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CHAPTER 1

INTRODUCTION

As engineers and scientists have become interested in increasingly
complex dynamic systems (physical, biological, economic, etc.) involving
many degrees of freedom and many nonlinear relations, the importance
of the so-called "stability problems' has become increasingly evident.

At the same time, the area encompassed by the term stability has con-
tinually broadened to include a larger and larger group of problems. Of
the many reasons for this increasing interest in stability problems, there
are two that are of particular significance in engineering applications.

The first reason for this rise of interest in stability follows from
the older, parochial view of stability where a system is stable if the
perturbing effects of small disturbances or parameter variations are aLso
small. This might be called stability in the narrow sense. Certain features
of the mathematical modeling techniques commonly used in engineering
are responsible for the importance of this narrow concept of stability.

The engineer must be continually aware of the approximations implicit

in all mathematical models. At best, a useful mathematical model can
represent only a few of the features of the system under study. Some
features must be neglected and the analyst would like to be certain that
these features are indeed negligible; that is, he would like some assur-
ance that his approximations will not lead to erroneous results. Similarily,
the designer must choose tolerances that are both reasonably loose to

reduce cost and sufficiently tight to insure stability of operation. He
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must also insure that small random disturbances do not produce uncon-
trollable or unstable operation. At this level, both the analyst and the
designer are concerned with stability in the narrow sense. These
examples lie in what is sometimes called the area of structural stability,
an area that has received considerable emphasis in the Soviet literature
[Refs. 17,18, 28].

‘'The second reason for the rise of interest in stability is related
to the increasing interest in the ''qualitative approach' and the signifi-
cance of stability problems in the qualitative theory of differential
equations [ Refs. 34, 35]. One of the fun’arnental oroblems in the theory
of differential squations is that of describing the properties of the
solutions from the form of the equations. This is also a fundamental
problem in the applications where differential equations are frequently
used as mathematical models. In the simplest cases, the properties
of the solutions are obtained by simply integrating (solving) the differ-
ential equations. Unfortunately, this procedure is rarely possible in
problems of practical interest and one is forced to accept a qualitative
description of the solutions as a compromise with the formidable
difficulties of exact analysis. Some of the central problems of the qual-
itative theory involve the determination of such properties as asymptotic
behavior, boundedness, relationships between neighboring solutions, and
effects of disturbances that are not small. These, and similar properties,
are frequentiy classed as stability properties, and are part of what might

be called the stability problem in the broad sense [Refs. 4,6, 41].



One of the effects of this broader view of the stability problem
is the enlargement of the scope of the term "stability. '"" In the narrow
view, stability implies an invariance of behavior in the face of pertur-
bations or parameter changes. In this case, a few relatively simple
definitions of stability are appropriate for a large class of problems.

On the other hand, with the development of the qualitative theory a
more pragmatic definition of stability appears [cf. Ref. 16]. There is
now a growing tendency to assign the term stable to any desirable
behavior (solution) and the term unstable to any undesirable behavior
[Ref. 41]. The uninitiated is soon dismayed to find that there are now
a considerable number of different stability definitions which appear to
be unrelated though there are connections between them [Ref. 6] .

Once the stability problem is clearly defined, it is necessary to
obtain analytic techniques for determining whether the desired stability
actually exists. In this area there are many special results, but the
most promising general techniques are found in the group of ideas
known as Lyapunov's Second (or Direct) Method [Ref. 27]. While
originally developed for stability analysis in the narrow sense, Lyapunov's
Second Method (abbreviated, LSM) is, in fact, a powerful tool applicable
to most of the problems in the broader sense of stability and a wide class
of problems in the qualitative theory [Ref. 16]. In its simplest fofm
LSM involves the construction of a generaiized metric on the solution
space and the analysis of solution behavior in terms of this metric. Once

the proper metric has been chosen, the general form of the solutions and
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their stability properties are readily determined. This approach is both
conceptually satisfying and mathematically rigorous, but in its application
there remains one practical difficulty of major importance--the selection

of the proper metric (commonly called a "Lyapunov function"). This

research attempts to reduce the difficulty of this selection in a particular
class of problems; namely, the analysis of the stability of interconnected
systems.

