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ABSTRACT

The behavior of a class of multimode oscillators having two nonlinear ele-
ments and operating under the influence of an external signal is analyzed using the approxi-
mation procedures of Krylov, Bogoliubov and Mitropolsky. Although the features of the
basic circuit are chosen to conform to the general characteristics of common self-biased
oscillators, the procedures employed are applicable to a large class of problems involving
two nonlinear elements.

Through the approximating procedure, the system of nonlinear differential
equations describing the basic circuit is replaced by a new, more tractable system of
three first-order nonlinear differential equations. Phase space solutions of this approxi-
mating system are then used to predict and analyze several interesting features of forced
oscillator operation including frequency entrainment, pulling, and superregenerative
detection. The results of the theoretical analysis are shown to be in very close agreement

with the actual behavior of an experimental oscillator.
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1. INTRODUCTION

In a recent paper, Bailey and Naylor (Ref. 1) presented an analysis of the un-
disturbed behavior of a class of oscillators modeled by a circuit containing two nonlinear
elements. That particular class was chosen for analysis because it included the frequently
encountered self-biased oscillators. In this report the analysis will be extended to include
the behavior of the chosen class of oscillators in the presence of external signals.

As in the previous analysis (Ref. 1), a mathematical model for the class of
oscillators under consideration is chosen with the aid of the approximation techniques of
Krylov, Bogoliubov, and Mitropolsky (Ref. 2). When the forcing signal is absent, this
model reduces to the unforced model considered in Reference 1. With the forcing signal
present the model is used to predict several features of forced oscillations in self-biased

oscillators (e.g., lock-in, pulling, superregenerative detection) with considerable accu-

racy. In addition, the concepts developed are applied to an analysis of the operationof
self-quenched superregenerative detectors and an application to nonlinear externally
quenched (logarithmic) detectors is indicated. These latter results are an extension of
previous superregenerative detector analysis carried out by Whitehead (Ref. 3).

The contents of this paper are arranged as follows: (a) in the second section
the mathematical model is developed, (b) in the third section the qualitative features of the
model are examined, and (c) in the fourth section a specific oscillator circuit is subjected
to a detailed quantitative analysis. Certain fundamental conclusions of this analysis are

supported by experimental results.



2. DEVELOPMENT OF THE MATHEMATICAL MODEL

The mathematical model is developed for devices described by the equivalent
circuit shown in Fig. 1. The oscillator with external signal shown in Fig. 2 is an example
of a system with this equivalent circuit. The circuits of Figs. 1 and 2 are equivalent when
(1) the tank Q is high (i. e., two of the poles of the linear part are near the jw-axis) and (2)
the characteristics of the nonlinear current sources in Fig. 1 have been chosen to approxi-
mate the grid and plate characteristics of the tube. A complete discussion of this equiva-

lence is given in Reference 1.

ic (€c)

Fig. 1. Basic equivalent circuit for the class
of oscillators under consideration.

Fig. 2. A typical self-biased oscillator
with external signal.

The circuit of Fig. 1 is described by the system of differential equations:
, ° l o_o . .
{ G'e + Ce + 3 f edt + Cg(e ec) = 1(ec) + 1j(t) ,

Gye, + cg(éc-é) +ife) = 0. (1)



With the introduction of the new variable b = ;,, the following system of three first-order

equations is obtained as an equivalent to (1):

(e

e =b,
[ ] Gg
e = b-goe - goiley)
) g g
b = -LiGrgle)-g (e)]b-e
C cc m' c LC
v (G rgle)-g (e)][Ge +ile)] + i) (2)
L CCg g ®°c'c m' c cc (OF
where
G =G +G
+ Gg (3)
di (e)
gle,) =~ (4)
C
di(ec)
g (e) = 5 - (5)
(¢

The last two relations define the equivalent nonlinear grid conductance and plate transconduct-
ance, respectively.
Two further assumptions will be made: (a) ij(t) = A(t) cos vt where A(t) is a
nonnegative, slowly varying function of time1 and v is a constant near w, = 1/\/ﬂ3 , and (b)
Q= woC/G > 10 or, equivalently, the damping ratio is less than .05. The system (2), sub-
ject to restrictions (a) and (b), now gives a mathematical description of the problem at hand.
Because of the high-Q assumption, it is anticipated that ec(t) will be of the

form

ec(t) = Ec(t) + E(t) cos[vt + 6(t)], (6)

where EC, E, and 6 are constants or slowly varying functions (cf. CW oscillation and
squegging oscillation). The form of ec(t) assumed in (6) corresponds to a separation into

alow-frequency bias component, Ec, and a high frequency component, E cos(vt + 6).

1While the mathematical model obtained is valid for time-varying A, the analysis of the

model, in this report, will generally be restricted to the case where A is a constant. An
exception is the superregenerative detector analysis considered in Section 4.3 where A
may be time-variable.



Since a direct solution of (2) is not readily obtained by techniques which yield

insight into over-all oscillator behavior, it is advantageous to choose a new, more tractable

system of differential equations which approximates (2) in some sense. The procedure for

selecting the approximating system is suggested by the work of Krylov, Bogoliubov, and

Mitropolsky (Ref. 2). An analytical investigation of the fidelity of approximation will not be

attempted, but experience has shown (see Ref. 2) that this procedure is frequently successful

in treating this type of problem. In addition, the experimental results described in Section 4

corroborate much of the analysis.

The anticipated form of the solution (6) suggests the following change of

variables:

e = Ecosvy,
e, = Ec+Ecosy,
b = -Evsiny , (M

with y = vt + 8. The Jacobian of this transformation is -Ev, showing that the transformation

is one-to-one and has an inverse at all points away from the plane E = 0.

The transformation is carried out by substituting (7) into (2) and making use

of the fact that vt =y - 6. The resulting system in E, Ec’ Y, and 0 is

r

E

2_ 2
Wo -V
= - % [G + gc(Ec + E cos y) - gm(Ec + E cos y)] Sinz'y + E sin 7 cos 7
Gg | |
“CC v [Gg +g,(E, + Ecos 7) - g, (E, + E cos 7)] [E_ siny - E sin y cos v
g
- CClgV i(E, +Ecos?) [Gg +g,(E,+Ecosy)-g (E +Ecosy)]siny
+éc(:i) sin(y - 6) sin vy,
Gg Gg 1 .
= -—C—EC-C—ECOS}/-E—IC(EC+ECOS}/) ,
g : w 2-p? .
= V-%[G+gc(Ec+EcoS'y) - gm(Ec+Ecosy)] sin y cos y + cos? y
Gg ] z
o [Gg +g,(E, + E cos 7) - 8,(E, + E cos M) [E, cos v + E cos® 7]
g
- CCIEV_ i (E,+Ecosy) [Gg +g(E, +Ecosy) - g (E +Ecosy)]cosy
g
A®) “
+* TR sin(y - 8) cos v .



Note that (8) is still an exact mathematical description of Fig. 1, but this description is now
expressed in terms of the new variables E, Ec, ¥, and 6. The approximating system is
now chosen to approximate (8) under the assumption that E, Ec’ 6, and A are slowly varying
functions of time. When this assumption is justified, the variables E, Ec’ 6, and A may be
assumed constant in an averaging of (8) over one RF period (approximately 2ﬂ/wo).

Completion of this averaging yields the approximating system2

(& - E ghf it _ g1+ AW

E = 5C [Gm(E, Ec) GC (E, Ec) G] + ¢ C0S 6,

E

. _ __¢ (f

41 EC = -G [Gg+Gc (E, Ec)] ,
5

. 0 A(t) .

