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Mutual Information for Stochastic Differential Equations* 

TYRONE E. DUNCAN 
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Mutual information is calculated for processes described by stochastic 
differential equations. The expression for the mutual information has an inter- 
pretation in filtering theory. 

1. INTRODUCTION 

In  many problems in information theory it is necessary to calculate the 
mutual information between two processes. For some processes described 
by stochastic differential equations, we shall calculate the mutual information. 
The  expression for the mutual information is obtained as a function of certain 
filtering errors which are related to some filtering problems for the original 
processes. 

2. PRELIMINARIES 

The processes that we shall consider will be described by the following 
stochastic differential equations: 

dXt  = a(t, X t  , Y,)  dt + dBt , 

d Y  t = c(t, X ,  , Y,)  at @ dBt , (2) 

where the functions a and c are continuous in t and globally Lipschitz 
continuous in the remaining variables t ~ [0, 1], X 0 ~- Y0 ~ 0, and the pro- 
cesses B and/~ are independent standard Brownian motions. 

With the above assumptions on (1) and (2), the solutions exist, are unique, 
and are functionals of the past Brownian motions (K. ItG, 1961). 
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For subsequent discussion it will be convenient to denote the measures for 
the processes B,/~, X, Y and X and Y described by (1) and (2) as/zB,/z~, 
tZx, /xr, and l~xr, respectively. It is known (Girsanov, 1960) that the 
measures/Xxr and/xB/x ~ are mutually absolutely continuous, i.e., izxr ~ txgt~. 

We shall prove an additional result for the absolute continuity of certain 
measures which will be useful for calculating the mutual information between 
the processes X and Y. 

LEMMA. Let tzB and lxr be the measures for the processes B and I1, respectively, 
given in (2)./xy ~-~/x~ and 

r~ 1 
-- exp [ j  ~s d Y ~ -  ½ j ~2ds], (3) 

where 
e s = E[c(s, X~,  Y~) ] Yu ; 0 <~ u <~ s] (4) 

and Y in (3) has the t~B measure. 

Proof. Using a result of Girsanov (1960) we know that i~xr ~ ix~k~ and 

dlxxr 
dlxl~dlx - - e x p [ f a ~ d X s - - ½ f a e e d s +  f c ~ d Y s - - ½ f c , 2 d s ] ,  (5) 

where a~ --= a(s, X~,  Y~), c~ = c(s, X~,  Y~) and X and Y have the/x~ and/x B 
measure, respectively. 

We only need to show that when we reduce the Radon-Nikodym derivative 
(5) to dlxr/dk~ B ,we have (3). 

Let 
A = dtxxr /dl~d. . ,  (6) 

and 

7t~ = E[A, I Y , ; 0  ~<u ~<s]. (7) 

The functional ~ has the following representation (Kunita and S. Watanabe, 
1967; Hitsuda 1968; Duncan 1970a): 

W = exp [ f  d?~dY~ -- ½ f d?~2 ds], (8) 

where ,~ is measurable with respect to ~(Y~ ; 0 ~ u ~< s) (the sub-a-field 
generated by {Yu ; 0 ~< u ~< s} a standard Brownian motion since the measure 
is/xB) and 

f 4s 2 ds < oo a . s .  (9) /xB. 
d 
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Applying the formula for stochastic dfferentials (K. Ito, 1951) to Y, we have 

Yt = 1 + jt &ul, dY, . (10) 
0 

We shall now relate 4 to the terms in the exponential for /l. Using the formula 
for stochastic differentials, the functional /l can be written as 

A, = 1 + jt as& dX, + ,: C/l, dY, . 
0 

(11) 

Since /l is a Radon-Nikodym derivative, the stochastic integrals in (11) are 
martingales and since X and Y in (11) are independent Brownian motions, 
we have 

E t 
[I a,fl,dX,jY,;O<u<t =O. 

0 1 (12) 

Consider now the second stochastic integral in (11). Clearly, 

s (c,AJ ds < co a.s. EMBED . 

Thus we can define the stochastic integral as a limit in L1 of integrals of 
uniformly stepwise functions (K. Ito, 1951). Since the product Cal is almost 
surely sample function continuous we can select an arbitrary sequence of 
partitions of [0, I] that become dense such that the integrals of the uniformly 
stepwise functions {an} defined as 

an(s) = Cth)fltpd t(n) < s < t!92) z z a+1' 

where {I:~)} is a partition of [0, l] with 0 = t?) < t?) < ... < tp) = 1 
converge in L1 to 

s 
c,A, dY, . 