In the majority of situations, the application of Lyapunov's Second
Method (mainly a problem of finding the proper metric) becomes more
difficult as the system dimensionality (number of energy storages or
degrees of freedom) increases. While many of the current papers on the
generation of Lyapunov functions imply that the procedures described
will apply to nth- order systems [Refs, 13,18, 29, 38], a test on problems
of high dimension frequently reveals that only the third- or fourth-order
problems worked as examples can be treated with reasonable facility.
This limitation, coupled with the fact that many of the higher dimensional
systems encountered in practice are actually, or can be considered as,

a composite or interconnection of several lower order systems, suggests
that one consider a piece-by-piece stability analysis; that is, a separation
of the composite system into simpler subsystems to which LSM can be
easily applied. The results of this piece-by-piece analysis might then

be used to infer stability properties of the original composite system.
This thesis presents the results of the application of this piece-by-piece

concept of stability analysis. The problem to be considered may be



formally stated as follows:
Obtain information about the stability of composite systems
from a study of the properties of their subsystems and the
topology of their interconnections.

The successful solution of this problem leads to a circumvention of the

formidable difficulties involved in the direct determination of the stability

of high-order nonlinear systems.



CHAPTER 2

BACKGROUND AND SUMMARY

This chapter serves the two-fold purpose of (1) putting the stability
problem in its proper historical and technical background, and (2) summa-
rizing the new concepts and results to be presented in greater detail in
Chapter 3. A limited amount of mathematical notation will be introduced
as needed throughout this chapter. However, the emphasis will be on
clarity of exposition =rather than on careful or rigorous mathematical
analysis. For a thorough treatment, the reader is referred to the
bibliography and to the following chapters of this thesis. The notation
introduced in this chapter is consistent with that used throughout the
remainder of this thesis. A detailed discussion of mathematical notation
is given in Section 3.1.

Let E" be an n-dimensional vector space of vectors x = col[xl,xz,

.. 9xn] with the inner product (x,y) = 'il x,y; and norm Izl = (x, x)%-
The transpose of a vector is indicated wi’if_l= a prime as x'. In general,
% = f(x,t) is a vector differential equation (x and f are n-vectors) with
a vector solution x(t;xo, to) passing through the point x = X, att = to.
A solution path in E" is sometimes called a motion referring to the

motion of the point x in this space (state space) as t increases. The

solution x(t) = 0 is called the null solution.



2.1 Historical Background

As scientists study increaéingly complex systems, the use of
mathematical models becomes increasingly necessary. If the model
provides an adequate description of the system, it is possible to predict
system behavior from ma,nipula,tibn of the model._ However, it was
noticéd long'a,go that certain forms of behavior predicted by usually
valid models were never observed in the actual system.

A common class of models for many systems are 6rdina,ry
differential equations. In a large number of practical problems a state
variable description [Ref. 46] of the system under study leads to a

vector differential equation model of the form

f(y,t) . (2.1)

1]

y
A point 7 in E” where £(3,t) = 0 for all t is called, for obvious reasons,
an equilibrium point of the model and (for a valid model) corresponds
to an eqﬁilibrium state for the origina,l. system. Early in the study of
mathematical models for mechanical systems it was noted that certain
equilibrium states predi_cted by an otherwise valid model were never
observed in the physical system being modeled [Ref. 7]. A typical
example is a small sphere rolling on the outside of a larger, fixed sphere
in a uniform downward gravitational field. According to most simple
models, there is an equilibrium point at the top of the large sphere.
Tﬁese models predict tha,t.if the small sphere is placed at this point, it
will remain there. On the ather hand, this equilibrium state is never

observed in practice.
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Experiences such as this suggested that there must be some additional
property associated with those equilibrium points of the model which
corresponded to observable equilibrium states. Eventually, it was
recognized that this additional property was stability: the observed
equilibrium positions were stable and the unobserved equilibrium posi-
tions were unstable. It was also recognized that the prediction of these
unstable equilibrium states was due to an improper idealization in the
mathematical model; i. e. , certain disturbances were neglected that
were, in this case, not negligible. This was the beginning of stability
theory in the narrow sense. In the example of the small sphere rolling
on the outside of the larger sphere, the equilibrium point at the top of
the large sphere is unstable; that is, small deviations in the initial
location or small vibrations neglected in the model produce large
deviations in later positions. Since these small deviations or vibrations
can never be eliminated in the real world (as opposed to the mathematical
world), the event of the small sphere remaining at or very close to the
top of the large sphere is never observed. (This is actually an example
of a strong form of instability sometimes called complete instability
[Ref, 12].)