L7 = vy -B'(E,Ec,v) -%ﬁ) sin 6 (9)
where
th(E E) = 1 fzw (E +E 1) sin? A dx (10)
m ¢ T o €m\ P cos ’
27

hf 1 .2 (11)

GC (E, Ec) = fo gc(EC + E cos A) sin® X da

o 1 27

G,(E, E) = éﬁ; {) i (E,+Ecosh)dn, (12)
1 21 G E

B'(E,E,,v) = o {) _&CCgV Gg cos A +[g (E, +Ecosa)-g (E +Ecos) _E_c
ic(Ec+ E cos 1)
+ G + COS A +ic(Ec +Ecos \) »>cosx dx .
g (13)

A further simplification is obtained by assuming that the angular frequencies
w, and v are similar; that is, by assuming that IA/wOI << 1, where
A =w -v. (14)

In this case

0 ~ (15)

2See Appendix for details of the approximation procedure. The terms Gg, chxf’ and Ggf in

(9) may be interpreted as voltage dependent nonlinear conductances. For a complete dis-
cussion see Refs. 1 or 6.



and it is possible to define

v '
B(EyEc) = w_o B (E,EC;V) (16)

which is almost equivalent to ', but explicitly independent of v. Finally, it is convenient
to define
w(E; EC) = wO - B(E; EC) ) (17)
and note that
6 =y -v, (18)

so that the final form of the approximating system is

‘ E ,.hf ht, Alt
(B - S5 [GAE, E) - G(E, E) - G) + 5 cos 0, (19)
. E
) E_ =-C_; [Gy + fo(E, E)], (20)
Lé = w(E, Ec)-u-%sme. (21)

These three equations are an approximating system which describes the circuit of Fig. 1
under the assumptions mentioned above. For convenience the right-hand sides of (19), (20)
and (21) will often be denoted by f

E, E, 9), 1,(E, EC), and f3(E, E, 0), respectively.

1( 2(
Analysis of this mathematical model for the oscillator will be the subject of much of the re-
mainder of this paper. The sections which follow will consider the behavior predicted by
this model and the validity of these predictions.

Before proceeding it is worthwhile to note the assumptions that are implicit

in the stipulation that E, EC and A be slowly varying functions. These assumptions imply

that:

E 2
E T

(a) E| w—<< 1,

o}

[ ]
Ec 27

(b) B w_<< 1,
c o)

(c) l—é-l- << 1
w b
o)
[ ]
Al 27

@ |z 5; << 1




Examination of (19) reveals that (a) introduces a restriction on the size of A which may be
handled by these methods. Thus, it will generally be assumed that A is small. This is
compatible with a majority of actual situations in which an oscillator operates in the pres-

ence of an external signal.



3. QUALITATIVE FEATURES OF THE MODEL

The oscillator mathematical model described by (19), (20), and (21) is a
system of three first-order, nonlinear, differential equations. The solutions may be
divided into two classes: (a) unforced oscillations when A = 0 and (b) forced oscillations
when A # 0.

Consider first the case of unforced oscillation. When A = 0, (19) and (20)
describe a second-order system independent of § and capable of solution in the (E, Ec)-
phase plane. The resulting E(t) and Ec(t) can be substituted into (21). Integration then
gives

t
6(t) = (w -Vt + fo BlE(z), E(2)]dz + 6, (22)
where 90 is the initial condition 6(0). The E(t), Ec(t), and 6 (t) which result may then be

transformed back into e, €. and b variables from (7), giving

t
e (t) = E_(t) + E(t) cos[w_t + fo B(E, E)dz +6_]. (23)
This unforced solution (note that the basic angular frequency is now wo) was the subject of

. . C 3
previous discussion in Reference 1.

[ ]
When A # 0 but A =0 the solutions of the third-order system may be repre-
sented in an (E, Ec’ 6 )-phase space. In order to avoid the difficulties associated with the
representation of 3-space curves on plane paper, (E, Ec)—plane projections (orthogonal) of

three-dimensional curves and level curves [see Kaplan Ref. 4] of three-dimensional surfaces

t
3In Ref. 1it was assumed, for convenience, that of 8 (E, Ec) dz + 0,= 0. Although this

did not effect the resulting amplitudes E(t) and F (t) [ since (19) and (20) are independent of

9 when A = 0], it failed to give a picture of oscillator frequency shifts during operation.

In addition it was stated in Ref. 1 that the 6(t) results obtainable from (21) [ with A = 01 were
not a satisfactory approximation to the actual 6(t). The 6(t) obtained in this paper is still

in quantitative disagreement with several known features of oscillator performance.
However, because it shows proper qualitative behavior it is used, as necessary, to obtain
solutions.



will be used wherever possible. Since the forced behavior for small A is found to be strongly
dependent on and quite similar to the behavior of the corresponding unforced system (the un-
forced system with identical parameters), the effects of the forcing function can be described
in many cases as modifications of the unforced (E, Ec)—phase trajectories. When both A and
:& are nonzero, the problem is even more difficult. Hence, detailed treatment of this case
will be limited to a few specific situations. Finally note that the form of the coordinate

transformation (7) insures that all behavior of interest will be found in the region -7 < 8 <7

and E > 0.

3.1 Equilibrium Points

When A = 0 the second-order system (unforced system) has equilibrium points
[ ] L]
at the intersection of the E = 0 and Ec =0 loci [plane curves in the (E, Ec)-plane] . These

points are solutions of the system

£,(E, E_, 0) = 0

1
(24)
f(E, E) =0.

[ ]
When A # 0 but A = 0 the third-order system (forced system) has equilibrium

L ° [}
points at the intersection of the E =0, EC =0, and 6 =0 loci [surfaces in (E, Ec’ 6)-space] .

These points are solutions of the system

fl(E, EC’ ) =0,
fz(E, EC) =0 ) (25)
f3(E’ EC’ g) = 0.

[
Since f2 is-independent of 6, the EC = 0 surface is a cylinder with its axis
parallel to the 8 -axis (i. e., its level curves are identical for all ). This cylindrical sur-
[ ]
face may be described as EC = g(E) and its intersection with the E = 0 surface is character-

[ ]
ized by the additional equation fl[E, g(E),0] = 0. Note that in the E = 0 surface at the

[ ]
intersection with the E = 0 surface

__1 A sin 6
dE _ 08 2C (26)
do E_ - o(E) af1+ A1 4 h(E, Ec) g
dE ~E,  dE



°
E=0 LEVEL CURVES

/9 =0 tanm

—0:F sonm

9’% tenm- TT8=msanw
8:3T s onp~ n=0,,2,

EQUIBLIBRIUM POINT OF Et::o LEVEL CURVE
UNFORCED SYSTEM (INDEPENDENT OF 8)

_EC

Fig. 3., Ilustration of the level curves of the E; = 0 and
E = 0 surfaces near an equilibrium point of
the unforced system.

where the definition of the new function h(E, Ec) is obvious. Since h(E, EC) is bounded and
independent of A and 6, and A has been assumed small, the oscillation in dE/d6 as a function
of 0 noted in (26) indicates that the Ig) = 0 surface at the intersection with the }.EC = 0 surface
may be viewed as a portion of a slightly rippled cylinder with axis parallel to the 6 -axis and
ripple amplitude proportional to A. The level curves for such E) = 0 surface are shown in

Fig. 3.