Fix s E [0, 11. By properties of the Radon-Nikodym derivative and conditiona 
expectation we have 

or 
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Since the sub-e-fields ~(Y~ ; 0 ~ u ~ s) are continuous and 

f ~ 2  o~ a.s., ds < 

we have for all t ~ (0, 1) 

1 ;  lim E o~(s) dY~ ] Y~ ; 0 <~ u <~ t = ~.T~ dYe,  (13) 
n-~oo 0 

where the limit is taken with respect to the topology induced by convergence 
in probability. Since conditional expectation and L 1 limits commute, we also 
have 

~-~lim~ E [f l  a~(s)dY~[Y~;O < ~ u ~  t] 

This limit uses the topology of L 1 convergence. Therefore, we have for all t 

E[foc~A~dY~ I Y~;0 ~ u  ~ t] = fo t sT~dY~ a.s./~a , (15) 

so that ~ is a member of the same equivalence class as ¢~. Thus 

= exp [f 6 -- f e: ds]. (16) 

To show/~B ~ / ~ r  the arguments proceed as above. | 

To compute the mutual information we shall use the following result 
obtained by Gelfand and Yaglom (1957), Chiang (1958), and Perez (1957). 

THEOREM 1. Let ~ and ~7 be two random vectors with joint probability 
measure Pen and marginal probability measures Pc and P, , respectively. Assume 
that Pen ~ PeP, • Then the mutual information between ~ and 71 is 

where 

j(~, r/) = f o~(x, y) log a(x, y) dPe(x ) dPn(y ), (17) 

dPe'(x'Y) (18) 
~(x, y) = dP~(x) ae~(y) 
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3. MAIN RESULT 

We shall now obtain an expression for the mutual information between 
the processes X and Y. 

THEOREM 2. The mutual information J(X, Y) between the processes 
{X~ ; 0 ~ u ~ 1} and {Y~ ; 0 <~ u <~ 1} described by (1) and (2) is 

= I l l  , - -  , 

• 'o fJ- (c(s, X , ,  Y~) -- e(s, Xs ,  y,))2 ds], (19) + 

where 

d(s, Xs ,  Y,) = E[a(s, X , ,  Y,)] Xu ; 0 ~ u ~ s], 

e(s, X s ,  Y,) = E[c(s, X , ,  Y,) I g,~ ; 0 <~ u <. s]. 

(20) 

(20 

Proof. To compute the mutual information J(X, Y), using Theorem 1, 
we must determine the Radon-Nikodym derivative 

dtzxy(x, Y) 
&x(x) d~(y)" 

Using Girsanov's result (1960) for absolute continuity for diffusion processes, 
we have 

d~xy - - exp  [ f  as dX,  -- ½ f as" ds + f c, dYs -- ½ f <? ds], area d~,~ (22) 

where, as in (5), X and Y are Brownian motions with measures tz~ and/z  8 , 
respectively. 

From the 1emma, we have 

and 

where 

d/*~ - -  exp 

~x F P  P "1 

L d  , )  .i 

~ = E[a(s, Xs , Ys) I X~ ; 0 <~ u <~ s]. (25) 
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Let  

We have 
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• = dtZxr/dlLxdlzr. (26) 

j = f ~ log ~ dtzx dl~r • (27) 

log ~ = f (as - -  d~)(a~ ds 4- dB~) 

+ f (c~ - 6)(es d, + abe) 

-½ f (a: + c,2) d, + ½ f + d,. 

Since the stochastic integrals are martingales on/Xxr,  we obtain 

J(X, Y) = E.xr[log q)] 

(3o) 

(31) 

= ½E [fl (a8-  ds)2d, + -'j': (c~-  8~) 2 dsJ.- I 

Remark 1. In many applications the stochastic differential equation for X, 
the signal, does not depend on Y, the observations, and Theorem 2 reduces 
to various known results (Gelfand and Yaglom, 1957; Van Trees, 1968; 
Baker 1969; Duncan 1970b). 

Remark 2. We can calculate mutual information when the diffusion 
coefficient for (1) is a function of t and X and the diffusion coefficient for (2) 
is a function of t and Y. I f  the former diffusion coefficient is a function of Y 

Using the chain rule for Radon-Nikodym derivatives, we have 

dt*xr d~B dlz~ (28) 

By the transformation of measures, we have 

logq~ = f (a~--d~)dX~ 4- f (c~--g~)dY~ 

½ f (as 2 + cs 2) ds + ½ f (ds 2 + 8~ 2) ds. (29) 

Since we now have the measure i~xr, we use (1) and (2) to rewrite log ~ as 
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or the latter is a function of X, then we have a singular situation which causes 
the mutual information to be infinite (Gelfand and Yaglom, 1957; Pinsker 
1964). 

RECEIVED: July 29, 1969; REVISED May 12, 1971. 
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