controlled by parameter 3 and so on through the-complete table. Thif
computer is universal in the sense that it does not exclude any move
which is possible for the first mover. Table 4.5.4 shows the computer
table states sorted by the parameters which control them. Returning to
Table 4.5.3, we note that the upper right hand corner contains a fixed
strategy for the second mover. A small digital computer was programmed
to enumerate the parameter value vectors and execute the resulting 64
plays of Hexapawn. The results are shown in the bottom of the table.
‘The: explicit form of the ME function may be expressed as
f(Pl"PZ’ PS) = fl(Pl) + fz(Pz) + fS(PS) where the definitions of fl’
f2 and f3 are given in Table 4.5.5. This is clearly a depth one meta-
environment.

Table 4.5.6 includes the same first mover computer, but the second

FIRST
STATE PAR V1
1 01
3 L4
2 05
1 07
2 W3
2 09
3 16
1 W3
2 W3
3 18
1 19
2 L6
1 W5
2 21
1 W5
2 22
1 W5
3 Lé
3 21
3 22
2 Lé
1 W7
3 W5

P2 P3 PLAY P
1 1 1
1 2 2
1 3 3
1 4 4
2 1 5
2 2 6
2 3 7
2 4 8
3 1 9
3 2 10
3 3 11
3 4 12
4 1 13
4 2 14
4 3 15
4 4 16

MOVER

V2
02
L&
W3
06
08
11
15
06
08
18
L&
20
W7
W5
W7
W5
Lé
Lé
21
22
23
W5
W5

55

THE PLAYERS

V3
03
04
05
W3
W3
12
14
W3
W3
W3
19
20
W5
21
W5
W5
W5
L6
21
22
23
W7
W7

V&
01l
L&
W3
07
08
10
13
06
17
18
L&
20
W7
W5
W7
W5
L6
W5
21
22
23
W5
W5

SECOND MOVER

STATE

0l
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MOV

ToOoO=ZXrcow

rEsrcsEs<<cx—+HrrOwnr
[sANE RN e o o k=

RESULTS OF A COMPLETE SET OF PLAYS

1=1
140

P I I I e N R e e N N S
e 6 e & e & o ¢ & & @& & ¢ =

sNeoNoNoNoNoNoNoNoNoN RN NN

PLAY
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

P

PDOWRNRNRNMNOVLORNNDNDNOLWRNNNNDOVNDRD -
e e e ¢ @ ® e e & o e © & o e o

QO O0OOCTCOCOOOOCOCOCOOTCON

PLAY P1=3

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

TABLE 44543 COMPUTER VS OPPONENT NOse

1

440

&
*

eNeoNoRoNoNoNoNoNeoNoNONONGNGNG]

PO PPPPOPRrPPPUOUOPRPRPO

e [3 L] L 3 L 4 * @ L] [] e o [] L]

E

PLAY Pl=4
49 140
50 10
51 2¢0
52 1.0
53 1le0
54 10
55 240
56 1.0
57 140
58 1e0
59 2¢0
60 140
61 140
62 140
63 240
64 1.0

56

THE FOLLOWING STATES ARE CONTROLLED BY Pl
STATE PAR V1 ve V3 Va
1 01 02 03 01
1 07 06 W3 07
1 W3 06 W3 06
1 19 L& 19 L4
1 W5 W7 W5 W7
1 W5 W7 W5 W7
1 W5 L6 W5 Lé6
1 W7 W5 W7 W5

<OOXAXRTITOP

THE FOLLOWING STATES ARE CONTROLLED BY P2

STATE PAR V1 V2 V3 Vi
C 2 05 W3 05 W3
E 2 W3 08 W3 08
F 2 09 11 12 10
I 2 W3 08 W3 17
L 2 L6 20 20 20
N 2 21 W5 21 w5
P 2 22 W5 W5 W5
u 2 Lé 23 23 23

THE FOLLOWING STATES ARE CONTROLLED BY P3

STATE PAR V1 Ve V3 V4
B 3 L4 L& 04 L4
G 3 16 15 14 13
J 3 18 18 W3 18
R 3 Lé Lé Lé W5
S 3 21 21 21 21
T 3 22 22 22 22
W 3 W5 W5 W7 W5

TABLE 4+¢5¢4 COMPUTER STATE TABLE SORTED BY
CONTROLLING PARAMETER

p £P) 50 £
1 0 1 0
2 1 1 0
3 3 1 1
4 0 1 0

Table 4.5.5 Definition of Depth 1 ME Subfunctions

57

THE PLAYERS

FIRST MOVER SECOND MOVER
STATE PAR V1 V2 V3 Iz STATE MOVE
A 1 01 02 03 01 01 B
B 3 L4 L& 04 L& 02 F
C 2 05 W3 05 W3 03 J
D 1 07 06 W3 o7 04 L
E 2 W3 08 W3 08 05 M
F 2 09 11 12 10 06 N
G 3 16 15 14 13 07 0
H 1 W3 06 W3 06 08 P
I 2 W3 08 W3 17 09 L4
J 3 18 18 W3 18 10 L4
K 1 19 L4 19 L& 11 S
L 2 L6 20 20 20 12 Lé
M 1 W5 W7 W5 W7 13 L6
N 2 21 W5 21 W5 14 T
0 1 W5 W7 W5 W7 15 R
P 2 22 W5 W5 W5 16 U
Q 1 W5 Lé W5 Lé 17 v
R 3 L6 Lé L6 W5 18 W
S 3 21 21 21 21 19 U
T 3 22 22 22 22 20 L6
U 2 L6 23 23 23 21 W7
V. 1 W7 W5 7 W5 22 W7
W 3 W5 W5 W7 W5 23 L6

RESULTS OF A COMPLETE SET OF PLAYS

P2 P3 PLAY Pl=1 PLAY Pl=2 PLAY Pl=3 PLAY Pl=4
1 1 1 1e0 17 140 33 440 49 1e0
1 2 2 1e0 18 140 34 440 50 140
1 3 3 240 19 140 35 50 51 240
1 4 4 140 20 140 36 440 52 10
2 1 5 1¢0 21 340 37 440 53 10
2 2 6 1¢0 22 340 38 460 54 140
2 3 7 240 23 300 39 540 55 240
2 4 8 140 24 340 40 440 56 10
3 1 9 10 25 200 41 440 57 140
3 2 10 1s0 26 2+0 42 440 58 1e0
3 3 11 240 27 2¢0 43 540 59 240
3 4 12 140 28 240 44 440 60 160
4 1 13 140 29 140 45 440 61 140
4 2 14 1.0 30 140 46 440 62 140
4 3 15 240 31 140 47 540 63 240
4 4 16 1s0 32 1.0 48 440 64 1.0

TABLE 4546 COMPUTER VS OPPONENT NOs 2

58

mover's strategy has been changed by changing the move at state 02 from G
to F. The change is reflected in plays 17 - 32 shown in the column head-
ed "P1=2" and the resulting ME is of depth 2. The ME function may be
expressed as: f(Pl’PZ’PS) = fl(Pl’Pz) + fz(PZJB) + fS(Pl’PS) where

£, £, and f; are defined in Table 4.5.7.

B PRE PPV UV UDNDDNDNNRE R R
SR DR WNDEFEDRWNREDROWN R
QOO OO OO O OO UWMNMNO OO O O
i e e e i e Sl Sl e i o i B
OHOOWPFAPUNWNUWODODODO OO OIW

Table 4.5.7 Definition of Depth 2 ME Subfunctions

Table 4.5.8 shows the same computer vs still another opponent. This
opponent plays the perfect strategy. Note that he wins (i.e., causes
the first mover to lose) all games in a minimum number of moves. It is
a characteristic of the game of Hexapawn that the second mover can
always force a win. It should be evident from the results of play that
this combination:also represents a depth two ME. We might note in pass-
ing that we have matched many computers of the form shown with many
opponents and that the result most often reflected a depth two ME. If
the meta-environment composed of the game of Hexapawn with utility func-

tion and computer of the form given here can be said to have a '"natural"

FIRST
STATE PAR V1
1 01
3 L4
2 05
1 07
2 W3
2 09
3 16
1 W3
2 W3
3 18
1l 19
2 Lé
1 W5
2 21
1 W5
2 22
1 W5
3 L6
3 21
3 22
2 L6
1 W7
3 W5

O

P ORE PO PDPOLWNDE PO W

PLAY P

PP DD OWLRNNNRNE N

TABLE 44548 COMPUTER VS PERFECT OPPONENT

MOVER

RESULTS OF A COMPLETE SET OF PLAYS

1=1
140
140
140
140
140
140
160
1e0
1le0
140
10
140
140
1e0
140
140

V2
02
La
W3
06
08
11
15
06
08
18
L&
20
W7
W5
W7
W5
L6
L6
21
22
23
W5
W5

59

THE PLAYERS

V3
03
04
05
W3
W3
12
14
W3
W3
W3
19
20
W5
21
W5
W5
W5
L6
21
22
23
W7
w7

V4
01l
L4
W3
07
08
10
13
06
17
18
L4
20
W7
W5
W7
W5
Lé
W5
21
22
23
W5
W5

PLAY P1l=2
17 140
18 140
19 160
20 1s0
21 240
22 240
23 20
24 20
25 1.0
26 140
27 10
28 10
29 140
30 1.0
31 140
32 140

SECOND MOVER

STATE MOVE
01 B
02 F
03 K
04 L4
05 L4
06 N
07 L4
08 P
09 L4
10 L&
11 S
12 L4
13 La
14 T
15 L4
16 L4
17 L4
18 L4
19 L4
20 L6
21 L6
22 L6
23 L6

PLAY Pl=3 PLAY Pl=4
33 140 49 140
34 1.0 50 1.0
35 140 51 160
36 140 52 160
37 140 53 140
38 10 54 1.0
39 140 55 140
40 160 56 1e0
41 160 57 1+0
42 1.0 58 1e0
43 140 59 10
44 1.0 60 140
45 140 61 1¢0
46 160 62 160
47 140 63 1s0
48 140 64 140

(NOe 3)

FIRST
STATE PAR V1
1 01
3 L4
2 05
1 07
2 W3
2 09
3 16
1 W3
2 W3
3 18
1 19
2 L6
1 W5
2 21
1 W5
2 22
1 W5
3 Lé
3 21
3 22
2 L6
1 W7
3 W5

S <ECEH U0V TOZIFFARARLO—=TOMMON® >

P2 P3 PLAY P

101 1
1 2 2
1 3 3
1 4 4
2 1 5
2 2 6
2 3 7
2 4 8
3 1 9
3 2 10
3 3 11
3 4 12
4 1 13
4 2 14
4 3 15
4 4 16

MOVER

V2
02
L4
W3
06
08
11
15
06
08
18
L&
20
W7
W5
W7
W5
Lé
L6
21
22
23
W5
W5

60

THE PLAYERS

V3
03
04
05
W3
W3
12
14
W3
W3
W3
19
20
W5
21
W5
W5
W5
L6
21
22
23
W7
W7

V4
01l
L&
W3
07
08
10
13
06
17
18
L&
20
W7
W5
W7
WH
L6
W5
21
22
23
W5
W5

SECOND MOVER

STATE

0l
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MOVE

B
F‘
K
L&
L4
N
L4
P
L&
L4
R
L&
L4
T
L4
L4
L4
L&
L4
L6
L6
L6
Lé

RESULTS OF A COMPLETE SET OF PLAYS

1=]
160

—
L g

e &€ & & ¢ & & & & & & & o o

C O QOO COOCOOCOOCOOOo

PLAY Pl=2

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1.0

B b b B B R R R DD N R B2 e
COC OO O0OOCCOCOOOOO

e« @ - - L J [3 L 3 . © [] -« L L L 2 [2

PLAY P1=3
33 160
34 1s0
35 1¢0
36 1.0
37 1.0
38 1le0
39 1¢0
40 1e0
41 10
42 1¢0
43 1.0
44 1¢0
45 1.0
46 1.0
47 1.0
48 1.0

TABLE 4549 COMPUTER VS OPPONENT NOs

4

PLA
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Y P

=

L L T S SRy SRy Sy
eNosNeoNsNeoNoNoNoNsNoN»NoNoN G o R

- [3 L g - L L 3 L] ® e L 2 L] L 2 L g L J L d [2

61

depth, that depth is two. If we take this perfect second mover and alter
its strategy by changing the move at state 11 from S to R, we obtain the
results shown in Table 4.5.9. Note that the only change from the previous
set of plays occurred at play 24 which resulted in a win for the first
player. This introduces one small weakness in the perfect opponent and
makes for a much more interesting set of plays. The resulting ME function
cannot be broken down and is clearly of depth 3.