[ ] [ ]
The above argument suggests that the intersection of the E = 0 and Ec =0
surfaces is a set of wavy vertical lines with one line rising above each equilibrium point
of the unforced system. Equilibrium points of the forced system will then lie on these

lines at points where f3(E, Ec’ 6) =0. That is, at points where

A
w(Ep, ECp) -V = TE—p Sin Bp ’ (27)

with (Ep, Ecp, Op) being the coordinates of the forced equilibrium point. When A is small
[ (]
the ripples in the E =0, EC = 0 intersection lines are small enough that Ep = Eg and ECp ®

E?:p where Eg and E(c)p are the coordinates of the corresponding unforced equilibrium point.

For this condition, (27) may be rewritten as

A .
W, -V = sin 6
) 28
ZCES p (28)

where wy = w(Eg, Egp). This equation will have zero, one, or two solutions in the interval
- < Hp < 7. Thus, for small A, a necessary condition for existence of an equilibrium

point of the forced system of differential equations is

10



o ' (29)

This is the relation between A and lwl-ul that must exist if an equilibrium point is to occur.

When an equilibrium points exists, its stability will depend on the characteristic

roots of the linearized system matrix

e fig  fig

C
fog fZEC 0 (30)
fsp fSEC f3

where fij = afi/aj is evaluated at the equilibrium point withi =1, 2, 3and j = E, EC, .

These roots are the roots of the characteristic equation

(£ - 2) (szc - A) - flEc topllf3g - A1+ 1 4R fsEc - fBE(fZEC -A)] = 0. (31)
Since
A
f18 = -3gsing , (32)

(31) describes a Root Locus [see Ref. 5] problem in the parameter A. Thus, the roots of

(31) will be near the roots of the simplified form
3 - M [yp - 2) Ugg = 2) - Ty Tpgl =0 (33)

when A is sufficiently small. Stability is then approximately determined by the real parts

of £ 39 and the characteristic roots of the corresponding unforced system equilibrium point.
In summary, equilibrium points of the system (25) will occur above the

(E, EC)—plane equilibrium points of the unforced system at points where (28) is satisfied.

When A is small, the (E, Ec)-plane projections of the forced equilibrium points will be

quite close to the corresponding equilibrium points of (24). Moreover, for small A an

equilibrium point of the forced system will be stable if f3 p is negative and the corresponding

unforced equilibrium point is also stable. Note the close dependence of the forced and un-

forced behavior.

11



3.2 Operation of the Forced System Near Stable Equilibrium Points of the Unforced System

Assume that (Eg, Egp) are the coordinates of a stable equilibrium point, Po,
of the unforced system. The behavior of solutions of the forced system near this point will
depend on whether (29) is satisfied.

If (29) is satisfied there will be two equilibrium points4 in the (E, Ec’ 6 )-space
above or below the (E, Ec)-plane [see (28)] . From the above stability conditions and the fact

that

A
f39 = - ﬁ cos 0 N (34)

it is clear that one point, P, will be stable and one point, P', will be unstable. Operation at

LY

Fig. 4. Lock-in region in (A, A1) parameter space as
predicted by the mathematical model.

the stable equilibrium point (Ep, Ecp’ Gp) gives a predicted oscillator grid voltage

t) = E E cos(vt+6 ). 35
ec() cp+ P (V p) ( )

This fixed amplitude and phase operation in the mathematical model corresponds to what is
commonly called lock-in or frequency entrainment of the oscillator by the external signal.
The region of lock-in depends on A and Al =WV satisfying (29). As A increases, the

"lock-in bandwidth" or range of possible frequency entrainment specified by A, increases

1
as shown in Fig. 4.
During lock-in the phase of the forced oscillation relative to the unforced

oscillation, Bp, varies with A and Al as described by (28). The induced variations in Gp

[ ] [ ]
cause the equilibrium point to move along the wavy E =0, EC = 0 intersection line producing

4In the special case where lwl -vl=A/ 2CE; there is only one equilibrium point but this

situation is structurally unstable and not considered here.

12



________________ 6=0 TRACE OF
(]
E=0 SURFACE

\§=o TRACE OF

Ec=0 SURFACE

| INTERSECTIO/N‘
LINE -

I -

E=0 SURFACE

Fig. 5. Typical intersection of the E; = 0 and E=0
surfaces showing variation in Ep and Ecp along
the intersection curve and the equilibrium
points P°, P, P'.

variations in Ep and Ecp typical of lock-in phenomena. A typical pattern is shown in Fig. 5.
For a specific oscillator these variations may be used to construct the well-known lock-in

characteristics of E vs. A1 with A as a parameter. This is carried out in Section 4.

When (29) is not satisfied at (Eg, E(():p)’ a new form of behavior is encountered.
Since the equilibrium point of (19) and (20) is still stable for each fixed 6, the fixed 6 solu-
tions of these equations converge toward a corresponding equilibrium point. However, 5 re-
mains positive (or negative) and 6 continually increases (or decreases) causing this equilib-
rium point to move up (or down) through the phase space along the intersection line of the
EJC =0 and E: = 0 surfaces. Roughly speaking, the convergence of the solutions toward this
moving equilibrium point may be expected to produce spiral solution paths in the phase space.

This spiral should appear somewhat like that shown in Fig. 6. This behavior appears to

correspond to the combination oscillations encountered outside the lock-in region of oscil-

13



3
E,=0 TRACE

[ (4
{E=0,Ec=0 SURFACE
INTERSECTION LINE

Fig. 6. Possible operating path near stable
equilibrium point when (29)
is not satisfied.

lators. Note that both amplitude and phase modulation of ec(t) occur as E and 6 vary along

the spiral path. This phenomenon will be examined further in a later section.

3.3 Operation of the Forced System When the Unforced System Has A Limit Cycle

When the unforced mathematical model has a (E, EC)-plane limit cycle the be-
havior of the forced model becomes considerably more complex. Assuming that the solutions
are continuous in the parameter A, it appears reasonable to conclude that when A is small
the (E, Ec)-plane projection of the (E, Ec’ 6)-space solution path will lie close to the unforced
limit cycle. Whether the (E, EC, 6 )-space solution path is itself a limit cycle depends on
whether it is closed on itself and this is not easily determined. However, considering only
the (E, Ec)-plane projection of this solution path, several comments may be made.

First, because of the way the external signal term enters (19), it appears

that when A is small the only significant effect of the forcing term will occur when }E) is also
small. That is, the A/2C cos 6 term in (19) is important only when the operating path is

h hf

[J
near the E = 0 contour of the unforced system where | anl - Gc - G] is small.

Second, the rewriting of (19) in the form

14



hf _hf
G- -G -G
dE m - e A sola (36)

E ° 3C *9CE

suggests that E will be much more sensitive to A in regions where E is also small. The E—1

factor in the second term indicates that this term will dominate when E is small causing an

increased sensitivity of E to A in such regions.

A more complete discussion of operation in the case of a limit cycle will be
possible in the next section. There it will be shown that the above two effects combine to

give the superregenerative sensitivity of oscillators exhibiting certain types of limit cycles.

15



4. ANALYSIS OF A SPECIFIC OSCILLATOR AND COMPARISON
WITH EXPERIMENTAL RESULTS

In this section the model and concepts developed above will be applied to the
analysis of a specific oscillator configuration. This will serve the twofold purpose of giving
further insight into oscillator behavior and providing quantitative results which can be sub-
jected to experimental verification. With this latter end in mind the nonlinear current
sources i(ec) and ic(ec) will be chosen to approximate the grid and plate current characteris-
tics of a vacuum tube to be used in a circuit like that shown in Fig. 2.