Because of these experiences, some of the first systematic
studies of stability emphasized stability of equilibrium positions. One
common stability definition was what is now called Lyapunov stability
or stability in the sense of Lyapunov[Ref. 6]. According to this defin=-

- it = . . . n,
ition, an equilibrium state y in an n-dimensional state space E" is
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considered stable if any motion y(t) can be kept in an €-neighborhood of
the equilibrium y, for all future time, simply by starting it in some
0 -neighborhood of the equilibrium That is, if for every ¢ > 0 there
is a6 > 0such that [ly(t ) - yIl < 6 implies y(t) - ¥l < ¢ for all
t> tO (see Fig. 1 ). An equilibrium point that is not stable is said
to be unstable. This is the well-known ball on a smooth plane concept
of stability commonly used even today. Even though it presently bears
his name, this definition was actually considered long before Lyapunov's
time in connection with the stability of equilibrium points of conservative
systems [Ref. 6]. In 1788, Lagrange gave one of the early stability
theorems when he proved that for a conservative system an equilibrium
position where the potential function has an isolated minimum, is stable
(in the above sense) [Ref. 20].

In practice, the concept of Lyapunov stability is found to be less
important than asymptotic stability. Asymptotic stability requires
Lyapunov stability plus convergence to the equilibrium of all solutions
starting sufficiently close; that is, for some 60 > 0, it holds that
ly, -3l < & implies that t1im | vty t,) - VIl = 0. This is the type
of stability exhibited by a ba,l-f ;Ot the bottom of a hemispherical cup.

A related problem is the stability of a motion rather than an
equilibrium point. An unstable motion predicted by a mathematical
model will also be unobservdble in the physical system.. The same

reasoning applies as in the case of the unstable equilibrium point, and

a stable motion is defined as a generalization of the stable equilibrium
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Fig. 1.

Stability of an equilibrium point.
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point concept. For each a in a set A let y(t;a) define a motion (a curve
parameterized by time) in E". A particular motion y(t;a) corresponding
to a particular a in A is said to be stable in the sense of Lyapunov if all
neighboring motions can be kept in a tube of radius ¢ centered on y(t;a)

by starting them at time to in a disc of radius & centered on y(to;E.).

That is, the motion y(t;a) is Lyapunov stable if for every e > 0 there is

a 0 > 0 such that ||y(t0;5) - y(to;a) | < & implies lly(t;a) - y(t;a) | < € for
all t > to. In addition, the motion y(t;a) is asymptotically stable if the
motions sufficiently close at t0 converge to y(t;a) as t increases. That is,
if for some 60 > 0 it holds that ||y(t0;§) - y(to;a) | < 60 implies

lim ly(t;a) - y(t;a) | = 0, [Ref. 12]. Once again, a motion that is not
‘:t.aol(;le is termed unstable. In problems where the mathematical models
are differential equations, the parameters, a, are usually the initial
condition vectors, Vo Such a situation is illustrated in Fig. 2.

In 1892, A. M. Lyapunov showed that all problems of stability of
an equilibrium point and stability of motion can be reduced to a single
problem of the stability of the null solution (an equilibrium point at the
origin) of a special equation called the equation of perturbed motion [Ref.
27]. Moreover, he suggeéted an ingenious method for solving this particu-
lar problem--a method of such versatility that its full potential has not yet
been realized.

Lyapunov considered only two types of stability: what is presently
called Lyapunov stability and asymptotic stability. It is worthwhile to note
the similarity between these concepts of stability and the very fundamental

mathematical concepts of continuity and convergence.
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Fig. 2. Stability of a motion.
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Stability of an equilibrium point is actually a statement of the continuity
at that equilibrium point, of the solutions in the initial condition Yo and
the uniformity of this continuity with respect to time. Similarily,
asymptotic stability includes a statement of the convergence of the solu-
tions to the equilibrium point. The fact that these two definitions of
stability (and their variations to be described below) are so successful
in such a wide variety of situations is undoubtedly due in part to this
close relation to the very fundamental concepts of continuity and
convergence.