To recapitulate: Our example contains a board game, a fixed computer,
a fixed utility function and an assortment of opponents with fixed strate-
~gies. The resulting ME can be of depth one, two or three depending only

upon the: opponent selected.

4,6 Simulated Meta-Environments

Our purpose in the succeeding sections is to outline procedures for
the generation of several classes of meta-environments. Each class is
characterized by a specified depth (as defined previously by means of
the SCF). These MEs which we will denote "simulated meta-environments'
will be used in subsequent chapters as the basis for both analysis and
simulation. They will be generated in such a way that the utility
density and distribution under random sampling will be identical for all
depths. They are admittedly artificial and are designed to be devoid
of all structure except the depth characteristic whose effect on adaptive
systems we are investigating. We begin by giving a fairly detailed des-
cription of the process for depth one MEs and then explain how it may be
extended to generate MEs of depth two and greater.

As we have stated, a ME is a function (i.e., ME : OA - OUJ which

assigns an estimated utility to each parameter value vector (PVV). Each

individual ME function is specified by an array of numbers and we shall

62

first describe the generation of this ME array and then describe how the
array is used to assign values to PVVs. In the sections which follow, we
shall assume that p = v = 8. These are the values which will be used in

the simulated meta-environments.

4,7 The Generation of Depth One Simulated MEs

For depth one, the ME array has eight rows’and eight columns where
the rows are intended to correspond to parameter values and the columns to
parameters. Thus the element in the third row of the fourth column
corresponds to the third value of the fourth parameter. The elements of
the array are integers drawn from the set {1, 2, 3, 4} and are selected
in the following manner: 1) Two rows of the first column are selected
at random and the corresponding elements are set equaltto’l. 2) Two of
the remaining six elements are selected at random and set equal to 2.

3) The process is repeated with 3 and 4 so that the elements of the first
column are completely specified. This first column now contains two’ ones,
two twos, two threes and two fours placed at random. 4) The process is
repeated for each of the remaining seven columns.

The computation of the estimated utility assigned to a PVV by the
ME represented by the array is quite straightforward. To each of the
eight parameter values in a particular PVV, there corresponds a single
element in the ME array. The sum of these elements or subutility values
is the value of the ME for that PVV. The range of the ME function thus
defined is the integers from 8 to 32 inclusive.

Next, as a control, let us investigate the performance of an adaptor
which generates PVVs purely at random vis-a-vis the depth ene ME just
described. We may consider the ME to be a random variable which assigns

a number (the estimated utility) to each of the PVVs. We can then

.63

examine the resulting distribution of estimated utility values. Since
the random variable is composed of the sum of eight independent random
variables, this distribution is very close to being normal. The probabil-
ity of the generation of a PVV which is assigned the maximum value (32)
is; just (.25)8 since each of the 8 elements in the sum must be a 4 and
this occurs independently with probability .25. The probability of not

attaining a maximum in n trials is (1. - (.25)8)n which may be approximated

-n(.25)8

(for large n) by e Thus the probability of attaining at least

- 8
one maximum in n trials is the complement of that value or 1 - e n(.25)

The expected number of trials before a maximum is reached is just
1
(.25)8
at least one maximum value in n trials for various values of n. These

= 65,536, The Table 4.7.1 gives the probabilities for attaining

Number of Trials Probability of Success
n -(.25)8n
l-e
:655 001
3,277 .05
65,536 .63
196,608 .95
301,466 .99

Table 4.7.1 Random Adaptor vs ME(1)

figures provide a yardstick against which we may judge the performance
of more sophisticated adaptors. The extent of the ME is g8 or 16.8

million so that there are (.25)8-88 or 256 points of maximum utility.

4.8 Higher Depth Simulated MEs

The array for a depth two ME has V2 = 64 rows and p = 8 columns.

In an obvious extension of the depth one case, the rows correspond to

64

pairs of parameter values. Note that there are (g) = 28 parameter pair
combinations, but only 8 columns in the ME array. Thus, unlike the depth
one situation, not all of the parameter combinations can be represented.
The eight parameter pair combinations which correspond to the columns of
the array will be chosen at random from among the twenty-eight possible
combinations.in such a way that each parameter is represented in precisely
two columns. In general, in the depth of ME array, each column will
represent precisely d parameters and each parameter will be represented
in precisely d columns. The elements of the array are then randomly
assigned numbers from the set {1, 2, 3, 4} with each number present in
equal proportions in the columns as in the depth one ME. The value of the
ME for any PVV may be obtained by summing the subutility values in the
rows corresponding to value pairs in the PVV for each of the eight pa-
rameter pairs which correspond to the columns. An additional complica-
tion arises in the generation of ME arrays for higher depth MEs. Note
that for depth two a given value for a single parameter specifies sub-
sets of each of the two columns in which it is represented. The problem
arises when the interaction is such that certain combinations of sub-
utility values may not be attained or may be attained with a different
probability under random sampling than is required to maintain uniformity
with the depth one case.

The following example of an ME with 4 binary parameters and ME
array values drawn from the set {1, 2} illustrates the problem. The ME

array is given in Table 4.8.1.

Parameter Pair
Value 12 23 34 14
00 1 2 1 1
01 1 1 2 2
10 2 1 1 2
11 2 2 2 1

Table 4.8.1 Example of a Defective ME(2) Array

65

We note that each column has 2 ones and 2 twos and we would expect
that if we enumerated the ME function, the values would be distributed

as would a depth one ME with the same parameter and value structure so

that. the distribution would be as shown in Table 4.8.2. However if we
Utility Values 4 5 6 7 8
1 4 6 4 1

Table 4.8.2 Desired Distribution of Utility Values

enumerate this depth two ME function, we find that the distribution is
as given in Table 4.8.3.so that the anticipated maximum value of 8 cannot

be attained.

Utility Values 4 5 6 7 8
2 2 6 6 0

Table 4.8.3 Actual Distribution of Utility Values

In order to prevent occurrences of this sort we must impose another
type of uniformity in the ME array. There are many ways to do this but
we shall describe only one of them which we have employed to generate
depth two ME functions. First of all, we may arrange the ordering of the
column labeling so that each parameter occurs first in one and only one
column label. Then the values (1-4) are placed in the columns in such
a way that each subset which is specified by a single value of the
first parameter is uniform in the sense that it has two ones, two twos,
two threes and two fours. Note that this property will not in general
hold true for the subset specified by the second parameter. The effect

of this is to assure that the choice of a single parameter value

66

restricts the possible subutility values only in a single column. It
should be noted that this does not force the ME to be of depth one
since that would require the subset's values rather than merely its
distribution be invariant. Table 4.8.4 contains an example of a depth

two ME array which does yield the desired distribution of utility values:

Parameter Pair
Value 12 23 34 41
00 1 2 1 1
01 2 1 2 2
10 2 1 1 2
11 1 2 2 1

Table 4.8.4. Example of a Constrained ME(2) Array

This concept may be readily extended to simulated MEs of higher
depth. It means insuring that all but one of the subsets specified by
the values must have the uniformity characteristic described. It is this
characteristic which insures the validity of the relationship between
simulated MEs and TEAs described in section 4.4. For the depth two and
higher simulated meta-environments the range of estimated utility values
is the integers 8 to 32 inclusive and the statistics under random sampling
are identical to those of the simulated depth one ME.

We have had to pay a price in order to achieve uniformity under
random sampling. Because we were forced to choose only a fraction of
the parameter combinations, we have in a sense diluted the depth charac-
ter of the ME. The effect of this dilution will be seen in the results

given in subsequent chapters.

4.9 Guidepost

In this chapter, we reduced the complexity of our paradigm in such
a way that the meta-environment became a function. We then concentrated

our attention on one particular aspect of the meta-environmental function

67

— that of interaction between parameters and formulated a definition
of meta-environmental depth that highlighted that aspect. Because the
idealized definition proved to be unwieldy for our purposes, we formulated
another related definition of depth. Next, in order to illustrate the
validity of our concept of ME depth, we gave an example of a real environ-
ment — the game of Hexapawn played against a number of fixed opponents
along with a computer and showed that the combination was 'a meta-environ-
ment of depth one, two or three depending upon the opponent chosen.
Finally, we gave a procedure for generating simulated meta-environments
with specified depth characteristics which exhibit uniform behavior under
random sampling.

In the chapters that follow, we will describe two classes of
adaptive algorithms and their behavior when immersed in simulated meta-

environments,

5. THE CORRELATION ALGORITHM — DESCRIPTION

5.1 Introduction

In this chapter, we shall be .concerned with a particular class of
adaptive algofithm or adaptor which we have termed the ''correlation
adaptor." It is our intent that this algorithm should reflect the essen-
tial features of a number of adaptive systems that have appeared in the
literature and we shall endeavor to point out the correspondences as we
proceed;

Recall that in our paradigm, the function of the adaptor is to
- generate parameter value vectors and that our criterion for success for
an adaptor is the number of trials required for it to gererate 4 PVV which
merits the maximum utility. The fewer trials required, the "better'" the
adaptor is.

The heart of the correlation adaptor (CA) is the experience array
(EA) which contains, at any time, information which summarizes the results
of the adaptor's previous encounters with the current meta-environment.
The adaptor uses the experience array as the basis for the generation
of subsequent parameter value vectors. It is convenient to divide the
correlation adaptor into two parts according to function. The recording
algorithm is that part of the CA which enters the results of a trial (of
a PVV in a ME) into the experience array. The generation algorithm is
that part of the CA which uses the EA to generate a new PVV.

In the next sections, we shall examine the components of the Correla-
tion algorithm in more detail. It may be either deterministic or probabi-
listic and though we mention both cases, we shall concentrate upon the

latter.

68

69,

5.2 The Experience Array

The memory or storage states of the CA are contained entirely within
the EA. Under interpretation, the values in the EA are intended to repre-
sent the correlation of PVVs with the utility they merit from the ME.

The utility attained by a particular PVV is the result of the entire PVV,
however, internally, the CA may choose to associate this utility with the
individual parameters of the PVV, or with pairs of parameters, triples of
parameters, and so on. We shall reflect this choice by defining several
distinct classes of CAs each of which is distinguished by the experience
array which it uses. Thus the correlation algorithm which associates
utility in its EA with individual parameters will be referred to as the
level 1 CA (or CA(1) for short) and the CA which associates utility with
parameter pairs will be referred to as the level 2 CA (CA(2)) and so on.
We may also define a zero level CA in which utility is associated with
parameter values irrespective of parameter type. Both the success numbers
of Friedberg [1958] and the correlations of Samuel [1959] as well as th;
weights associated with arrays of adaptive threshold elements correspond
to level 1 experience arrays. Samuel as well as Uhr and Vossler [1961],
Chow and Liu [1966], and others have considered experience arrays of level
2 and higher, but not as systematically as the present treatment. (This
is understandable since they were more interested in attaining practical
ends and it is apparent that complete experience arrays of levels greater
than one become very unwieldly. We reiterate that our interest lies more
in exploring the implications of the higher level CAs rather than using
them to aid in the solution of real problems.)