The experimental oscillator and measuring techniques are essentially the
same as the ones described in Ref. 6. The external signal is applied to the oscillator tank
from a HP-606 signal generator through a 100K resistor.

hf . ¢f

f
4.1 Computation of the Functions G:l, Gc s Gc , and B

The i(ec) and ic(ec) characteristics will be chosen as

0 for ec <8
G

i = J - Mg o2 7
i(e,) = 55 (S-e,) fors <e, <0 (37)

Gmec for 0 g ec

0 for e, <0
ileg) = 38
¢ ¢ Gce fore >0 (38)
c c =

where S, Gm, and Gc are parameters. These functions are illustrated in Fig. 7. The

functions i(ec) and ic(ec) are clearly similar to the grid and plate current characteristics

of a pentode.

The corresponding conductances are

0 for eC <8
di(ec) €. (39
gm(ec) = dec = Gm(l - -S—) for§ < e, <0 )
G fore >0
m c =

16



ilec)

ic(ec)
S~ SLOPE =G,

S o] €c

Fig. 7. Assumed i(ec) and i¢(ec) characteristics.

) 0 forec< 0

gC(eC) = de = (40)
¢ G for e, > 0

The gm(ec) and gc(ec) functions are illustrated in Fig. 8. The relations (38), (39), (40), and
the transformation e, = EC + E cos y can now be inserted into (10), (11), (12), and (13) to

give the desired relations G?nf, etc. However, the integration involved is simplified by the

definition of the two conduction angles

_1<S-EC >
cos B for E > |S'Ec‘ )
=40 for E < SandE<|S-Ec| (
m for EC > Sand E < |S—EC|
-1 B
cos "\ ) for E > IEcl
(42)
g =10 for E < 0 and E<|E|
c c
T for Ec> 0 and EK |Ec|
Gm I (&)
Ge Je(€c)
S 0 e

Fig. 8. Conductance characteristics
corresponding to Fig. 7.
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Fig. 9. Determination of dependence of gy, on y.

The use of these conduction angles is illustrated in Fig. 9. There they are used to give a
convenient definition of gm(Ec + E cos y) in terms of y only (E, Ec are considered param-
eters in the integration). A similar procedure may be employed with g and ic.

With the aid of the ideas presented in Fig. 9 the integrals (10), (11), (12), and

(13) can be evaluated. This gives

G KE
C(E, B = —21(0) + —C [1(0) - £0)] + ZKE [sin’o - sin®g], (43)
G
ht _ e 44
Go (B, E) = —1(9) , (44)
G
Gﬁf(E, E) = TC (6 + EEC sin ¢) , (45)
ng 1 2E,
B(E, Ec) = 2CngO + 2Cngo1r {[Gg(ZGc + KEC) + Gc(Gc - Gm)] —— sin @ + h(g)
2E,,
- Gg[Gm + KEC] - sin ¢ + h(o) , (46)
where
K = - Gm/S ,
f(x) = x -(1/2)sin 2x ,
h(x) = x +(1/2)sin 2x .

The computation of these functions completes the adaptation of the model to the specified

nonlinear characteristics.
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4.2 Operation of the Forced System When the Unforced System Has A Stable Equilibrium
Point and A =0

With the computation of Gl;fl, th Gﬂcf, and B, the general model (19), (20),

J )
and (21) is specialized to circuits having the specific nonlinearities assumed in Section 4.1
The model now describes such circuits in terms of the parameters Gm, Gc’ G, C, Cg, and

S. When numerical results are required, these parameters will be assumed to have the

following values: Gm = 2400 umho,
Gc = 2000 pumbho,
G =G+G,
g
G' = 250 ymho, (47)
C = 300 pf,
C_ = 1000 pf,
g p
S = -3 volts

(The parameter Gg will be allowed to take on several values in the different examples which
follow.) The values chosen in (47) correspond to the measured parameters of the experi-

mental oscillator.
When Gg is large it can be shown (see Ref. 1) that the unforced system has

one stable equilibrium point, P0 = (EO E° ), corresponding to a constant amplitude or

p’ cp
CW mode of oscillation and one unstable equilibrium point located at the origin (0, 0).
For example, when Gg = 150 umho and parameters (47) are assumed, the }.5‘ =0 and
;:c = 0 loci in the (E, EC)—plane shown in Fig. 10 intersect at point P° and at the origin.
A check of the characteristic roots of the linearized equations shows that in this case
the equilibrium point P° is a stable focus. Thus the solution trajectories (such as T in
Fig. 10) near p° spiral toward the equilibrium point. In fact, a complete plot of the

(E, EC)-phase plane shows that with these parameters almost all initial conditions give

solutions which spiral toward p°.
Consider now the same system with a forcing signal present. If |w(E, Ec)—ul

and A are such that (29) can be satisfied in the vicinity of Eg, the forced system will also

have a stable equilibrium point. The equilibrium points of the forced system associated with
L] °
P° will be located on the curve formed by the intersection of the E = 0 and Ec = 0 surfaces

above P° at points (Ep, Ecp, Bp) which are also solutions of (27). These points may be located

. . o 0
by noting that when A is small, Ep = Ep, Ecp ~ E,
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Fig. 10. Predicted E = 0 and E¢ = 0 contours in the
(E, E¢)-plane of the unforced oscillator when
Gg = 150 pmho [note that E = 0 along the
entire E-axis--see (19)].

form of (27)

0 .0 A .
w(Ep», Ecp) -V = gy sin 9p . (48)
P

Further simplification is obtained by noting that in the specific oscillator under consideration

B(E, EC) << @, in the vicinity of P° and thus (48) may be approximately expressed as

A
A = sin @ , 49
ZCEg p (49)

where A = W, =V Since (49) generally has two solutions in any interval of length 27, there
will be two equilibrium points on the ]:3 =0, I.i)c = 0 intersection curve above P°.

The forced system will also have an equilibrium point on the ].i) =0, I:JC =0
intersection line rising above the unstable equilibrium (at the origin) of the unforced system.
This forced equilibrium point will be in the ﬁc = 0 plane near the 6 -axis and must be unstable
since it is associated with an unstable point of the unforced system.

The equilibrium points of the forced system may be illustrated by taking a
section (in the draftsman's sense) of the (E, Ec’ 6)-phase space at the Ec = 0 surface as

L[]

shown in Fig. 11. The abscissa in this figure (distance along the Ec = 0 surface) is pE

[ ] (]
where p = /1 + m? and m is the slope of the Ec = 0 contour in Fig. 10. The 6 = 0 contour
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Fig. 11. Section of the (E, E¢, 6)-phase space
along the E¢ = 0 surface (in this case the
E. = 0 surface is a plane).

[ ] [ ]
in this figure is the intersection of the EC = 0 plane and the 8 = 0 surface

_ PA .
pE = 9CA sin 0 .

(The use of A is justified in this specific example because B(E, Ec) << w, along the I;Jc =0
plane where 2E2p < Ec < 0.) This (3 = 0 contour intersects the ;:c =0, I:D = 0 intersection
line rising above the two unforced equilibrium points at the three forced equilibrium points
P, P', and P".