The works of Lyapunov [Ref. 27] and some of the older Soviet
authors such as Chetayev [Ref. 7] emphasized the narrow viewpoint in
stability theory. With the rise of the qualitative approach and the
emphasis of the broader viewpoint, new stability definitions began to
appear. The Lyapunov stability and asymptotic stability definitions
were extended in conformity with the various continuity and convergence
concepts of analysis. The earlier results were equi-stability, uniform
stability, uniform asymptotic stability, etc. [Refs. 16,31]. More
recently, the concepts of boundedness [Ref. 45], stability-in-the-large
[Ref. 18], regions of asymptotic stability [Ref. 21], practical stability
[Ref. 22], and ultimate stability [Ref. 23], have also been introduced

by authors interested in studying particular qualitative properties. 1

Many of these concepts represent attempts to remedy the fact that
asymptotic stability in itself states only that there is a nonzero
region of attraction (region of initial states for which the perturbed
motions will converge to the unperturbed motions). In the majority
of practical problems, an estimate of the size of this region (the
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It is remarkable that the basic techniques developed by Lyapunov in

1892 are still applicable to a majority of these new stability concepts

introduced in the qualitative approach. The concept of "bounded input

gives bounded output' stability introduced by James, Nichols and Phillips
[Ref. 14] is an example of an apparently different stability involving an
input-output relation. Yet even this type of stability can be treated by
LSM (see Section 5. 1, below).

In summary then, the stability problem as considered here is
basically a problem in mathematics with important engineering impli-
cations. It is, in the most general form; a problem of ascertaining
certain significant features of the solutions of a given mathematical
model. In this thesis the mathematical models are assumed to be
ordinary differential equations. The engineer can contribute to this
basically mathematical problem by (1) suggesting solution features of
particular significance, or (2) suggesting methods of attack motivated
by physical experience. This thesis attempts to contribute in the

second area.

region of asymptotic stability) or an assurance of a region of at
least a certain minimum size is required [Ref. 22]. One of the .
most common remedies is to seek asymptotic stability-in-the-
large (abbreviated ASL) where the region of attraction is the whole
space. The practical importance of this property has motivated a
considerable number of attempts to obtain conditions guaranteeing
asymptotic stability-in-the-large in different types of systems
[Refs. 2,3,25].
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2.2 A Coordinate Transformation

In his now famous dissertation of 1892 [Ref. 27], Lyapunov
introduced a simple method for reducing a broad class of problems
in stability of equilibrium points and stability of motion to one basic
problem. The procedure is the following. First, consider a differential
equation
vy o= gly,t) (2. 2)
and assume that y = y is an equilibrium point; that is, assume that

g(0,t) = 0 for all t. Now let x(t) = y(t) - y so that
. . - _ A
X = y-0=gx+y,t)-gy,t) = gx+y,t) = fix,t). (2.3)

The new equation

x = f(x,t) , (2. 4)

where f(x, t) is defined in (2. 3), has an equilibrium point at the origin
since £(0,t) = g(0 + y,t) = 0 and this equilibrium point will have the
same stability properties as the equilibrium point y of (2. 2). Next,

let y(t) be a known solution of (2. 2) and choose x(t) = y(t) - y(t). Now
o . = - A
X = §-y =glk+y,t)-gly,t) = fxt), (25

and the new equation

x = f(x,t) , (2. 6)

where f(x, t) is now defined in (2. 5), also has an equilibrium point at
the origin since £(0,t) = g(0 + y,t) = 0. Moreover, the stability proper-
ties of this equilibrium point of (2. 6) indicate the stability propertiés of

the motion y(t). The same notation is used for the right-hand sides of
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(2. 4) and (2. 6) to emphasize the fact that both problems have been
reduced to the same form: a differential equation with an equilibrium
point at the origin.