The following is a more detailed interpretation of the experience
array. The formal definition is given constructively below in the dis-

cussion of the recording algorithm.

70

A:_Ifth level experience array X is a two dimensional array of elements

X, where each element Xij is an estimate of the correlation with success
(i.e., high utility) of the ith parameter value £-tuple in the jth pa-
rameter 4—tuple.’ For example with ¢ = 1, xij is the correlation associated
with the ith value of the jth parameter while for ¢ = 2, xij is the corre-
lation associated with the ith value pair of the jth parameter pair and
so on. For level 1, the elements of the experience array are closely
related to the entity Fisher [1958] calls the average excess of utility
associated with allele i at position j. We have extended this notion to
apply to pairs, triples, etc. of alleles at pairs, triples, etc. of posi-
tions.

In general, for a level %'CA, there are V2 value £-tuples and (E)
parameter &-tuples (symmetry requires that the parameter £-tuples
include no duplicates). Thus there are a total of VQ(E) elements in the
4-level experience array. In order to simplify the exposition in the
following section, we find it comvenient to introduce the following nota-
tion for %-tuples of parameters and values: pi is the ith parameter
2-tuple (1 s i s (E)) and V? is the jth value ®-tuple (1 s j < VQ) where
the ordering is the natural one. Thus for example: p; = pj 1<j=sp),
vi = v, (1 £1 <v) and v2

i i 1

define xfj and X*. When the meaning is clear from the context, w¢ shall

= (vl,vl) etc. In a similar manner we may

often omit the superscript for the sake of simplicity. Figures 5.2.1
and 5.2.2 are diagramatic representations of the level omne .and’ level two

experience arrays respectively.

5.3 The Recorder Algorithm

Formally, the experience recorder algorithm corresponds to the

state transition function of the adaptor. Its purpose is to record in

71

PARAMETERS
VALUES PR P, Py

FIG. 5.2.1 LEVEL ONE EXPERIENCE ARRAY

PARAMETER PAIRS

VALUE P Pz PPy PR I:)p—l Fi)
PAIRS *

Vi V|

ViV

Vi V3

Vi Vy

FIG. 5.2.2 LEVEL TWO EXPERIENCE ARRAY

72

the array X information gained from a trial (vs the ME) of a PVV(OA(t))a
Any specific PVV has a value for each parameter, a value pair for each
parameter pair and so on, so that corresponding to the X array for any
level, there is one and only one element in each column which corresponds
to a given PVV. It is this relevant entry which.will be changed as

the result of the trial the corresponding PVV.

At any time, each element (xij) of the experience array X reflects
the average utility earned by the relevant PVVs sampled to date. In
order to compute the average, it is necessary to record the number of
times that each entry has been relevant. To accomplish this, let each
element Xij consist of a pair (yij’zij) where yij is interpreted to be
the sum of the utilities of all of the PVV's for which the (i,j) the
entry has been relevant and zij is interpreted as the number of those
relevant PVVs (the number of times tried). The desired average value is
just yij/zij (Zij will be restricted to positive integer values). It
will be convenient to consider the X array as being split into two
separate arrays Y and Z with the obvious interpretation.

In order to be able to state the recorder algorithm more compactly,
we shall define another array — the relevance array R. The relevance
array has the same dimensions as the X array and there is a relevance
array associated with each PVV. The R array is composed of ones and
zeros and has a single one in each column which corresponds to the
relevant entry in that column.

More precisely:

Ri = (ri)jk and

(ri)jk =1 if OAi(pk) = Vj

73

= 0 otherwise for 1 < j < VL
P

1 <ks (2)

1<is<VP

The recorder algorithm may now be stated as follows:

Z(t+l) = Z(t) + R(t) (the operation + is matrix addition)

Y(t+l)

Y(t) + R(t)oOU(t) (where Oﬁ(t) is a scalagr and the
operation - is the multiplication

of a matrix by a ScCalar)”

5.4 _The Generator Algorithm

Formally, the generator algorithm corresponds to the output function
of the adaptor. Its purpose is to generate (using the information con-
tained in the X array) an optimum PVV (i.e., one which will return the
maximum utility). Because the space of all possible PVVs is immense
(though finite), in practice it is possible to sample only a minute por-
tion of it. The sampling is of necessity biased since its purpose is not
to comﬁletely explore the space so as to be able to predict the utility
of an arbitrary PVV but to find the points of maximum utility. Conse-
quently, the areas of high utility will tend to be more thoroughly
sampled, while those of lower utility will be avoided. In essence, the
adaptor conducts a search for regularities in the space of PVVs.

For level one, it is necessary to select a single value for each

parameter, i.e., to choose a single row in each column of the X array.

We might recall that one of the hints that we have mentioned is the
one that identifies participants. The natural method of handling such
hints is to restrict reward and punishment to those parameter value
tuples which actually participated in the acquisition of utility.

Such a scheme can be expressed quite naturally by the present notation
by modifying the definition of the relevance array to read:

(ri)jk =1 if OAi(pk) = Vj and p, 1s a participant

74

The order in which the columns are selected is immaterial. However, for
levels greater than one, this is not the case since choices within one
column may limit the consistent choices available in other columns. For
example, in a level two adaptor if PP, is chosen to be VaVys the choice of

values for P,p; cannot be made freely from among all pairs Vivj’ but must

be constrained to those pairs whose first element is v It may be seen

4°
that for levels greater than one the order in which columns are consider-
ed is significant so that it becomes necessary for the generator algorithm
to include a column sequences selector as well as a mechanism for select-
ing a row within a given column. This situation comes about because of
a redundancy in the P-level adaptor for % greater than one since although
there are only p parameters, there are (E) columns in the X array so that
each parameter is represented in a total of (g:i) columns. This redun-
dancy means that fewer than the total number of columns must be chosen in
the generation process. Let C . Dbe the minimum number of columns
required to be chosen and Cmax the maximum. It is evident that:

Gmin = the least integer > p/4

and Cmax =p -4+ 1,

Thus far, we have considered only what might be termed only completely
redundant P-level adaptors —- those which consider all (E) %-tuples of
parameters. There are many reasons for considering incomplete or non-
redundant adaptors. For example, a priori information may be available
about the existence of ''neighborhoods' among the paramete;s (i.e., sub-
routines under Friedberg's interpretation) or considerations of implemen-
mentation may force a reduction in the size of the X array and the com-

plexity of the adaptor. Chow and Liu [1966] confine their study to

level one adaptors and incomplete level two adaptors with ''chain'' and

75

"tree" dependencies. Note that we shall consider only those adaptors
which are complete in the more restricted sense that each parameter is
represented in at least one column. A minimum of Cmin columns and
a maximum of (E) will be required for any adaptor.

In the following treatment, we shall assume that the elements of
the X array (xij = yij/zij) are bounded positive rational numbers. From
the previous description of the recording algorithm, there is no reason
to believe that this will be the case, but a subsequent section will de-
scribe a series of transformations to the basic X array which will insure

this property.

5.5 The Column Selector

The basic task of the column selector is to assign a positive real
number cj to each column of the X array and then select the sequence of
columns on the basis of their associated values of Cj’ This selection
may be either deterministic (columns are selected in order of decreasing
cj) or probabilistic (let the jth column be chosen with probability
equal to cj/ﬁck We list below several methods of assigning values of cj
to the columns accompanied by an intuitive rationale for each. We shall

examine the implications of each method in the next chapter.

1) Cj = mgx Xij (The column with the best element in terms of
utility should be given preference.)
2) cj = %xij (The column with the best aggregate performance
should be given preference;)
max X,. - min X..
3) Cj = ‘i; - 1 = (The column with the maximum relative
mt * 1j deviation is the column where a choice

makes the most difference so that it

should be given preference.)

76

; iZ|xij - §5| where E} = iz Exij
(This is very similar to 3. The column which has the greatest
total deviation from its mean should be given preference.)

5) cj = constant (This leads either to enumerative or uniformly

random column selection. Its speed and simplicity

recommend it.)

5.6 The Row Selector

Within a given column, selection of a particular row may again be
either deterministic or probabilistic. In the former case, the value
tuple Vs corresponding to the largest consistent xij in the column j is
chosen. In the latter, the value tuple Vi is chosen with probability
xijfixij where the jth column has been selected and i ranges over the set
of consistent value tuples.

Next we shall discuss two basic transformations to the X array wpich
are required to put it into a form suitable for the generator algorithm.

The generator algorithm as described thus far assumes that every xij
in the EA has a positive value, but it is clear from the recorder
algorithm that the only xij's which have been given values are those
which have been relevant in some PVV. What is to be done about the
"unexplored" points? If they are ignored by the generator algorithm, they
will never be tried and, in fact, it is unclea£ how the entire adaptor
will be started. The most straightforward solution is to give these un-
explored points an artificial x value until they become explored. This
is the path that we have chosen.

Let 3 be a small positive rational and assign to each unexplored
x (i.e., to each xij whose corresponding zij =0) a quantity equal to a

1

times the average value of utility returned thus far. Thus if a; = 1,

77

this is equivalent to the assumption that the unexplored points have

a value equal to the current sample average. Initially X is assumed to

be a constant array (xij = a, for all i,j) so that the first PVV generated
by probabilistic adaptor will be drawn from a uniform distribution.

In the generator algorithm as described thus far there is no control
for the regulation of the adaptor's reliance on its accumulated experience.
For example, if the environment were extremely hostile, it wpuld seem to
be more efficient for the adaptor to pay less attention to its accumulated
experience (since it is probably irrelevent or misleading) and concentrate
on random sampling. On the other hand, if the environment is very regular,
then the experience gained can be trusted and the adaptor would do well
to avoid excessive random exploration. In order to accomplish this
adjustment we shall introduce another coefficient.

Let a, be a coefficient which is added to each element of the X array
before the generator algorithm is executed. If a, is a large positive
number, its effect is to raise the level of the entire array so that the
individual variations between elements acquired by experience exert far
5 is

negative, the opposite effect obtains and the variations become accen-

less control over the generation process. On the other hand, if a

tuated so that more weight is given to accumulated experience. If a,

is zero, its effect is neutralized. In this section, a, will be treated
as a constant. In a subsequent section, we shall examine the consequences
of allowing it to vary.

More formally, if the unmodified X array is denoted by X' and the
modified array by X, the procedure described above may be expressed as

follows:

xij(O) = a,

78

= 1] 1
xij(t) (yij/zij) + a, for zij £#0,t>0
t O~
Xij(t) =4 Eg% UEK) + a, for z{h =0,t>0

Finally, we shall close this chapter with a brief qualitative dis-

cussion of hints and their applicability to correlation adaptors.

5.7 Hints

We have already described a mechanism for introducing a priori
knowledge of parameter neighborhoods by means of appropriate selection
of columns in an incompletely redundant adaptor. There may also be
situations where it is profitable to consider neighborhoods among values
so that value selection is constrained by the current or past values of
the same parameter. Thus the.wéights on the Checker Player bear
a relationship to one another so that there is a greater distance be-
tween some than others. The same holds true for the weights on Adaline
elements. However, such a relationship is by no means apparent in the
Learning Machine. It hardly seems plausible to argue that the "distance"
from a STORE instruction to an ADD instruction is somehow smaller than
the 'distance" from a STORE instruction to a TRANSFER instruction. If
a meaningful neighborhood relation does exist, the problem of optimum
step size may be considered.

In many meta-environments, transitions from one value to another
may be restricted by hints or may depend upon some history of values.
These restrictions and dependencies may affect poth the direction of
the step and its magnitude and should be taken into account in the
design of the adaptor for specific meta-environments. Beyond this

brief mention, we shall not consider such factors in this thesis.