As noted above, P' will be unstable because it is associated with an unstable
equilibrium point in the unforced system. On the other hand, since the unforced equilibrium

point P° is stable, the stability of the forced equilibrium points P and P' will be determined

solely by the sign of f36 [see (33) for a related discussion] ; thus with A assumed positive and

_ A
f3(9 = - ——2CEp cos 6 ,

the lower intersection point P, where § < 7/2, is stable while the upper point P', where

6 > m/2, is unstable. When the solution trajectories converge to the stable equilibrium
point, E, Ec’ and 6 are constant and lock-in or frequency entrainment of the oscillator by
the external signal is predicted. As the angular frequency difference, A, or the amplitude,
A, of the external signal is changed, the 5 = 0 sine curve changes amplitude. This, in turn,
causes changes in the equilibrium-point locations, the oscillation amplitude Ep, and the

relative phase 8p. From the curves in Fig. 11 it is obviously quite easy to predict lock-in

21



/AI

(7 X

A

e )T

A Pr /
NIzt = P LOCUS
-—--" |  —_——— = P' LOCUS
— ——— = P"LOCUS
A, >A, >A,

o cp— 1" - N\\\\\
- —-\\*
e
~-A 'A, 0 A, A
2CEQ 2CEQ

Fig. 12. Typical E vs. A equilibrium point locus.
Injected signal A as a parameter.
characteristics of the oscillator. For instance, Fig. 12 shows the form of the oscillation
amplitude, E, versus angular frequency difference, A, locus of the three forced equilibrium
points (injected signal amplitude A as a parameter) that would be obtained from Fig. }1.
The similarity between Fig. 12 and the small signal lock-in curves of van der Pol (Ref. 8)

is obvious.

The above discussion may be clarified by an examination of the solutions of a

linearization of (19) and (20) in the vicinity of the equilibrium point P°. If the new variables

x = E - E°
P
and
_ _ (0]
y = Ec Ecp (50)

are introduced into the original model and the functions f, and f_ are expanded about the

1 2

point (Eg, Egp), the resulting linearized model will give
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X = flEX + flEZ * 5C cos 6,
17 = fgX * hpy o
c d
51
6 = A - sin 4, (51)
\ 2CE
p
where, as before,
afi
fij =% with (i =1, 2) and (j = E’Ec)

but now the partial derivatives are evaluated at p°. (These partial derivatives are
computed in the Appendix.) When A = 0 the first two equations of (51) describe the
behavior of the unforced system in a circular neighborhood of its equilibrium point.
When A is nonzero but small, (51) describes the behavior of the forced system in an
approximately cylindrical neighborhood of (0, 0, 4) in (x, y, 0)-space or of (F;, Egp, 6)
in (E, Ec, §)-space.

Now assume that (29) is satisfied so that lock-in occurs at § = Gp where

_y[2CEA
9p = sin ___Kp__ . (52)

The angle 6 is then fixed and the (x,y) coordinates of the equilibrium point (xp, yp) may be

found as solutions of the system

A -
flEXp + flEcyp + 95 cos 9p =0,
(53)
e * 1 Yp 0.
This system can be solved for xp. The solution gives
-1 0
. A
X = —fz—E—f - f A os | sin™! 3C—E9——
p g 1E, 1E 2C A , (54)
c

which is a complete description of the predicted lock-in curves for the stable equilibrium
point P in terms of the amplitude and frequency difference of the injected signal. Typical
curves are shown in Fig. 13 (these curves correspond to the P-locus in Fig. 12 with origin
shifted up to Eg). These predicted lock-in curves of xp vs. A were obtained from (54) for
several values of A. Figure 13 also shows some observed (xp, A) points from the experi-
mental oscillator when it was locked-in with the external signal. The experimental oscil-

lator parameters were adjusted to correspond to those assumed in (47) but failure to obtain
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Fig. 13. Predicted and observed lock-in
characteristics for oscillator with
stable equilibrium point.

a perfect correspondence introduced some quantitative errors. Figure 14 shows a similar
comparison between predicted and observed size of the (A, A)-plane lock-in region bound-
aries. Here the theoretical result was obtained from (29) with w(E, EC) =W

When (29) is not satisfied, 6 (t) becomes a monotone function of time and a
(E, Ec’ 6) equilibrium point cannot exist. However, when A is small the second-order
system described by the first two equations of (51) has a stable equilibrium for each fixed
6 and the locus of these equilibrium points in (E, Ec’ 6) space is the vertical cosinusoidal
curve shown in Fig. 11. As 6(t) increases, the solution path might be expected to spiral
around this equilibrium-point locus. This vertical spiral of the solution in (X,y,6) or
(E, Ec, 6)-space gives both an amplitude and phase modulation to e(t) which appears to cor-
respond closely to the combination oscillations frequently described for nonlinear oscillators
outside their lock-in region (Ref. 8). An analytic study at this point is complicated by the
nonlinear dependence on 8 in the first and third equations of (51). A graphical solution
would be possible but lengthy. One case which can be treated simply occurs when
A= w -V >> A/ZCEp. For this case, (3 ~ Aand 6 = At + 90. The remaining two equations

are then

X = f,. x+f

A
1E 1ECy + 3¢ Cos (At + 00),

y o= fgpx + szcy’
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which may be solved to give a steady-state solution

— 1
2 2
A° + fZE
x(t) = 2 ¢ sin(At + 6, + 0y + 0), (56)
2C _A4 +(2n + m?)A%+n?
_ L, 1
E .
y(t) = % 7 } sin(At + 6, + 6 ), (57)
L A" + (2n + m?)A% + n?

where m = flE + fZEc and n = flchzE - flEfZEc are constants and 61 and 62 are functions

of A.

When x and y are described by (56) and (57) and 6 = At + 0, the (x,y, 0)-
space solution trajectory is clearly a spiral around the 6 -axis. Moreover, for large A the
amplitude of the x variation is proportional to A/ A while the frequency is A/27. Thus as
A increases, the amplitude modulation in E goes to zero as 1/ A and E returns to the unforced
value E° . This corresponds closely with observed behavior of the experimental oscillator.

Although this does not exhaust the possible circumstances which may be en-
countered, the above discussion at least suggests that in several ways the model predicts
behavior similar to that which would be observed in an oscillator operating in the presence

of an external signal.

INJECTED CURRENT
AMPLITUDE A (ua)

= THEORETICAL
RESULTS (EQ. 3.8)

O O O = EXPERIMENTAL
RESULTS

LOCK-IN

NO LOCK-IN NO LOCK-IN

i n L s L W L s i L
-25 -20 -I15 -10 -5 O 5 10 5 20 25
ANGULAR FREQ. DIFFERENCE A X107 (rad/sec)

Fig. 14. Predicted and observed lock-in
region boundaries in (A, A)-plane.
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plane configuration showing limit cycles
and regions Ry and Ry.

4.3 Forced Oscillations When the Unforced System Has a Stable Limit Cycle

When Gg is small the (E, EC)—phase plane of the unforced system contains

one or more stable limit cycles. The typical example shown in Fig. 15 was drawn assuming
the parameters of (47) with G_ = 25 umho. Here the equilibrium point P° is unstable and a
stable limit cycle, Ll’ encircling PP is located approximately as shown. If P° is stable, an
additional unstable limit cycle, such as L2, will occur between P° and the stable limit cycle
and bimodal operation will be possible. That is, the oscillator will operate either at P° or
on L1 depending on initial conditions (see Ref. 1). In general, operation at P° will result in
a CW mode of oscillation and the forced behavior will be similar to that described in Section
4.2. On the other hand, operation on the stable limit cycle will produce an amplitude-modu-
lated or squegging (pulsed) mode of oscillation and a completely new behavior in the presence
of forcing signals. In this section, operation on a stable limit cycle in the presence of ex-

ternal signals will be considered.