Lyapunov calls y or y(t) the unperturbed motion and (2. 4) or (2. 6)
the equation of perturbed motion (it is actually an equation describing
the perturbation as a function of time). In this terminology, a
neighboring solution to y or y(t) such as y(t) is called a perturbed motion.
The transformation introduced by Lyapunov reduces all problems
concerning stability of motions or stability of equilibrium points of
differential equations to a single problem concerning the stability of the
equilibrium point x = 0 (the null solution) of the equation of perturbed
motion

x = f(x,t) f(0,t) = 0. (2.7)
Because of this transformation, a major portion of the current litera-
ture on stability theory considers only the problem of stability of the
null solution of (2. 7). It is assumed that all other problems can be

reduced to this form. For similar reasons, this thesis will consider

only the problem of determining the stability of the null solution of an

equation in the form of (2. 7).

Having made the above simplification, Lyapunov went on to
describe methods of solving the problem of stability of the null solution
of the equation of perturbed motion. He considered all techniques for
solving this stability problem as divided into two classes. Those that

require a determination of the solutions of the equation of perturbed
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motion are put in the first class which includes the techniques of linear
approximation, direct integration, series solution, etc. The second
class contains only methods which do not require direct determination
of the solution but only a determination of its properties from the form
of the differential equation (qualitative methods). Lyapunov's first
method was then a technique, basically a series solution technique,
illustrating the first class. While not without merit, this first method
(for a discussion of the first method, see Cesari, Ref. 6), does not
appear to have the versatility of his second method, a technique he
included as an illustration of the second class. Lyapunov's Second
Method (now sometimes called Lyapunov's Direct Method), has, in

recent years, proven to be a tool of amazing versatility.

2.3 Lyapunov's Second Method

In its original form LSM involves the use of a positive definite
function (sometimes called a Lyapunov functionz) as a generalized
metric: a measure of the distance from the origin of points in the state
space. A continuous, real valued function v(x) on E" with continuous
first partial derivatives is said to be positive definite [ positive semi-

definite] if v(0) = 0 and v(x) > 0, [v(x) 20] for all x # 0. Similarly,

This terminology is not uniform Many authors call a positive
definite scalar function a Lyapunov function only if its total derivative
meets certain requirements. In this thesis, unless otherwise noted,
the terms Lyapunov function and positive-definite function are inter-
changable.
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a continuous, real valued function v(x) on E" with continuous first partial
derivatives is said to be negative definite [ negative semi- definite] if
v(0) = 0 and v(x) < 0 [v(x) < 0] for all x # 0. The application of LSM
amounts to the choosing of a particular positive definite function v(x)
to establish a generalized metric on the state space and then testing its
time derivative along the solution paths of the equation to determine
whether the solutions are diverging from or converging to the origin.

For example, consider the equation of perturbed motion,
x = f(x) (2.8)

with £(0) = 0. Choose a positive definite function v(x) and 'chen3

V= T T4 _55(_1_ at v '

Now along the solutions of (2. 8)

dx.

w = L&, (2. 10)

and thus the time derivative of v along the solutions of (2.8) is

. 0
V(x) = ) a_}‘; f(x) . (2. 11)
1 1

If the right-hand side of (2. 8) is time dependent, it may be necessary
to choose a time dependent Lyapunov function v(x,t). The terms
positive definite, etc. then require slightly different definitions
which are given in Section 3. 5. 'In this case

. 0 0
v(x,t) = Z -5}-(1 fi(X, t) + _5%,
1 1
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Equation (2. 11) is frequently called the total derivative of v with respect

to (2.8). The important fact is that v (x) is determined directly from the

right-hand side of (2.8). No reduction or solution is necessary. It can

now be shown that if v (x) is negative semi-definite, then the null solution
of (2. 8) is stable in the sense of Lyapunov. If v(x) is negative definite,
then the null solution is asymptotically stable. An even stronger form
of stability can be assured . if v(x) is chosen so that lim v(x) = . In
this case when v (x) is negative definite the null solut?on»i:;oASL. These
are special cases of the theorems discussed in detail in Section 4,2
(also see Ref. 12).
A geometric interpretation of these results in the casen = 2 is

given in Fig. 3. Since v(0) = 0 and v(:g) .is:continuous with v(x) > 0 for
X £ 0, tyhe v = constant curves for small values of the constant must