79

5.8 Guidepost

Having described the operation of the correlation algorithm, we shall
next be concerned with evaluating it. In partiéular we are concerned with
the performance of CAs of various levels immersed in meta-environments of
various depths. A reasonable hypothesis is that the optimum results wili
be obtained in the matched case where the level of the adaptor is the same
as the depth of the meta-environment. Degradation should be expected
when the level is less than the depth because the adaptor does not
collect enough information to be able to accurately model the ME. Less
degradation should be expected when the level is greater than the depth
because the adaptor is processing information which is redundant with
respect to the ME. In the chapter that follows, we shall examine the
behavior of the correlation adaptor analytically in order to be able to

test this hypothesis.

6 THE CORRELATION ALGORITHM —— QUANTITATIVE CONSIDERATIONS
6.1 General

In this chapter, we shall be concerned with the performance of corre-
lation adaptors of various levels immersed in meta-environments of various
depths. Recall that our criteria for '"goodness'" of an adaptor is simply
the expected number of trials required to generate a PVV which elicits
the maximum utility from the ME. In the sections that follow we will
report on our attempts to assess the class of correlation adaptors by both
analytical and experimental means.

We may identify three phases of interaction of a correlation adaptor
with a meta-environment as follows:

Phase I is an initial exploration phase. It is characterized by
a high proportion of untried points in the experience array and conse-
quently most of the parameter value tuples are selected at random. Phase
I ends when the experience array contains a small proportion of untried
points,

Phase II is an information gathering phase. Most of the values
contained in the X array are the result of limited encounters with the
ME and they may be unreliable. During phase II, the sampling continues
and ultimately the estimated utilities which the EA contains become more
accurate reflections of the ME. Phase II ends when further sampling of
the ME can produce no significant changes in the EA.

Phase III is an execution phase. Most of the information in the EA
is as. accurate as it is going to get under the circumstances and the
adaptor must now continue to generate PVV's as based upon the acquired
information. Phase III ends when a maximum has been found.

It should be clear that the divisions between the phases as

80

81

described above are not clear cut and as a matter of fact at a given point
an adaptor may exhibit characteristics of two or even three phases. These
descriptions could be made much more precise so that a quantitative
determination of an adaptor's phase could be made. However, it seems that
such definitions would be of limited utility and would actually tend to
confuse the very real notion of adaptor phase. The duration of Phase I

is determined by the value of a If a, is small, very little explora-

1’ 1

tion is done and the adaptor continues to gather information about the
points it has already explored. If 2 is large, initially most of the
adaptor's resources are devoted to exploration and this continues until
there are no remaining unexplored points. In a like manner, the value of

a, affects the transition between Phase II and Phase III. If a, is

2
positive, the adaptor tends to ignore accumulated experience and attempts
to continue to extract more information from the ME. If 2, is negative,
the adaptor tends to rely heavily upon accumulated experience even though
it may still be unreliable.

Having made these general remarks, let us now consider some

specific cases.

6.2 Phase I Considerations

Recall that during Phase I, there remain one or more unexplored
points in the X array — (i.e., value tuples vy for parameter-tuples pj
such that Vs hasn't yet been tried for pj or equivalently zij = 0). The
rate at which these unexplored points are being sampled is dependent
upon the coefficient a; in the following manner. Consider a specific
column which contains a total of m = v* rows of which T are unexplored.
If we assume that the average utility attained by the m - r explored

points is u, then future trials are allotted.to exploration and production

82

in the following manner. Each of the unexplored points is assigned an x
value equal to alﬁlwhiiexeach 6f:the“exP19¥¢d pbints ha§-anNXVva;ue eqmal
to u on the average. Thus in any column, the sum of the x values of the
unexplored points is ra%?'while the sum of the x values of the explored
points is (m-r) u. Direct application of the row selector portion of the
correlation algorithm yields the following expression for the probability
(Pur) that one of the r unexplored points will be selected for the column

in question.
ra.u a,r

1 1

Araiﬁ'+ (m-1)u (a,=1)r +m

If we define Prn to be the probability that r points remain un-

ur

explored (in a single column) after n trials, we may write:

Pr,0w= 0 T # m

p =,
m,0 !

(because all points are initially unexplored.) And:

Pr,l =0 r # m-1

Pm-l,l =1
(because an unexplored point is certain to be chosen on the initial trial)

and in general for n > 0:

(m-1) al(r+1)

Pr,n B Pr,n:lmm + (a;-Dr ¥ Pr+1,n-l m+ (a;-1) (r+1)

In our investigation of Phase I, we are concerned with the number of
trials required to explore the ME sufficiently to fill the experience

array. The value P is the probability that there are no unexplored

O,n

T

points in a single column after n trials. But there are many columns in
the experience array,((i) of them to be precise). If we make the assump-
tion that exploration within the columns takes place independently and

in parallel (note that this is not the same as the assumption that row

83

selection takes place independently of column selection), then the prob-
ability that the entire experience array is completely explored after n
trials is just (PO n)s where s = (E) and m = vl. The expected number of

trials required for complete exploration is just:

o]

s
Eg%n(PO,n))

Table 6.2.1 summarizes the results of computations made on a digital
computer using the above expression. We have used p = v = 8 as in the
simulated meta-environments.

It should be noted that it is possible to develop a closed form
expression for Pr n using the difference equation method. We judge such

]

a result to be incommensurate with the effort required to obtain it.

EXPECTED NUMBER OF TRIALS REQUIRED TO EXPLORE THE X ARRAY

ADAPTOR LEVEL = 1

Al EXPECTED TRIALS
045000 6le
047500 bbe
140000 35
142500 29
145000 26
147500 23
240000 21

ADAPTOR LEVEL = 2

Al EXPECTED TRIALS
045000 950
047500 656
140000 5094
142500 420
145000 361l
147500 319
240000 2884

TABLE 6e¢2e¢1 PHASE I DIRECT COMPUTATION

84

A second approach to the problem of Phase I X array exploration can
be adapted from the Coupon Collectors Problem [Feller, 1957, p. 211].

Let us first consider the exploration of a single column. Let X
h

k
be the number of trials following the selection of the k" distinct
parameter value up to and including the selection of the next new value.
X0 is clearly equal to 1 since the initial trial must select a value which
has not previously been selected. Let Sy be the number of trials required
for the selection of k distinct values. Then:
Sk = XO + X1 + s +-Xk_1 .
The probability of selecting a new value assuming that k.have already

been selected is just:
al(m-k)
P = a, (m-k) + k-

and

k
Q=1-p= a, (m-k) + X

The value of Xy is one plus the number of failures precedinp the first
success in Bernoulli trials with p as given. The expectation and variance

of X, are given as:

1 al(m-k) + k
EX) =l+a/p=g= SN
E(X)a E(X)k

Sm is the number of trials required for complete column explora-
tion and since the X, are independent, its expected value and variance

may be simply written:

m-1
E(S,) = Z:%Ecxk)
-1

Varcsm) " g:;Var(xk)

85

In this case, the conditions for the central limit theorem are
fulfilled and we may assume that Sm is normally distributed (at least
for large values of m). We now wish to determine the expected number of
trials required for all n columns of the X array to be explored. This
requires finding the expected maximum of n observations of Sm° The
density of the random variable v which is the area under f(Sm) between
the largest and the smallest observations in a sample of size n is the beta
density (Mood and Greybill [1963], p. 405). The expected value of v is
simply:

féVp(v)dv = %%%

Since f(Sm) is symmetrical, the area under left hand tail is E%T .
This fact coupled with the assumption of normality gives the expected
maximum of n observation of Sm which is the expected number of trials
required for exploration of the complete X array. Table 6.2.2 illustrates
the results of computations using the normal approximation method.

Comparison: of these results with those previously given reveals
agreement to within 13% even for small values of n. In the direct
computation, we expect the results to be slightly high because very small
values of probability are lost on account of truncation and exponent
underflow. This has the effect of prolonging the computation and there-
fore increasing the value computed for the expected number of trials.
In the normal approximation computation, the assumption of normality can
be expected to yield results that are slightly low because the actual
distribution is truncated on the high end. In effect, these two compu-
tations have given us results which bracket the true values. There
significance lies not in the precise values obtained, but in the fact

that for levels greater than four, Phase I of the correlation adaptor

86

PHASE I NORMAL APPROXIMATIONs

EXPECTED NUMBER OF TRIALS REQUIRED TO EXPLORE THE X ARRAY

ADAPTOR LEVEL = 1

Al EXPECTED TRIALS
05000 55
0e7500 404
10000 32
142500 274
145000 24
147500 22
240000 204

ADAPTOR LEVEL = 2

Al EXPECTED TRIALS
045000 831
047500 ‘ 5764
10000 448
142500 372
145000 321
147500 285
240000 257

ADAPTOR LEVEL = 3

Al EXPECTED TRIALS
045000 9216+
067500 6316
140000 4866
142500 3996+
145000 34164
147500 3002+
240000 2691

TABLE 6222 PHASE 1 NORMAL APPROXIMATION COMPUTATION
(PART 1)

87

PHASE I NORMAL APPROXIMATIONe

EXPECTED NUMBER OF TRIALS REQUIRED TO EXPLORE THE X ARRAY

ADAPTOR LEVEL = 4

Al EXPECTED TRIALS
0¢5000 91809
0+7500 62573
140000 47955
142500 39184
145000 33337
147500 29161
240000 26028

ADAPTOR LEVEL = 5

Al EXPECTED TRIALS
045000 863143,
067500 586322
140000 447924
142500 364888,
165000 309532
147500 269994,
240000 240342

ADAPTOR LEVEL = 6
Al EXPECTED TRIALS

10000 40252304

TABLE 66262 PHASE I NORMAL APPROXIMATION COMPUTATION
(PART 2)

88

will require a greater number of trials than the random adaptor requires
to maximize the meta-environment. This indicates the first limitation

on the usefulness of the correlation adaptor.

6.3 Phase II Considerations

Recall that Phase II is concerned primarily with the exploration of
the meta=environment. During Phase II, the correlation adaptor is attempt-
ing to, in effect, determine the contents of the ME array which lies
behind the particular class of meta-environments we have postulated.

In order to be able to obtain an estimate of the time spent in
Phase II (i.e., "time" in terms of the number of samples of the ME which
the CA must make), we shall make the assumption that the CA samples the
ME at random. This is of course not strictly true since the adaptor is
not only sampling to discover the content of the ME, but is also skew-
ing future samples based upon past experience. However, since during
Phase II, the ME has not been sampled enough to give the adaptor a good
picture of its contents (so that, initially, the skewed samples are as
likely to be in error as not), the assumption of random sampling does
not seem unreasonable. At any rate, the results derived on the basis
of this assumption should give a good picture of the relative influence
of Phase II on meta-environments of different depths.