When A = 0, the limit cycle is a solution path in the (E, EC)-phase plane which
is closed on itself. When A is nonzero but 6(t) is known, (19) and (20) can still be assumed
to describe the motions of a second-order system in the phase plane; however, a disturbance
from the(A/2C)cos 6 term has been added. If A is small, this disturbance will be negligible
except when (E/ZC)(G}r;f - sz - G) is small; that is, in the vicinity of the ]:3 = 0 contour of the

[
unforced system. It is important to note here that the unforced system E = 0 contour has
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two parts: the first part is the curve marked E) =0 in Fig. 15 which passes through point
P° and the second part is the Ec-axis. If the particular stable limit cycle is a small curve
enclosing p° (such as L2 in Fig. 15), it may never approach this second part of the E.I =0
contour. Thus in this case, the effects of small external signals will be limited to slight
changes in the shape and location of the limit cycle through modification of the].i‘ = 0 surface
near the E) =0 curve. However, a large limit cycle like L1 in Fig. 15 remains in the vicinity
of the second part of the ]gl = 0 contour over a consierable portion of its length. It will be
shown that in this region the external signal may have a marked effect on the oscillations.
Moreover, the magnitude of this effect will be related to the closeness of approach of the
limit cycle to the Ec-axis (i. e., the minimum value of E along the limit cycle).

In general it is not possible to solve the equations (19), (20), and (21) to ob-
tain a complete analytical description of a limit cycle. However, for a specific unforced
oscillator the limit cycle can be drawn in the (E, EC)-phase plane by standard numerical
techniques. Moreover, for the specific oscillator considered in this section, analytic solu-

tions may be obtained when E and Ec are in regions R1 and R, of Fig. 15. This fact,

2
coupled with the assumption that (E, Ec) coordinates of the forced-solution paths lie near

[ ]
the same coordinates of the unforced-solution paths, except near the E = 0 contour, facili-

tates a piecewise description of several interesting limit cycles of the forced system.

Consider a solution path (possible limit cycle) which enters the region R, at

1
point B with coordinates (EB, EcB’ 9B). From Section 4. 1, it can be seen that in region Rl’
ie ) =i (e) = 0and thus G =G = 6! = 0 ana

c cc m c c
G 2
- - g (58)
w(E, Ec) = %% "3¢Co
g o

Since the second term on the right in (58) is much smaller than w, [ using the parameters

(47)], the approximation w(E, Ec) =W will be used in Rl' The simplified mathematical

model is then

o E A
E —-ﬁG‘F—zﬁ cos 6,
] Ee 59
E, = -5 Gg’ (59)
g
_ A .
6~w0-u-msm9.
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The second equation of (59) gives
G
- -_£
Ec = EcB exp [ c t] . (60)
g
The first and third equations can be solved simultaneously using the technique described in

the Appendix to give
e(t) = E(t) cos[vt + 6(t)] = E, exp|- G t| cos(w t+6,)
B P |"3C o- YA

1 G tftA() G t-( d
+30 € |- 36 O £) exp %g cos[wO - wo-v)g] £ .

However, when

A

l 3 ‘ T, << 1,
where TL is the limit cycle traversal time (pulse repetition period), the A(£) in the integral

is approximately constant and e(t) may be written as

A G
Al - 5B cos 0, - (w_-v) E sin 6]
_ _G 2 3C “2C B B~ Y B B
e(t) = expl: 5C t:l EO + - cos (wot+n1+n2)
C LA (w - v)?
2C o)
A
+ cos (vt + n,) ,
. 1 (61)
2
2C \/(—26) + (wo V)
where
2C(w_ - v)
N -1 0
y = tan {T] ’
and
G .
. 1 3¢ Sin g - (wo - V) cos N

N, = tan

2 G . A
3¢ 08 9B+(wo-v) sin BB_W

B

Equations (60) and (61) now describe the solution path in region R.. The

1
result is clearly a curve starting at B and tending upward and to the left (in Fig. 15) as E
decreases and Ec increases. The next step is to determine the specific character of the

trajectory in this region; that is, whether E or Ec decays faster.

Here it will be assumed that Cg/Gg >> 2C/G (i. e., the grid-leak time
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constant is much larger than the reciprocal of the tank damping). This assumption insures
that a limit cycle similar to L1 (as opposed to LZ) in Fig. 15 is being considered; that is,
that the first term in (61) decays much faster than EC and the solution path approaches EC-

axis (assuming small A). Thus the first term in (61) will be negligible by the time the

solution reaches the upper edge of region R, and at this edge

1
g A
E = R 1 I}
G 2|2
ZC{[ﬁ} + (wo - ) }
< (62)
‘9 - 771,
LE =S .
c

These values will now be used as initial conditions in region R2. 6 Note that they are inde-
pendent of initial conditions at point B. This is because the term in (61) dependent on initial
conditions has had time to decay to a negligible value.

In region R, the model is complicated by the fact that i(ec) is no longer zero.

th =G_ + KE _so that the simplified model is now
m m c

2

Examination of (43) reveals that in R

2?
(. _ E A
E = Eﬁ[Gm+KEc - G] +§Ecos9,
E
\ c (63)
E.=-¢T Gg’
g
5 = WE, E)-v-nn sin 0
~ > Te 2CE ’
with initial conditions given by (62).
In the third equation of (63)
w(E; EC) = wO + B(E, EC) )
where
S
B(E,E,) = 70C o, (G, + KE, - Gg] .

6Between region R1 and Ry is a wedge-shaped transition region where G% increases from 0
to its Ry value of Gy, + KE¢. However, when A is small E¢ = S at the lower edge of Ry
and since K = -Gy, /S, the value of G% at the lower edge of Ry is zero. Thus, for small A
this transition region has little effect on the solution trajectories and may be ignored by
assuming a direct transition from Ry to Ry along the line E. = S.
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For the parameters considered here -180 < 8 < 3600 in region R, and w, = 18 x 106. Thus

2
the approximation w(E, Ec) =W, will be used.

Integration of the second equation of (63) and substitution into the first reveals

that in region R2 the solution path is now described by the time varying system

(£ = Z2JG -G-G_ex -Eﬂt A s 8
_2C m mep Cg +2CCOS )
. A
1% =9 V-gcg Sind (64)
Gy
kEC-'-‘-SeXp—C—gt,

with initial conditions at time t = 0 given by (62). Note that the first term of E is initially
negative but becomes positive as the exponential term decreases. This suggests that E will
first decrease and then increase. Since EC continues to increase in region RZ’ the solution
path should move up and to the right after the initial decrease in E.

A simultaneous solution of the EJ and 9. equations may again be obtained

through the procedure described in the Appendix. The result is
1 t
e(t) = E_ exp {ﬁ {) GT(a)da} cos(wot + 60)

t t

where GT(t) is the time-varying conductance

G
GT(t) = Gm{l - exp |:- C—z t:| } - G, (66)

and EO and 90 are the initial conditions given by (62). The two terms in e(t) are clearly
related to the initial conditions and the forcing signal, respectively. In addition, the
second term has several interesting features which are revealed in the following develop-
ment.