- be closed curves encircling the origin. The solution path, coming in
from the left (Fig. 3), apparently crosses the v(x) = constant curves in
such a way that v (x) will be negative. If v(x) is negative for all x # 0,
then the solution must be proceeding into smaller and smaller v =
constant regions and thus approaching the origin. This suggests
asymptotic stability. Similarily, if v is only negative semi-definite,
then the solution must be at least staying inside the v = constant contours
in which it started. Otherwise, v would at some time be positive.
This Suggests Lyapunov stability. | If v(x) has been chosen so that
lim v(x) = o, then the v = constant curves are closed curves encir-

Izl =0
cling the origin for all values of the constant. In this case, these curves
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c6>c5>c4>c3>cz>cl>0

t5>t>t>t2>t>t

4 3 1 o)

v = 0 at the origin

Fig.. 3. A geometric interpretation of LSM when n=2.
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"gradually" fill the entire plane as the constant increases. If v (x) is
now negative for all x # 0, solutions starting at any point in the plane
must converge to the origin; this is ASL. These simple geometric
concepts are really the heart of LSM. More sophisticated procedures
are necessary in the application of these concepts to complex problems,
but the basic idea of using a generalized metric and studying the deriv-
atives of the generalized distance along the solutions carries through
in every case.

Once the above example is understood, the advantages of LSM
become obvious. The uses of this techniqué are limited only by the
imagination of the user and his ability to analyze the results. Stability,
location of solution curves, approximation of solutions and many other
problems in the qualitative theory are all readily visualized as problems
in the selection of Lyapunov functions and the studying of their derivatives.
Unfortunately, this selection problem is quite difficult and the results
obtained are often strongly dependent on the Lyapunov function chosen.
While there are many results showing that the necessary Lyapunov func-
tions exist [Ref. 12], there are few results showing how to find them.
One of the reasons for this problem can be seen in Fig. 3. It is clear
that a different choice of Lyapunov function, say, where the v = constant
curves are circles, would not have resulted in v being negative definite
along the solution path even though it did, in fact, converge to the origin.
This is a common problem that arises because the theorems provide

only sufficient conditions and thus negative results are inconclusive.
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In Fig. 3, as is often the case, it is necessary to choose the Lyapunov
function so that the v = constant curves are in some sense similar to

the solution paths. Since the difficulty in doing this increases with the
order and complexity of the differential equation, the problem of choosing
Lyapunov functions is a major stumbling block in the application of LSM
to complex high order systems. One of the aims of this thesis is a

simplification of this problem for a special class of systems.

2.4 Review of Current Literature

There are many methods for analysis of the basic stability
problem, namely, the problem of the stability of the null solution of the
equation of perturbed motion. However, many of these procedures are
special techniques developed for a speciﬁl class of problems. For
instance, for linear constant coefficient systems there are the eigen-
value location techniques such as the Routh-Hurwitz criteria [Refs. 6,
17,43]. For general linear systems there are the techniques of func-
tional analysis. For second-order equation there are the phase-plane
techniques. When considering only local stability (such as Lyapunov
stability), there are a number of results obtained through the use of
integral equations. While each of these procedures has its advantages,
the problem considered in this thesis, a general study of interconnected
linear and nonlinear systems, requires a unified approach to the stability
analysis of each ''piece." Moreover, it is important to be able to consider

stability in the broad sense (such as asymptotic stability-in-the-large)
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since local stability is of doubtful value in practical applications. In
view of these requirements, LSM has been selected as the basic tool
for the analysis which follows.

As noted above, the application of LSM in stability analysis
involves the frequently tricky problem of choosing the proper generalized
metric or Lyapunov function. Since the results often depend on the
particular Lyapunov function chosen, this choice is frequently a very
difficult problem requiring, at present, a considerable amount of
ingenuity, intuition, experience or whatever else the analyst can call on
for aid. Moreover, the difficulty of this choice is, in general; strongly
dependent on the order of the differential equation under analysis with
further complication arising when stronger forms of stability are sought.
In this thesis asymptotic stability-in-the-large is of major interest.

There are a number of rules and procedures for the construction
of Lyapunov functions available in the current literature. Most of these
procedures. are, in theory, applicable to the construction of Lyapunov
functions for systems of arbitrary order. However, the user of these
procedures finds that while the results obtained for second-, third-,
and even fourth-order systems are frequently quite impressive, there
are formidable computational problems encountered when attempting to
handle, say, tenth-order systems. This order limitation on presently
available procedures has led to the separation concepts (the idea of
separating a high order system into several lower order systems) to

be introduced below. However, before going on to this new approach,
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it is worthwhile to emphasize the problems encountered in treating high
order systems by considering the currently available procedures in
more detail.
First, consider the linear, constant-coefficient differential
equation. This is one of the few cases where there are clearly defined
procedures for problems of any order. The following theorem is due

to Lyapunov [Ref. 27].