The ME array for the class of simulated meta-environments with which
we have been concerned has exactly p = 8 columns and Vd‘= 8d rows for
a depth d simulated meta-environment. In addition, it possesses
a certain statistical regularity in its columns. Each column has precise-
ly one quarter of its elements equal to one, one quarter of its elements
equal to two, etc. If parameter value vectors were to be generated

randomly, and an ME array of the type under consideration here used to

89

assign values to them, it is clear that each of the vd elements in
a column has an equal chance of being included in the sum that is formed
to assign the value. Thus over a sufficiently long number of trials n,
each element will be sampled on the average, n/vd times. Each time that
it is sampled, it is sampled in the company of p-1 other elements and the
adaptor is informed only of the sum of the p elements. The-question that
we wish to answer is "How many times must an individual element be sampled
before the adaptor can determine its value?'" Suppose that we are con-
cerned with discovering the value of an element of the 'ME array, Eij°
We may obtain information about the value of Eij by examining the utility
values of parameter value vectors having value i for parameter j. The
utility values of these parameter value vectors may be considered to be
composed of two parts: Eij = fj(vi) which is constant and a random
variable which consists of the sum of p-1 individual random variables each
which have identical means and variances. These individuallrandom
variables are produced by the random sampling on the p-1 other columns.
Each has a mean equal to the ME array column mean: ;%onS(i) = 2.5
and a variance equal to the ME array column variancelz-l jéj(Z.S—i)z = 1,25,
If a large number of parameter value vectors is evai:;ted, the mean
value of the resulting utility will be very close to the value.Eij plus
p-1 times the column mean. To be more precise, the situation herein
described allows application of the Central Limit Theorem so that we may
state that if n is the number of trials required to obtain enough informa-
tion to determine the value of Eij within ¢ percent with a probability
equal to p, then:

d
=V

125.2 2
e

where x is the root of ®(x) - ¢(-x) = p and ¢(x) is the normal distribu-

tion function.

90

Table 6.3.1 gives the results of computations using the above
expressions and various values of d, €, and p. The numbers given here
must be interpreted with caution since the object of the adaptor is to
maximize the meta-environment rather than to explore it and maximization
occurs on the basis of a sampling which is presumably far more efficient
than random sampling. In spite of these warnings, it is evident that
Bhase II considerations make it very unlikely that the correlation adaptor
will be useful for meta-environments of depth greater than three or four
since here again, the number of trials required to complete the phase is
greater than the expected number of trials required by a random adaptor to

maximize the meta-environment.

6.4 Phase III Considerations — General

In Phase III, not only is the experiénce array filled in with values
(as a result of Phase I), but those values represent the meta-environment
as well as it can be represented (as a result of Phase II). Thus we Shall
assume that in Phase III, the elements of the experience array remain sub-
stantially unchanged as a result 6f the ongoing sampling. We shall -
proceed by determining what those values are and then using them to com-
pute the number of trials required to attain the maximum utility value for
various values of a,-

The next sections contain both general and particular results deal-
ing with Phase III and they are presented in an order which proceeds from
the simplest cases to the more complicated. The first two sections are
concerned with the level one adaptor and consider it first immersed in
a depth one ME and then in MEs of higher depth. Within the sections,
general results are first formulated and then applied to the particular

simulated ME which we have described previously. The final section which

91

(T L¥vd) SNOILVLINdWOD I1 3ISVHd T°*€°9 318Vl

*096L1.0€G *8T1¢e212 *6LL0ES *H26%8 *Tgelc ’ 066°0
°*96.2¢c.0e *11€6221 *L2¢€L0¢ *2L16%h ec6ecT 066°*0
*0965%912 *2284998 *G6H912 *Z2e9%¢ *38698 006°0
*H16G68G0T *0ZhveElY *66860T1 *9€69T *heEZY 0sL*0
*TO096€E9¢C *%8646%1 *96€9¢ *eZ8¢ *qg#wl 00s°*0
0°T 0°*¢g 0°0T 0*G2 0°*0s T3N3 3DON3AIANOD
HOo¥d¥3 NOILVWILS3I LIN3IDd3d
€ = H1ld3d
*GhL7ES9 *68€£69¢ *LHe99 *G1901 *€g9c 066°0
*66G1%8¢E *£99¢aTl *GTH8E *9H19S *9€egt 066°0
*G69G60L2 *,22801 *960.L2 *62el *Z280T 006°*0
*68T¢e¢cl *L2626 *Tec2el *L1IT2 *625 06L°0
*0G6HGY *86T8T *6HGY *L2L *I8T 00g*0
0°1 0°*¢ 0°*0T1 0*Gc 0°09 T3A3TT 3DON3AIANOD
¥Oo¥¥Y3 NOILVWILSI 1IN3ID¥3d
2 = H1ld3d
*che628 *clLTec *c628 *92¢el *1€€ 066°0
*66T108Y *, 0261 *T08% *89/. *Z261 066*0
*TTIZ8€EE *82¢6¢€T *2Z8¢e¢g *T#g *Gel 006°*0
*86€G69T *Gg199 *€69t *59¢ *99 0G6L*0
*8989¢ *H) 22 *89¢g *06 *22 006°*0
0°1 0°*g 0*0T 0*al 0*0¢ 73A377 3DON3IQIANOD
HOYYTI NOILVYWILS3 LIN3IDY3d
T = HLd3d

ALITNILN=-8NS 3JLVYWILS3I Ol A3YIND3IY SIVIAL 4O d3GWNN NV3IW

92

36 3 3 38 I 36 3¢ 3¢
IR
3636263330363 ¢
W HH
S SEH R K

o°T

IR KN
3363 KK HR
KRN
*Z2T1T#89%8
*80891162

O°1

BRI KR
*Z2G66GL.98L
*2€921%G68
*026860L72
*28¢cLT¢cb

0*¢s
J0d3d3

*HhH6H869T
*hEerEBL
*6,59269
*g9¢g/l8¢ec
*Z2L9%9T1

0°*¢
H0oddy3

*888696¢¢C
*88689961
*g8gTeg8el
*0eLwLL9
AN YA RS

0°0T1

NOTLVWILS3

*9g29%2Y
*€298a%we
*HH9TCLT
*IH89%8
*89T16¢

0°0T1

(2 ldvd)

*H8TGEYG
*LEOLYTE
*g0691¢2¢
*966€80T
*Gg692.L¢E

0*sc
IN3IDY3d

*86€6.L9
*6L€€6¢€
*€90LLZ
*H67GeT
*3859Y%

0e*g2

NOILVIWILS3 LN3ID¥3Id

SNOIlvlind

*96/.86¢
*6GL.98L
*921%6G¢
*6860L72
*eLTED

0°*06%

*6H869T
*HHe86
* 59269
*el8¢ec
*9%791T

0*0¢g

ALITILN=-GNS 3LVWILS3 Ol d3¥IND3Y STVIAL

WOD II 3SVHd T*¢*9 3748Vl

T 066°0
0s6°0
006°0
06L*0
00s°*0

73A3T 3DN3AIINOD
g = Hl1ld3d

066°*0

096°*0

006°0

06lL*0

00G°*0
T3N3 3ONI3IAIINOD

= H1d3d

40 ¥IEWNN NVIW

93

concerns higher level adaptors, follows the same pattern proceeding from

the general result to the particular application.

6.5 The Level One Adaptor vs Depth One MEs

Recall that the probability Pij that a given parameter Pj will assume
a given value Vi is given by the row selection algorithm of the level one
adaptor. It depends only upon the elements of the jth column of the X
array and is given by the following expression:

X.. + &
ij. = “2

D e m——

P..
ij v

2 Kx..+a)
i1 12

Let us look more carefully at a specific element of the X array xij°
The value of this element reflects the average utility returned by all
of the parameters value vectors which include value i for parameter j.
Because, at this point, we have limited our concern to depth one MEs,
we know that the utility of a parameter value vector is obtained by
summing p sub-utility values. These sub-utility values are obtained by
evaluating the individual parameters values in the component functions.
This is stated more simply in the following expression:

f(Pl, P2, oo Pp) = fl(Pl) + fz(Pz) + ... ¥ fp(Pp)o
In our consideration of the element xij’ we note that all of the pa-
rameter value vectors that are relevant to this element have one common
feature. They all include value i for parameter j so that the sums
that make up their utility values all must include the element fj(vi).
Thus, we may write:

xij = Q + R where Q = fj(vi)

where Q includes the term(s) peculiar to the particular element xij and

R is a remainder term necessary because utility is associated with entire

94

PVV and not individual parameter tuples.

Let us explore R in more detail for the depth one case. For any
individual ‘parameter value vector, it consists of the values of the other
p-1 sub-utility functions (all of those except the jth) evaluated for the
particular values of the parameters to which they correspond. Since we
have assumed that the X array remains constant (Phase III) and the form
of the generation algorithm is known, we can compute the proportion of
trials for which each particular value will be present. More concretely:

consider a subfunction fk(Pk)(k # j). P, will assume a value Vo with

k
a probability equal to:

X. + a

“mk 2

v
(x . +a,)
;;; Lk T2
and when it does, its contribution to the total utility value will be
just fk(vm).
Weighting each of these values by the probability of its occurrénce
h

and summing, we may obtain the average contributien of the Kt sub-

utility function to the total utility value:

, k.. :
v f (v)x..+a,)
fk(Pk) B K''m’ ik 2
" ifxzk*az)
=1

The value of R is given by summing the average contributions of all of

the remaining sub-utility functions:

Combining the above results, we may write out the complete

expression for xij:

95

x.. = f.(v.) + gﬁ: . fk(v;)(xmk+a2)
ij joi — £ X
k#j %;i (X ra)

At this point, let us examine what we have and where we.are going. We
would like to be able to predict the number of trials for a level one
adaptor to maximize given depth one ME. We have assumed that the X array
is in Phase III and have obtained a set of equations relating the values
of the elements of that X array. The right hand side of the equation
includes terms of the form fj(vi) which are just numbers whose values may
be computed from the definition of the given ME. This leaves us with
a set of p-v equations in p.v unknowns. When these have been solved, we
shall know the contents of the X array and using the generation algorithm,
we may then compute the probability of any particular PVV being generated
and in particular those PVV's which elicit maximum utility from the ME.
Thus given any particular depth one ME, we may indeed, using the procedure
outlined here, compute the probability that a level one adaptor will
maximize its utility. But this is not really very satisfying, so let us
introduge the special case of our simulated meta-environments to see if
we can obtain more specific results.

Recall that p = v = 8 so that we are dealing with 64 equations in
64 unknowns. Then note that each column was generated in a uniform
manner so that there are no statistical differences in the columns. This

enables us to replace the expression for R by the following:

8 fk(vm)(xmk+a2)

R=7 3,

8
m=1
§(x2k+a2)

where the k is a constant value (from one to eight), the columns are

uniform. Note that R is now independent of i and j so that:

96

xij = fj(vi) + R(X)
This brings out very clearly the relationship between the values of the
X array of the adaptor and the values of the ME array of the simulated
ME (i.e., fj(vi))a In fact, there can be only as many distinct values of
xij as there are of fj(vi)" But by the manner in which the ME array has
been constructed, there are only 4 distinct values of the depth one ME
array (1, 2, 3 and 4) so that there can be only four distinct values of
xij and we have reduced the size of the problem to four equations in four
unknowns .

We may now simplify our notation to reflect the simplified situas
tion by letting u (s =1, ..., 4) to be equal to the value of X,

corresponding to fj(vi) when fj(vi) is equal to s. This enables us to

write:

up = 1+R

u, = 2+R=1+ Uy

ug = 3+R=2+ uy

u, = 4 + R=3+ u
4 s(u _+a,)

and R=(Zu + U +5u2+u +4)

s=1 "1 ~ 72 3 4 a

2

Substituting into the expression for R and solving for up, we obtain:

(17-2,) + /(17-a2)2 - 146 + Tda,

u,
! 2

Having obtained the values of ug, we may compute the probability that in

any trial, the value of a sub-utility function will be k. This is given

by the row selection algorithm:

q = (6.5.1)

97

The probability that a maximum utility value (32) will be attained in
any one trial is just (q4)8 since all of the sub-utility values must be
equal to 4. The mean number of trials required to obtain the maximum is

just the reciprocal of this number or

1 .
(ap)°

We should like to be able to examine the effect of variations of
a, upon the success of the level one adaptor. We have chosen as a measure
of success the mean number of trials required to reach a maximum value.
A somewhat more detailed picture of the effects of a, may be obtained if
we compute a density function, that i§ a plot of“utility values versus
the probability of attaining them... In order:to'do this;'we note.that the
distribution function of utility values is identical with the distribu-
tion function of a random variable formed in the following manner.
Suppose that we are given 8 urns each of which contains a nuimber of balls.
Each ball has one of the numbers 1, 2, 3 or 4 inscribed on it and each
urn contains balls in such a proportion that the probability of with-
drawing a ball with the number k on it is just Gy - Let one ball be
drawn from each urn and the values inscribed upon the balls be summed.
The distribution of the sums is given by Feller [1957, p. 266]. We
have devised an equivalent algorithm which is computationally more
suitable and have computed the distribution and mean number of trials
to attain all utility values for various values of 2, The results
of these computations are given in Tables 6.5.1 through 6.5.7.