First define

t t
I = 515 {) A(%) exp{% fg GT(a) da} cos [wot -(wo -v)E] d¢- (617)
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Fig. 16. Conductance function G(t) vs. t and a
linear approximation.

An examination of the conductance GT(t) reveals the exponential function shown in Fig. 16.
However, for times which are small compared to Cg/Gg (which is 40 psec in this example)

the conductance variation of (66) is accurately approximated by

N g
Gp) ~ G &t-G- (68)

t =—~Gg—. (69)

In order to understand the importance of t1 it is necessary to introduce the change of vari-
ablez = ¢ - ty into (67) given

t-t z+t

t 1 1
= 515 exp{% ft GT(a)da} f A(¢) exp{— —2% GT(a) da} cos [wot -(wo -v) (z + tl)] dz.
1 4 Y
(70)
The inner integral can now be integrated using (68) and (69) so that
t t-t
1
I=—1—expi f G.(a) do f A(£) exp LI cos[w t -(w_-v)(z+t,)] dz.
2C 2C 4 T ” ict, o o 1
1 1
(71)

Here it is immediately noted that the exponential term in the integrand of the second integral
is like a Gaussian probability density function with zero mean and variance 4Ct 1/G. If this

variance is small compared with t,, the integrand of the second integral is zero except near

1,
the timez =0 ort = tl. It is during this time that the oscillator "'samples the forcing func-

tion' and ""decides' how its behavior will be effected by the external signal. Thus, when A
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is a slowly varying function of time, only A(t 1) would be seen by the oscillator.

In addition to this sampling operation, the occurrence of the exp {- 431 zz}

term allows an approximation by the infinite integral when the variance is small. In this

case
1 1 ¢4 © G
~ 1 1 N G _ _
I = 5C¢ SXPi3G f GT(a) da f A(tl) eXp3- zor- 2 cos[wot (wo v) (z + tl)] dz
t -0 1
1 (72)
Expansion of the cosine term gives
cos(wot - A) cos (wo - V) z + sin (wot - A) sin (wo -z (73)

where A = (wo - v)tl. Here, the fact that

G .
exp [— ZIFtI zz} sm(wo -V)z

is an odd function of Z, allows the second term in (73) to be omitted so that

t )
I~ % exp{+% ft GT(a) da} [f A(tl) exp{— Wth zz} cos(cuo -v)z dz} cos(wot -A).

-0

1 (74)
The second integral can now be evaluated giving

my 1t 4C .
I = A(tl) IGC | P\ 3¢ tf GT(oz) da exp - & (wO -v) cos (wot -‘A) .
1

The complete expression for e(t) may now be written

1 t A(tl)
e(t) = | exp 3G f GT(a)da n cos (w0t+n1)
° ()]
2Cl 55 +(w_-v)?
2C o

‘ﬂ'tl 1 t t1C
+ A(tl) IGC | ®*P {3¢ tf GT(a) da expy - G (wo - p)? cos (wot -A).

1 (76)

(75)

where the initial conditions from (62) have been used. The first term in (76) is caused by
the initial condition and its amplitude will be denoted Ei(t); the second term is caused by
the forcing signal and its amplitude will be denoted Ef(t). Note that both are amplitude
modulated cosines at the natural frequency w3 that is, there is no lock-in or other center
frequency shift introduced by the external signal. Only amplitude changes are affected.

The relative importance of these two terms may be seen from the amplitude ratio
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Fig. 17. Comparison of two frequency dependent
terms in the forced response.

£ g _1 1 i
E® 4 GGy e"p{ 2C fo Gp(a) da} [9—1(5—)] (77)

where Qf and Qi terms represent the frequency dependent parts of Ef and Ei’ respectively.

2C

At resonance, A =w_- v =0, Qf(A) =1, and Qi(A) =—G SO that the ratio of (77) becomes

(0]

E,(t) 7C G2 t
f _ g 1ol

E.(t) = ./ 3CG_G eXp{ 2C J 7 Gpla) da} (78)
Y la=0 me °

With the parameters assumed in this section, Ef is about 20 times as large as Ei near
resonance. Away from resonance, the relative size changes due to the different frequency
dependence of the Qf and Qi terms shown in Fig. 17. Note that the two frequency response
curves can be adjusted independently since the bandwidth of E.1 depends on the normal tank
loading G and the bandwidth of Ef depends on the negative conductance Gm.

With the aid of (76) it is possible to compute the location of the solution path

in region R2. If the Ei term is neglected the operation in this region is given by

- i 1 1 t t1C
E(t) = Ef(t) = A(tl) IGC %P 30 tf GT(a) da exp{ - &~ (wo - v)? ) (79)
1
G
{E) =8 [exp{- Eit}il : (80)
LG(t) = (wo -ut-A. (81)
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This solution path moves up and to the right in R2 , as suggested in Fig. 15, and leaves R2
along one of the lines E = —EC or E = Ec - 3. In either case the exact point may be located
from (79) and (80).

Solutions for E(t) and Ec(t) that are outside of R, are not so easily obtained.

2
However, in this region the forcing term in (19) is seen to be small compared to the first
term suggesting that the unforced phase-plane solution may be used to continue the solution

back to region R This permits a more accurate estimate of the entrance point (EB, ECB)

1
and eventually leads to a description of the (E, Ec)-plane projection of the entire forced
limit cycle.

In the above development it was assumed that Gg/cg << G/2C so that the
first term in (61) could be neglected leading to simplified initial conditions at entry into
region R

9° Without this assumption the evaluation of the behavior in region R, is con-

2

siderably complicated. The Ei term may then become much more important with new fre-
quency dependent effects appearing. These effects are commonly encountered in superre-

generative devices where remnant energy carry-over between pulses is obtained.

Once again, the development presented does not exhaust the possible behavior
which may be encountered. However, it does present some interesting features of the model
which appear to correspond closely with commonly observed behavior in forced, self-biased
oscillators. It also suggests that further study of the model may bring out this correspond-

ence in greater detail.

4.4 Sensitivity and Superregenerative Detection

At this point it is of interest to consider the results of the previous section
in greater detail through an application to superregenerative detector analysis. The situa-
tion considered in Section 4. 3, where the unforced oscillator has a stable limit cycle
passing close to the Ec-axis, is clearly a classic example of a self-quenched superre-
generative detector. Moreover, a slight modification in approach leads to an extension of
the analysis to externally quenched, logarithmic (nonlinear) superregenerative detectors.
Basically, this extension amounts to a modification of (20) so that Ec has the form of the
chosen quench signal. For most reasonable quench signals, small forcing signals will still

be effective only during the pulse growth period (region R2 or its equivalent) and thus (63),
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with the proper EC quench signal, will still describe many of the interesting detector char-
acteristics. Further analysis of external quenching will not be pursued in this paper but a
short discussion of self-quenched operation will be given below both as an interesting
application and as a further means of checking the validity of the mathematical model through
comparison with experimental results.

The two superregenerative detector characteristics of central interest in this

section are sensitivity and bandwidth. These two characteristics are not only important in
application but also easily measured experimentally. Moreover, because it is readily ob-
tained from the mathematical model, the maximum value of the low frequency grid voltage
waveform is chosen as the desired detector output (many others are of course possible).
This output voltage, denoted Ecm’ is the upper intersection of the limit cycle and the }.EC =0
line in Fig. 15. While this intersection is not actually in R2’ due to its proximity to RZ’ the
R2 relations (79) and (80) will be used to approximate Ecm' The shape of the E.C and E) con-
tours in this region suggests that this approximation should be fairly accurate.