Theorem 2. 1: The equilibrium solution x = 0 of the differential

equation

X = Ax (2.12)
is asymptotically stable (in-the-large, of course, since the
equation is linear) if and only if given any symmetric, positive
definite ma\,trix4 Q, there exists a symmetric positive definite

matrix P such that
A'P+PA = -Q . (2.13)
The proof of sufficiency is obvious if one uses the Lyapunov function
v(x) = x'Px so that Vv = 2Px and thus, 5

A symmetric matrix S is said to be positive definite if the function
v(x) = x'Sx is positive definite (see Section 2. 3).

5

The vector Vv is defined as Vv = coll azv ooy a}@(v 1.

1

It is useful

in working with Lyapunov functions since

V(x) = Z —aY B(x) = (99, 1)) .
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V(x) = (Vv,Ax) = 2x'PAx = x(PA+A'P)x . (2. 14)

The simplicity of this result has challenged a number of authors
to find similar results for nonlinear systems. Krasovskii [Ref. 19]

gives the following theorem for the general nonlinear differential equation
x = f(x,t) with £(0,t) = 0 (2. 15)

where f is continuous on E" and has uniformly bounded first partial

derivatives in every bounded neighborhood of the origin.

Theorem 2. 2: Let J(x,t) be the Jacobian matrix

of.(x, t)
J(x,t) = [ 1 ] (2. 16)

0X.
]

of (2. 15) and P be a positive definite symmetric constant
matrix. Then the null & solution x = 0 of (2. 15) is

asymptotically stable-in-the-large if
J'(x,t) P + P J(x,t) = -Q(x,t) (2.17)

and the eigenvalues Ai(x9 t), (i=1,...,n), of Q(x,t) are

greater than some constant ¥ > 0 for all x and t.

The proof of this theorem in the autonomous case (where f is independent
of t) is easily completed with the Lyapunov function v(x) = f' Pf[Ref. 12].
In the general case, a more involved argument using the Lyapunov function
v(x) = x'"Px is required [ Ref. 13].

Another variation on the linear, constant-coefficient procedure

for nonlinear autonomous equations is suggested by Ingwerson [Ref. 13]
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who chooses a positive definite symmetric matrix C and solves the

equation
J'(x) P(x) + P(x) J(x) = -C - (2.18)

for P(x). This general P(x) is then modified by dropping the dependence
on all but the variables x, and x; in the ij® term. Then P> the T
term of P(x), is a function only of X, and xja The components of the

gradient vector are then computed from this new matrix, P(Xi,Xj), as

% %9 %1
ov
5;1 = Of Pil(xi’xl)dxl +Of Piz(xi,xz)dx2+.”+ OfPin(Xi’xn)an

(2.19)
and v(x) is computed from Vv as a standard line integral.

Schultz and Gibson [Ref. 38] have proppsed a related procedure
they call the Variable Gradient Method. This involves choosing Vv
directly in a special form that ensures that it is the gradient of some
scalar v(x). The constants in Vv can then be adjusted to make
v (x) = (Vv,f(x)) negative definite. Stability information is obtained from
a study of v(x) which is again obtained by a line integration on Vv.

It is clear that all of these procedures involve formidable diffi-
culties when applied to high order systems. Just the solution of the
algebraic problems in (2. 17) and (2. 18) becomes extremely difficult since
numerical techniques cannot be used. While Schultz and Gibson avoid
this problem,,' they have another problem in checking that the Vv
chosen is a proper gradient of some scalar. Even if this were not a
problem, the interpretation and determination of positive definite prop-
erties in the resulting Lyapunov functions becomes very difficult for high

order systems.
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A different approach is taken by Zubov [Ref. 47]. For the
autonomous system x = f(x) with £f(0) = 0, he obtains a Lyapunov function

by solving the partial differential equation

n

021 ?g}.ﬁ& £(x) - gx)[1+ v(x)] [1+ llf(x)ﬂlzﬁ =0, (2. 20)
1= 1

The function ¢(x) must be positive definite on En9 but is otherwise
arbitrary. In addition, the solution must be such that -1 < v(x) < 0
for all x £ 0. (Zubov works with negative definite Lyapunov functions).
This approach at least suggests a systematic procedure for determining
v(x), but, as yet, no one has been able to utilize this fact to significant
advantage in higher order systems [Refs. 29, 42].