The dependence of the results upon the value of a, can be seen in
the preceding results. Let us now determine the limiting-value which
a, may assume. Clearly Up < Uy <ug<uy and accordingly q; f qy < Qz < Qy-

From the form of the equation, it may be seen that Uy is a monatonic

function of a2 and as a, decreases so does U But if u1 *a, becomes

98

GE = 2V HLIM (T)3W SA (T)VD T*G*9 3N8Vl

I81°02 = 3INTIVA JOVIIAV

*T . *9.82% 16810000°%0 (4
*6 *82.L9 298%1000°0 1€
*Eh *22at 96969000°*0 (0]
*0O%1 * 9% €6049T1200°0 6¢
*TLE *9LT 8.899500°*0 8¢
*H28 *6L 19.86210°0 Lz
°*68G1T °Iy qL6m2h%20%0 92
*T0LZ *He L%71.22T4%0*0 : x4
*E€0TY *GT €el19290*0 He
*9T9g °TT 0L€0LS980%0 124
*G969 *6 81282901°0 Z2c
*968L *8 6..886T11°0 12
*6.08 *8 666.2¢e2T1*0 0¢
*LLSL °8 L9),T9GTTI*0 61
*LL%9 *0T T09%8860°0 81
*LEOS *el Le8989.0"0 LT
*6HGE *81 99T91%#50°*0 91
*€g2?2 *62 0T06e%7€0*0 ST
*8.21 °Ta LSL0G6TO*0 7T
*6€9 *Z0T L€G9L.600°%0 el
*Llz2 *ged STIT#Z#00°0 21
*TIO0T *H%9 26T49ST00°%0 1T
*62 *L8T¢2 ZT1L5%000*0 0T
*9 *9Z200T €L660000°%0 6
*0 *560L18 €2Z2T0000*0 8
SIVIYL Mv9 NI S¥ILINNOINI AILNAODNIT 1S¥YI4d OL SVIYL AlINIgva0yd 34008
d3123dX3 a31>3dX3

00®*ge =2V ¥0d S1TINS3Y

99

“02 = 2V HLIM (T)3W SA (T)IVD 2°6°9 318Vl

8#2%*02 = INTIVA FOVAIAY

*°I *€£688% c%020000*0 [4>
*0T *1929 6965T1000*0 1€
*Gy *G2H1 I1€10.000*0 0]
*6%1 *8¢cth L0182200*0 6¢
*T6t */91 a12.6500°0 8¢
*€98 *GL G6egLTETO®O0 L2
*2691 *6¢ 8101¢2620°*0 92
*06.L2 *ee 2€e6.L62%0°0 x4
*602% *gT LGee2%90°%0 #e
*c2ls °T1 #,.82¢.80*0 174
*6%0L *6 €62.6L0T*0 2c
*668L °8 LSO0EGOZTI*O 12
*8908 *8 6%801T€ec1*0 o¢
*GqTGL *8 G8089%11°*0 61
*ZBEQ9 °0T1 99+%8€.,60°0 81
*626% el 880225L0¢%0 LT
*6t e *81 £62%9260°0 ST
*gL12 *0€ 0T66Tece0®0 el
*gzel °€g #1#0L.810°0 Al
*609 *,0T 9%662600°0 €T
*292 *6%2 #Z2T10%00°0 2t
*G6 *4689 #,,.6%T00°*0 11
*L2 *GgHhel €%9Z%000*0 0T
*9 *€Z80T BeZ60000°0 6
*0 *9Z2888 GZT1T10000%0 8
SAVIYL %9 NI S¥YILINNOON3I Y3ILNNODNI 1S¥Id4d OL SNVvIdL ALINIgvVE0dd 340208
a31>3dX3 g31D23dX3

00*0Z =2V ¥04 S1INS3Y

100

= 2V HLIM (T)3W SA (T)VD €°G*9 378VlL

OT#*02 = 3NTVA IOVUIAV

T *TES0Y T9#20000°0 2¢
*Z2T *€82¢9 LZ268T000*0 T€
°€g . *1cct 168180000 o¢
*TLT *I8¢€ 96029200°*0 6¢
*2ZHY *8%7T T8#GL900°0 8¢
*T196 *89 86699%10*0 Le
*0181 *9¢ 2ee€Z9.L20*%0 9¢c
*800€ *1c gL1166%0*0 %4
*L9hY %1 €%991890"0 w2
*9.69 *0T1 618611600 €
*HHZL *6 8HEHWGOTTI®O (44
*L186L *8 97€L8TZT*0 | %4
*9208 *8 9€6L4H22T*0 0¢
*9g€gL *8 €€962211°*0 61
*9%19 *0T 8968Le60°0 81
*0LSY *#1 H4%,921L0°*0 LT
*g12¢€ *02 965906%0°*0 9T
*H661 *Z€ 706€#0€0°0 el
*G0TI *66 8.8989T10°*0 71
*0%g *T21 €€6%2800*0 el
*622 *G82 1966%€00*0 21
*18 *66L €L.062T00%0 11
*ce *6L12 L16G€000*0 01
S *060¢eT 299.0000*0 6

*0 *,.9680T1 LT1600000%0 8

SAVIYL %9 NI SY3LNNOON3 3 LNNODN3 1S¥Id Ol STIVIYL AllIN19va0dd 3¥0D2S
d31>3dX3 a31>3dX3

00°% =2V ¥04 SLINS3IY

101

O = 2V HLIM (T)3W SA (T}VD #°*°Gg*9 314GVl

687202 = IANTMVA JOVYIAV

* 1 *6)L1LE 68920000*0 [4
*eT *698% 9€602000°0 T€
*LS *HETT £€5188000*0 o€
*€8T *3g€ LGT08200°%0 62
*69% *6¢eT 2669TL00°0 82
*TIOT *H9 #88€EHSTO*0 Le
*T68T *he 9€5668820*0 9
*8T1TE *TZ 7.886L%0°0 T4
*HhEGYH * 4T €9.0T0L0*0 e
*6609 *0T Z2L€90€60%0 14
*heel *8 09TZ6TTT1¢0 ¢
*€208 *8 LTEEHZZT*O T
*6661L - *8 T#19022T1*0 0¢
reLz. *6 L8.8B60TT*0 61
*8209 *01 9€686T60*0 81
*HHGY *HT 80G7€690*0 LT
*€ote *12 TO09€L%0*0 o1
*0TI6T *he 18H%%1620¢0 ST
*6h0T *Z9 H#TTZ0910*0 71
*609 *821 wZTLLLOO®O €1
*HT2 *G0€ L8692€00*0 21
*ql *Z298 T106STT00*0 11
*T2 *H20€ 290€¢€000°0 0T
.y *TZERT 28690000°0 6

*0 . *L29021T 62800000*0 8

STMVIYL %9 NI SHILINNODN3I dILINMNODNI LSYI4d OL SIVIYL AlInIgvaodd 3¥02S
d31>3dx3 a31l>3dx3

00*0 =2V d0d S1INS3Y

102

e = ZV HLIM (T)3W SA (T)VD G*G*9 38Vl

709?02 = INTIVA FOVIIAY

¥4 *0TL2€ LS0E0000*0 ze
egT *gZ¢ch 00TEZ000*0 1€
) *610T T1186000%0 o€
°202 *vZ¢ 9T#80€00*0 62
*11g °8Z1 19108.00%0 82
*680T *09 00€29910°0 L2
*¢102 °z€ LZTZL0E0*0 92
*cg8z¢ *61 €1960050°0 g2
*T8LY el 6,.9962.0%0 %2
*5129 *0T GL15L560%0 €2
*19% . °g 109%8€T1°0 2z
*1908 °g 22660€21%0 12
*056L °g 8.0Z€T2T*0 0z
*chTL °5 LSLE060T*0 61
*€586 °TT 0222€680%0 8T
*19¢h °g1 608%5990%0 LT
"*gHheT °z2 9G9T6%+0®0 9T
*06LT *9¢ LISTELZO®O o1
°zL6 °L9 €€LEBHTO0 91
*994 : *0hT LTTTTL0OO®O €1
*c6T *gc¢ 919562000 A
°19 *996 TISEOT00*0 11
*61 *gZhe G9162000°0 ot
g *THH9T Z28090000%0 6
°0 *€8Z0%T 21,.00000%0 8
STVIY¥L %9 NI S¥Y3ILNNODN3I YILNMODONI 1S¥Id OL STIVIML ALITI8YE0Yd 3¥02S
d3L1D3dX3 a31>3dx3

00*H%= =2V ¥Od4 SLINS3IY

103

*0Z== 2ZV HLIM (T)3W SA (T)VD 9°*G*9 FaVvl

08€®€Z = INTIVA JOVIIAV

*9Z *29%2 0TI90%000*0 (A
*G91 *96¢ 80026200°*0 T€E
*G9¢9 *STT TT€€9800%0 o€
*20%T *9% 92€0%7120*0 6¢
*29lLc . *el 02241Z%0*0 8¢
*6e9h A S0%92690*0 Lz
*21%9 *01 L0L#78L60%0 9c
*GeEBL °8 18L80T2T*0 T4
*H%1.L8 *L 220862¢T*0 2
*0Ls8 *L Z28L9.0€T*0 €e
*16GL *8 168€84GT1TI"0 2c
*2809 *0T1 62,08260*0 1¢
*LIYY *7T 2986€L90%0 0¢c
*6067¢ *22 €eg6e”0*0 6T
*9elT *LE G0%06920*0 81
*LE6 *69 §L90€%710*0 LT
*GGY *ehT 26€96900"0 91
*861 *0ee 89%#20€00*0 ST
*9.L */a8 L%799T100*0 7T
*ge *0% g C9€6£000°0 €T
*L *2L.8 66€TTI000*0 21
T *20%9¢ L%1.20000°*0 T1
*0 *678061 €2500000*0 0
°0 *66GH6¢€1 T1,.000000*0 6
*0 *971.8088T S0000000*0 8
STVIYL %9 NI S¥3INNODNI JILNNOIONI 1S¥Id Ol SAVIYL AlITI8VvVE0dd 3¥0OS
a31>3dX3 d31>3dX3

00°*02~ =2V ¥0O4 SLINS3Y

104

HZ== ZV HLIM (T)3W SA (T)VD L*G*9 37GV.