The location of the Ecm point may be deduced from the fact that on the }Ec =0
surface, E = mEC where m is the slope of the 1:3C =0 line (see Fig. 15). The time 'c2 at which

E = mEC is obtained from (79) and (80) as follows:

- G
-5 __8
c ac\?  4CC, me"p{ cgt1} cc, ]
=t -—;n_+ (——) + In eXP\G G (wo-v) (82)

mC
m g A g m g

4CGmGg
This t2 may now be substituted into (80) to obtain Ecm as a function of A and v or A = Wy = V.
A plot of Ecm vs. A with A as a parameter is shown in Fig. 18 (in this section 1.\ =0).
Figure 18 also shows observed values of Ecm vs. A obtained from the experimental oscil-
lator. The theoretical detector bandwidth obtained from (82) is plotted in Fig. 19 along with
corresponding experimental results. Note that both (82) and Fig. 18 show that the only
effect of injected signal frequency offset is an attentuation at the detector output. Thus, for
smaller signal amplitudes, curves like Fig. 18 would be similar in shape but smaller. A

related effect may be noted in both Figs. 18 and 19 where the experimental and theoretical

results follow quite closely except when the injected signal is small or, equivalently, the
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frequency difference is large. Both of these departures are due to the small injected noise
signal always present in the experimental oscillator but not considered in the theoretical
analysis. Thus, by noting the location of the ""break-away,' one can estimate the magnitude
of this circuit noise.

In this paper the ratio AEcm/AA is defined as the sensitivity of Ecm to
changes in A and is related to the superregenerative detector sensitivity through the signal
source or antenna impedance. The plot of sensitivity vs. A in Fig. 20 emphasizes the in-
herent nonlinearity of the detector and the sensitivity limitation imposed by the circuit
noise level. Once again the experimentally determined sensitivity is presented for compari-

son with the results predicted by the model.
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5. CONCLUSIONS

This paper has been concerned with the development and interpretation of a
mathematical model for a class of self-biased oscillators operating under the influence of
an external signal. The devices considered differ from previously studied oscillators in
that two arbitrary nonlinear elements are allowed (for instance, both the plate and grid
circuits of a vacuum tube). This model is therefore more general than previous forced
oscillator models based on the van der Pol equation. The model obtained is a system of
three first-order nonlinear differential equations chosen to approximate the more complex
equations obtained directly from the basic equivalent circuit.

The complexity of the mathematical model makes a complete analysis im-
practical but several interesting features are investigated in some detail. These include
frequency entrainment by the forcing signal and superregenerative detector action. In
each case the theoretical results are corroborated by the observed behavior of an experi-
mental oscillator.

The close correlation between theoretically predicted and experimentally
observed behavior found throughout the analysis suggest that the proposed model does
indeed provide a suitable compromise between accuracy and tractability in the modeling

of forced oscillation in self-biased oscillators.
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APPENDIX

A. Approximation Procedures

The approximating system (9) is developed from an averaging procedure
suggested by the work of Krylov, Bogoliubov, and Mitropolsky (Ref. 2). The transformed

system (8) may be written in simplified form as

E

= hl(E, EC’ Y 6’ A)’
E, = hy(E, E_, 7, 6, A), (83)
Y = h3(E, EC’ Y, 97 A)7

where h , and h3 are periodic in y with period 2r. Now assume that for time intervals

1 0y
near 21r/wo (recall that w, = 1/vLC), ec(t) = Ec(t) + E(t) cos (t) is locally cosinusoidal and
A(t) is approximately constant. That is, in such intervals ec(t) = EC + E cos (vt + 8) and

A(t) = A where E, Ec’ v, 8, and A are constants. This assumption of slowly varying param-

eters motivates the averaging and regrouping of terms in the three equations (83) giving

Fi(t +T) - F,(t) t+T

-k ft h(E, E_, A, 6, A) dt
t+T
=5 {hi[E(.s), E,(£), &), 6(2), A(®)] - b(E, B, A, 0, A)} a  (89)

fori=1, 2, 3 with F1 =E, F2 = Ec’ F3 =y, and A = v + 6. It is now assumed that the
approximations EC + E cos (vt + 9) and A are sufficiently close to ec(t) and A(t) over the
integration interval to justify ignoring the second integral in each of the three (84) equations.

Since the h.l's are periodic in A, setting T = 27/y allows (84) to be rewritten as

AF, 27
i

1 -
=t " % fo h(E, E, A, 0, A)dx = £(E, E, 0, A), (85)

for i =1, 2, 3 where the substitutions AFi = Fi(t +T) - Fi(t) and At = T have been used. The

final step is to replace (85) by the system of differential equations
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tj,j.
I

t,(E, E,, 0, A),

- 86

E, = ,(E, E_, §, A), (86)
Y = f3(Ey EC’ 9, A)'

The system (86) is then chosen as an approximation to (83).

B, Stability of Equilibrium Points

The stability of an equilibrium point may be determined from the character-

istic roots of the linearized system. For the oscillator model

E

= 1,(E, E_, 0),
E = f,(E, E), (87)
6 = f,(E, E_, 9),

the characteristic roots are the roots of the equation

+f. )02 +(f, f +f, _f

oE " 39 1el9E * g f
C C

3
AVttt 39 2ch3E “tiefsg - flchZE) A

+ f, . f

- flEfZchfs‘G 'f19f2Ef3Ec 16 2ch3E R =0

1ch2Ef39

The coefficients of this equation are made up of the partial derivatives

o, (i=1,23), (= E Ep)
1]=8_j E=Ep
E = E
c cp
6 =0
p

evaluated at the equilibrium point (Ep, E Gp). The coefficients of interest for the

cp’
oscillator considered in Section 4 are

G_ +KE G +KE
m

f =2 Cgin2e - =

1E T gnc Sin 29 (88)

+%[2 sino + cos 20 sin ¢ - 2 sin ¢ - cos 2¢ sin ¢],

Gm + KEc Gc + KEc KE
flEc = 2(—2_”—0—-> s1n0—2<T>sin¢+m[h(a)—h(¢)], (89)
GC
bhg =" sing, (90)
g
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G
_ .8 _ _c
e =" © w? (91)
c g g

f34 =-§—gﬁcose, (92)
where h(x) = x +2l sin 2x and parameters E, Ec’ o and ¢ are all values measured at the
equilibrium point in question.

For the unforced system the characteristic equation reduces to
A% -t £ f =0, (93)

1 tiag ) A ~1ig fap *fighE
(¢ (¢ C

C. Solution of a Differential Equation

In Section 4 it is necessary to solve a system of differential equations of the

form
E = a(t) E + B(t) cos 6,
6 = y-Bt) ging, (94)
E
A solution may be obtained by letting
z =u+jv = Eel (95)
so that
u = Ecos 6 - Ef sin 6,
. . . (96)
v = E sin 6 + E6 cosé.
Substitution of (94) into (96) then yields a differential equation in z of the form
z = [a(t) + jv] z + B(t) . 97

This equation is readily solved by standard techniques yielding

t t t
2(t) = 2(t ) exp{tf [a(0) + jv] d6}+f B(&)exp{{ [a(0) + j] de}dg. (98)
t

(0] 0

Now E and 6 may be obtained from the real and imaginary parts of z. However, in many

cases it is more convenient to obtain e(t) directly from the relation

e(t) = Re{z(t)eth} . (99)
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