99€*9Z = INTVA JOVIIAV

*¢T2 *L0€ 08g6Zc00°*0 (4
*T1GTI *9g €2%96L10°0 1€
*ZT€c *6T IT,L€5050*0 o¢
*2T169 *0T HY%08€660°0 62
*H896 *9 LLTLLLHT®O 8¢
*H9HT1 *g €29€6%.L1%0 LZ
*HHT11 *g 9TG#00LT*0 92
*9906 *L 898€€8€1*0 34
*8HZ9 *01 T6eecs60*0 e
*H7.9¢€ *LT 9€890950*0 €
*0681 *G¢g L1L0€2820*0 (R
*L6L *Z8 €e€LTZT0%0 12
*ce62 egze 26e€8%%00*0 0¢
*T6 *ETL 8€204%T00°*0 61
*HZ *80L2Z 2269€000*0 81
°g *glezl 08080000°0 LT
*0 *TLTIE9 S%%T0000°0 91
*0 *02828% L0Z00000°0 et
°0 *GG860€EY €2000000°*0 VA
*0 *266%9%09 T0000000¢0 €T
*0 *T9LIBLLEL 00000000*0 21
*0 *GG68HYHWZ.89.LT 00000000*0 T1
*0 *1Z€1.28L69€86G 00000000*0 01
*0 *EZHG6226€2902¢€ 00000000*0 6
0 *T1G€9.L0T€EH228€88E 000000000 8
STIVI¥L %9 NI SHYILNNODNI YILINMODNT 1S¥Id4d Ol SVIdL ALINIgavaoydd 34008
a31>3dX3 a31d>3dX3

00®*HZ- =2V ¥O0d4 SLTNS3Y

105

negative, then q; is also negative and we may no longer interpret it as

a probability. The minimum allowable value of a, may be computed b
P y o may p y

setting u, equal to -3, in the expression for u, given previously.

1
Solving for a, yields:

1
a, = -24 1/3 .

Recall that a, may be interpreted as a scaling factor which deter-
mines the amount of reliance which the adaptor places upon the information
contained in the X array. The larger (more positive) a, is, the more it
dilutes the effects of the X array and the more the results resemble
random sampling. On the other hand, the smaller (more negative) a, is,
the more skewed the results are because more weight is given to accumu-
lated experience.

A natural extension of the correlation algorithm as given is to
apply feedback to the situation so that as more experience is recorded
in the X array, more reliance is placed upon it. Since the values in
the X array should rise as experience is accumulated, one way of imple-
menting feedback is to let a, decrease (become more negative) by letting
a

2

the array. This permits the maximum feedback while avoiding negative

be slightly greater than the negative of the smallest xij value in

values of q. The effect is easily computed:

set a, = (—ul) + € where ¢ > 0

u, +a, + 3
I
thenpy = 7—=%+7_ "%
u a

1 2

The results in terms of number of trials required to reach a maximum
are given in Table 6.5.8. The use of such feedback clearly cuts across
our neat definitions of phase boundaries since it allows for Phasc III

PVV generation to occur while Phase II experience is being gathered.

106

8
e &
Py
o 56
1 1526
2 3778

Table 6.5.8 Trials Required for CA(l) to Maximize
ME(1) as a Function of &

The basic Phase III assumption is that the values in the X array are
constant and yet the feedback principle is predicated on the assumption
that these values do indeed change. In practice, the feedback should
not be applied until Phase II has been completed because its effect is
to severely limit trials of tuples which have previously done poorly.
But the apparently poor performance history of a tuple may be only

a consequence of its having been sampled in the company of other inherent-
ly poor tuples. Only when the EA has proceeded sufficiently far into
Phase II can we be confident that the tuple has been sampled adequately
to allow its worth to be estimated. The feedback loop can then be
closed to discriminate against tuples which are inefficient in gathering
utility, This feedback principle will be applied extensively in the
succeeding sections, but the results obtained must be considered to be

lower bounds on Phase III performance.

6.6 The Level One Adaptor vs Higher Depth MEs

Starting with the depth two case we proceed in a manner which is
precisely analogous with the depth one case. Let the elements of the
ME function be denoted as follows:

f(Pl, Pz,,nﬂo, Pp) = fl,Z(Pl’PZ) + fl,S(Pl’PS) + .. + (Pp_l,P)

f
P’l,P P

We may again divide the expression for xij into two parts one of which

107

(Q) consists of the contributions of the subfunctions which have value i
for parameter j and the other (R) in which the contributions of the

remaining subfunctions which are included:

xij =Q(i,j) +R

where:
o -1 fkj(vk’vi)(xzk+a2) p fjk(Yi,VZ)(x2k+a2)
s I\ < ' k=j+1 :
= = =] :
zgj(xmk+az) :E:l(xmk+a2)
= m=1
and
. - sz(vm,v.n) (ka+3.2) (xnsz,*'az)

At this point, since the general pattern is apparent, the reader
should not doubt that it would require a page and a half to contain the
complete expression for the depth three meta-environment and that there
would be little profit in the exercise.

We can now take a large step and develop an expression for the X
values of level one adaptor immersed in a general depth d meta-environ-
ment. This consists essentially of an exapansion of the R component of
the expressions previously obtained. It holds, of course, for meta-
environments of all depths but does not take account of the simplifica-
tions which can be introduced for the more constrained forms of meta-

environment.

1 2 j-1 j+l P 2
_ (x, ,+a,)
k 2“2
-1 P %
vi-’(SV, el vi ™ —— (6.6.8)
-1 1 p/ \1=

108

We next proceed with an attempt to obtain some more concrete results
for the special case of depth two simulated meta-environment. We shall
follow the same steps as in the depth one case and solve for the values
in the X array introducing simplifying assumptions as needed. We shall
follow this same procedure in subsequent sections.

First of all, p = v = 8 but there are only 8 (as opposed to 28) non-
zero columns in the ME array (although there are 64 rows). Recall that the
columns in the ME array have been chosen in such a manner that each pa-
rameter is represented in precisely two columns.

We then plunge right ahead and evaluate the Q part of the expression
for xij since it is here where the differences between the elements of
the X array are to be found. Recall that Q is composed of those elements
of the ME array which are consulted by the ME because the PVV has value
i for parameter j. In the depth one case, this led to a single element
(fj(vi)) in the ME array. In the depth two case, it leads to many elements
in the ME array since the precise value returned by a sub-utility function
depends not only upon the fact that Vi is present for Pj but also upon
the value of the accompanying parameter. In particular, there are
precisely sixteen elements of the ME array which are relevant. The six-
teen are obtained in the following manner: There are two columns in
which Pj occurs (by the manner in which the ME array is generated) and
in each of these,] is present in eight rows in an element kaj(vg’vi)
or fjk(vi’vz)) in which it is accompanied by one of the eight values of
the other parameter of that column. Since our aim is to simplify and
obtain specific results, let us determine which assumptions we may make
about these sixteen elements. The most natural assumption, since it is

a depth two ME, is that there is no reason for these particular sixteen

109

elements to be different from any other sixteen elements. Then the
weighted average of the elements which goes to make up Qij would be equal
to the column average (which is just 2.5). But this same assumption holds
for all i and j so that Q is invariant over i and j as is R and thus we
have an X array which is completely uniform. This turns the correlation
adaptor into a random adaptor (i.e., it chooses values for each parameter
at random from a uniform distribution). All of which is not really very
surprising, for it all follows from the assumption that there was no

depth one influence whatsoever in the ME. It is at least comforting to
realize that in this rather extreme instance of mismatch, the adaptor

does no worse than random. This is true only in terms of the number of
trials required to find a maximum. It does do worse in the sense that

the cost of the level one adaptor (measured by the amount of storage it
requires, the time per trial or some other criterion) is probably greater
than that of the random adaptor. In that sense, the performance of the
overmatched correlation adaptor is worse than random.

On the other hand, we may wish to specify values for Qij’ but in
doing so, we shall be in effect making assumptions apout the ME array
which will be reflected back into the depth of the ME itself. The most
rash assumption is that the sixteen elements which form a single Qij
all have the same value which makes our computation much easier since
there will be only four distinct values for Qij (1, 2, 3 or 4). But
a careful examination will reveal that we have reverted to a depth one
situation and although the ME array has depth two form, the function it
describes is actually of depth one.

In essence, there are no general assumptions that can be made which

will simplify the equations given above and still yield results valid

110

for any meaningful class of level one adaptors immensed in depth two meta-

environments.

6.7 Implications for Real—Worid Meta-Environments

In our definition of meta-environmental depth, we made no allowance
for mixed MEs — if an ME has-a single pair of parameters which interact:
while all of the rest are orthogonal, it is classified as depth two. It
is now evident that this is too rigid a classification and’ that the cases
of mixed MEs must be treated. Suppose that it could be determined that
half of the parameters interacted in pairs while the rest were orthogonal.
For the latter, the u values would be as given above for the depth one

case as would the value of Ay while for the former the effect of random

sampling would be to give dy 0.25 so the expected number of trials to

reach a maximum is just

2
1]

1.4.,.4
= &) . (6.7.1)
Q -
Similarly, if the ME is Z percent depth one and (100-Z) percent)

depth two, the result is simply:

N T
(6.7.2)

The remarks given here may easily be generalized to apply to
an adaptor of any level which is immensed in a ME of greater depth.

However, eyen with the above concession to reality, we are still
some' distance from a 'matural' meta-environment. In previous sections,
we have assumed that if parameters interact at a depth d, the best that
an adaptor of level d-1 can do is to sample at random. But this is not
true since the parameters may be "almost'" of depth d-1. That is, they

must be formally described as being of depth d, but for most values,

111

they act as if they had only d-1 dependence. This situation may be
reflected in the computation by adding additional terms which describe
the degree to which parameters interact at various depths. The effect of
this will be a change in the value of ay which will vary from a maximum
value given by the matched case to a minimum (0.25) for the completely
mismatched case. ‘this may be expressed by a modification of the exponent
Z given in the previous equation.

Recall that Z describes the degree of match with a level 1 adaptor.
We may extend its meaning by defining a whole spectrum of exponents
Z1 b 22 < ...l which may be defined in a manner analogous with Z1 whose
definition is as follows:

Compute the xij values using the general equation 6.6.8 or any of
its simplified versions which are applicable to the ME at hand and

an appropriate value of a Then using these values, compute the

X
probability of attaining a maximum using the obvious extension of equa-
tion 6.5.1. Use the.reciprocal of that probability for N and

solve equation 6.7.2 for Z. The value obtained is Zl' In a similar
manner, 22, ZS’ etc. may be computed and the result, the vector Z is

a much more accurate description of the hostility of a meta-environment

than the scalar depth.

6.8 Adaptors with Level Greater than One

We shall begin with a consideration of the level two adaptor.
Formally, writing the equations for higher level adaptors is a straight-
forward extension of the work of level one adaptors with the inclusion
of a term to account for the process of column selection.

We first consider the case of the level two adaptor immensed in

a depth one ME. We begin by examining the column selection function.

112

As indicated in the description of the correlation algorithm, the column
selection function is dependent not only upon.the elements of the X array
which are in the column to which it refers, but also to the remainder of
the X array. Accordingly, let X be the matrix consisting of the elements
of the X array. We may then represent the column selection algorithm by
the family of probabilities which it generates in the following manner:

C .(Y) is the probability that column ij (corresponding to the
parameters P and P) will be selected given the state of the X array - X.
The extension of thls notation to levels greater than two is obvious.

Proceeding in a manner which parallels that used in the level one
situation we now write the equations for the level two adaptor immemsed in
a depth one meta-environment. (We may assume without loss of generality

that j, > j;.)

X, (v) + f (v) +)> X <f> N (Y3>
1 23132 o) k] =y k =k +1\m = 1 m,= o1

kl#Jl kz#J2
where
(xm m.k.k +a2)
1727172 C X
v k.k
S0, L gk a) 172
172

Ql=1 22=l 12

X) = (£ (v.)+£f (v))
F kl my k2 m,

Vv

In a like manner, we proceed to the depth two case.

S £ ,v)+‘?ﬂ kg LA(X))
._+]_ =1 .

X, . . .
111231737 J132
where .

(x a,)
mlmzklk2)

AX) = £, (v ,v c, . X
b ;E:: (XQ 2.k k.3 B
1 % 1727172

113

At this point, the pattern should be clear and we may proceed to
the straightforward extention to the general depth d case for the level

two adaptor.

v v v v s LV
X, 4 i = SO SN WD S S T 69
R T L L T T LT A
31, Jl sz’ 32 P
where
— -1 J1 iy ir-1 Jo Jotl —
{1(X) = f(v ,”.,vJl 1 ,v.l,le+1 ,oun,vJZ 1 ,V?Z,V12 ,n,,,vp) 2(X)
k1 k. i k. N k. i k. 1 k_°
Jl-l J]. 32 32"*— P
where
(x a,) C X)
_ p-1 p k£1k£211£2 2 2122
2(X) = v v
21:1 22=QI+1 m.m,%.% a2)
£1#31 22#32 m =1 m,= 1727172

The extension to higher level adaptors is quite straightforward and
it seems pointless to use any more paper to bore the reader with more
unwiefdy expréssionsa Briefly, reviewing wé find that we have displayed
sets of equations which when solved would enable us to compute the Phase
III state of the X array of levels one and two adaptors which immersed
in MEs of any depth. Once the contents of the X array is known, it is
a simple (if lengthy) task to compute the mean number of trials required
for the adaptor to elicit a maximum values of utility from the meta-

environment.

6.9 Applications of Higher Level Adaptors

Following the pattern of previous sections, we shall now apply
the results just developed to the special case of the simulated meta-
environment. Our goal is to develop an expression for the probability
that a correlation adaptor will generate a successful PVV (one which

will elicit a maximum utility) when immersed in a simulated

114

. meta-environment. We make the usual assumptions that p = v = 8 and
that the ME array has been randomly selected as described above.

The first complication that we are faced with is that of column
selection, which was casually circumvented in the previous section by
the use of an appropriate notation. In order to attack column selection,
we will introduce two additional concepts — freedom and relevance. They
will be given a precise definition later on and column selection (and
eventually the probability of success) will be expressed in these terms.

Recall that the adaptor must make a selection from among the columns
of its X array because there are more columns than there are parameter
2-tuples (for levels greater than one). The genération section of the
adaptive algorithm works in the following manner: First a column is
selected and then values are selected for the parameters represented in
that column. Then another column is selected. But because of the fact
that a parameter may appear in many columns, certain.complications arise.
The second column selected may contain some parameters whose values
were already chosen as the result of the first column selection. The
row selector algorithm must then confine its choices to those value
tuples which include the previously chosen value(s) for the parameters
that were represented in the first column selection. In the sections
that follow, we shall use the notion of freedom to describe this
phenomenon. That is, a column which has been selected by the column
selector and which contains no parameters which have not appeared in.
columns selected previously will be said to have zero free parameters
while a column which contains a single parameter which has not been
previously selected will be said to have one free parameter and so on.

Next, we shall introduce the concept of relevance. Relevance

concerns the number of columns of the ME array that are reflected in

115

the makeup of a column of the X array. Consider the level one adaptor
immersed in a depth one ME. In that situation, to each column of the X
array, there corresponds a single column in the ME array and if we define
R(r) to be the probability that the number of ME array columns relevant
to a given X array column is r, then R(1) = 1. However, this situation
is no longer true for the level two adaptor because there are two columns
in the depth one ME array which correspond to each column in the level
two X array and R(2) = 1. On the other hand, for the level 2 adaptor
immersed in a depth 2 ME since there are only p columns in the depth two
ME array, but (g) combinations of parameters, either zero or one columns
of the ME array may be relevant to a randomly selected column of the
depth two X array and R(1) = p/(g) with R(0) = 1 - R(1). This concept
may easily be extended for various depths and levels in the obvious
manner.

Our plan is to give more constructive definitions to the two con-
cepts of freedom and relevance and use them to compute the mean number
of trials required for correlation adaptors of various levels to maxi-
mize meta-environments of various depths. To do so, we shall first
compute QT(F), the average number of times that the column selector will
choose a column with F free parameters. Next, we shall compute the
relevance distribution R(r) as defined above. Then, we shall develop
an expression for P(S/r,F), the probability that the row selector will
choose a parameter value tuple that contributes to the attainment of
an optimizing PVV given that the column selector has chosen a column
with relevance r and freedom F. Finally, these will be combined to
give P(S), the probability that a successful PVV will be generated on
any given trial. The reciprocal of this value is the desired expected

number of trials required to maximize the ME.

116

6.10 Random Column Selection

First of all, let us assume random column selection and attempt to
compute the average number of column selections which must be made by
a level % adaptor to insure that a complete set of parameters has been
represented.

Define Pt,k to be the probability that after t trials at coﬂumn
selection, k distinct parameters will have been represented (or p-k
free parameters. rémain). Recall that in the level & adaptor, there are
(E) different columns from which the choice may be made.

Our goal here is to compute a — the mean number of column selec-
tions required te complete the generation process. The value of a is
~given by the following equation:
¢9)

a = 2{: p

ot

The following may be noted:

P =0 for t s 0 and for all k
t,k ‘ .
and Pl'& =1 This is an initial condition which is true
? since all the parameters chosen at the
Pl K = 0 k#2& first trial must be free.
L
and Pt 1,p = 0 for all t > 1 \ This is merely a formal statement of the
T4y

condition that column selection ceases
when all of the parameters have been
represented.

Now that we have specified the boundary conditions for Pt,k’ we
may write the recursion equations which will enable us to compute its
values. Consider the following situation: after t trials, k parameters
are represented. This situation must have arisen in one of the follow-
ing 4 + 1 ways:

th

1) k parameters were represented at the t-lph trial and the t

trials brought no new parameters.

117

2) k-1 parameters were present 1 new parameter ...

o

3) k-2 parameters were present .. new parameters...

ad o

new parameters...

>

Rfl)‘k;k parameters were present .
Let P'(0/B) be the probability that o parameters will be represented
after t trials given that B are represented after t-1 trials.
Let P'(a:8) be the joint probability that o parameters will be present
after t trials and that B are represented after t-1 trials.

Then:
%
— 1 o 1 o k=
Py = Pk + g;%p (k-k-n)

where

P'(k-k) = P, -P'(k/K)

1
and

P'(k-k-n) = P P'(k/k-n) .

t-1,k-n

Recall that there are a total of (E) columns and that there have
been (t-1) choicés from among them (drawings without replacement) so that
there are.

d= () - (1)

columns left from which to choose.

Let us now compute the conditional probability P'(k/k):

There are precisely (t) columns which contain k different parameters
and of these, (t-1) héve already been chosen. Thus, if we let
c = (t) - (t-1), then P'(k/k) = ¢/d if c is positive, otherwise P'(k/k) = 0.

Next, we shall compute the conditional probability P'(k/k-n).

(k-1)

There are (t:i) @ -]

) = f columns which contain a single new
parameter so that the probability of selecting one of these is just f/d.

The emerging pattern should be clear and we may write that

118

the probability that n new parameters have been chosen is just

k-n

@ - Cmyyg 2oy

The above text may be translated into the following equation:

Let 6(a) =a ifa >0

0 otherwise

then

2
S(CH-(t-1)P,_ | + }:;cijﬁ)cp Gemyp
s n= 3

Pex ™

& - -1
Here, we note the fact that it is possible, using the difference
equation method and a good deal of labor to obtain an expression for
Pt K in a closed form. However, for our present purposes a numerical
s
solution will suffice. Accordingiy, the above relations and boundary

conditions were programmed for a small digital computer and the results

shown in Table 6.10.1 obtained.

- Level Mean No. of Selections
8,00

o OoOuUThs KN

Table 6.10.1 Number of Column Selections Per Trial

We have now computed, for an adaptor of any level, the average
number of column selection trials required to select a parameter value
vector. Next, we must determine in more detail the nature of the
columns selected. In particular, we must determine the average number

of trials which will result in a column being selected all of whose

119

parameters appear in previously chosen columns (i.e., no free parameters),
the average number of columns which contain one free parameter and so on.
Let Q(t,F) be the probability that a column with F free parameters

th

will be chosen on that t = trial.

Clearly:

P
Q(t,F) = S P'(k-k-F) .
k=0

If we sum the values of Q(t,F) over a large number of trials (in
practice until additional trials add no appreciable amount to the sum) we
obtain, QT(F), the average number of trials at which a column with F free

parameters was selected by the generation algorithm.

n
QT(T) = zz:Q(t,F) where n > p - &
t=1

Table 6.10.2-is &:tabulation which shows the average number of trials
at which columns with various numbers of free parameters are chosen for
a range of levels for the simulated ME. The discrepancies between this
table and the Table 6.10.1 represent trials at which columns with zero
free parameters were chosen.
Average Number of Trials at which a Column with F Free
Parameters was Chosen

Level F=1 F=2 F=3 F=4 F=5 F=6 F=7 F=8

1 8.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000
2 3.692 2.154 0.000 0,000 0.000 0.000 0.000 0.000
3 2.319 1.014 1.217 0.000 0.000 0.000 0.000 0.000
4 1.592 0.800 0.250: 1.014 0.000.. 0,000 0.000 0.000
5 1.145 0.655 0.182 0.000 1.000 0,000 0.000 0.000
6 0.889 0.556 0,000 0,000 0.000 1.000 0.000 0.000
7 1.000 0.000 0,000 0,000 0.000 0,000 1.000 0.000
8 0.000 0,000 0.000 0.000 0.000 0.000 0.000 1.000

Table 6.10.2 QT(F) as a Function of F for Various Levels

120

Next, we confront the problem of relevance, The general expression
for R(r) — the probability that the number of relevant columns is r —
is best developed by analogy with the following ball and urn problem:

Assume that an urn contains a total of n balls of which m are red and
the rest are white. A sample of k balls is withdrawn (without replace-
ment) and we are required to determine the probability that there are r
red balls in the sample (r = 1, 2, ..., k).

In our situation, n is the number of potential columns in the ME
array (n = (g)) and m is the number actually in the ME array (m = p).
The value K is the maximum number of ME array columns that can be relevant
to an X array column (k = (g)) and r is the number of ME array columns
actually relevant to a randomly chosen X array column.

The complete expression for R(r) in terms of the original problem

(not balls and urns) is given below:

o [@ - P
&
(d) - T
R(r) = % 2d
)
)

R(0)

1
R }2<d
0, k>0

Next, we shall assume that level, depth, freedom and relevance are

R(k)

known and examine their effect upon the contents of the X array and
thus on the row selection algorithm.

| First of all, we shall assume that a, has been adjusted by means of
positive feedback as outlined in an earlier section so that R portion of

the expression for xij is near zero and the total contribution to the X

121

value comes as a result of the Q portion. Consider a column of the X
array which is relevant to zero columns in the ME array. Consequently,
there is no reason for any of its elements to be different from any of
the others on the average so that a, may be adjusted so that each element
of such a column has, on the average, the same small value e. Next

consider another column in the same array (i.e., with a, set to the same

2
value) which is relevant to exactly one column in the ME array. In that
column, the values of X will be 1 + ¢, 2 + ¢, 3 + € or 4 + ¢ depending

upon the contents of the relevant column in the ME array. And the prob-
ability that the row selector will choose the correct value for a single

free parameter is just —i—z—%g approximately 0.4 for small values of .

10

On the other hand, if the row selector were required to select two pa-
rameters from the given column, the second would have to be chosen
essentially at random so that the probability of a successful choice of
1 4+ ¢

values for two free parameters is just —

7qg 77 Next, let us consider

a column which is relevant to two columns in the ME array. This column
contains values of xij equal to 2 + ¢, 3+¢, ..., 7 +¢€, 8+ ¢€in
appropriate ratios. The probability that the maximizing values for two
parameters will be chosen by the row selector is just:

8 + ¢ 8 + ¢

M-

(i+j+€) 80 + 1l6¢

>

o i=1 3

il
|

Next, let us consider the situation whéen freedom is less than
relevance. This means in effect that the X array has more inform<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>