An important step in the direction of simplifying the use of LSM
has recently been developed by Sell [Ref. 39]. He notes that in certain
problems it is possible to show that particular types of stability exist if
and only if every Lyapunov function in a given class has a corresponding
property. This eliminates the problem of choosing a Lyapunov function
and replaces it with the (hopefully easier) problem of analyzing the
properties of some standard Lyapunov function along the solutions of
the equation through a study of v.

Unfortunately, Sell's work deals ma,i'nly with local stability
problems. It remains to be seen whether similar procedures can be

applied to generalized stability concepts such as ASL.
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Problems specifically related to automatic control have also
received a considerable amount of attention. The best known of these
are probably the problems of Lur'e [Ref. 25|. Lur'e's problem of

direct control is concerned with a system modeled by

X = Ax + pif(o)

{0 = b'x (2.21)
where A is a constant matrix, p and b are constant vectors, x is the
system state vector and f(o) is a scalar function. In addition, it is
assumed that

f(0) = 0 and of(0) > 0 for all o. (2.22)

This may be visualized as a single-input, single-output linear plant

with a single nonlinear controller as shown in Fig. 4.

p|:| x=Ax+u |[:|Db

Fig. 4. Lur'e's problem of direct control.
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Lur'e considers the so-called absolute stability problem of determining
the element of b (with A and p given) so that the null solution of (2. 21)
is ASL for all continuous f such that (2. 22) are satisfied.
This problem has received a great deal of attention from both
Soviet and western authors [ see discussion in Ref. 12]. A common

approach is to use LSM with the Lyapunov function
o
v(x) = x'Px + B [ £(6)ds (2.23)
0

where P is a constant, positive definite, symmetric matrix and g is a
constant. The major problem in this approach is the determination of
definiteness criteria for the scalar functions involved. For higher order
systems, say of order greater than sixth, this becomes very difficult
[Refs. 12,26]. The method can, in theory, be extended in several
ways such as the inclusion of several nonlinear elements, but computa-
tional problems are then even more difficult [Ref. 12]. For the prob-
lem with only oné nonlinear element, a new approach utilizing the
frequency domain behavior of the linear part (see Fig. 4), may simplify
some of the computational difficulties [Ref. 36].

In another control problem, Aizerman [Ref. 1] considers a
system modeled by

X = Ax + 1(x) (2. 24)

where A is a constant matrix



f(x) = 0 (2. 25)

0

£(0) = Oland xj is one of the components of x. It is assumed that there
is a range of some parameter a, say @ < a < f, such that the linear
system obtained from (2. 24) by replacing fl(Xj) by axj is asymptotically
stable. In his famous conjecture [Ref. 2] Aizerman suggested that the

nonlinear system (2. 24) might be ASL for an fl(xj) such that

ozsz < x; fl(xj) < Bx].z forx £ 0. (2. 26)

It has since been shown that this is not generally true even for third-
order systems [Ref. 26]. However, it is still quite important to.

ascertain when Aizerman's Conjecture does hold. This problem and its

generalizations have attracted a great deal of attention in the control
systems literature [Refs. 12,18,33] (see also a similar conjecture by
Kalman, Ref. 15, and the discussion in Ref. 16), but complete results
are currently available only for second-order systems [Ref. 33]. A
few special third- and fourth- order cases have also been considered
(see summary in Ref. 12). (In Section 6. 3, the separation concepts
developed in this thesis are used to verify a generalization of Aizerman's

Conjecture in an nth-order problem with n nonlinear elements. )
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In the recent mathematics literature a new viewpoint related
to LSM has developed using the concept of the Auxiliary Equation [ Refs.
5,9,10,40] . In using the auxiliary equation to study the nth-order
equation (2. 15), one seeks a positive definite function v(x, t) and a scalar

function w(v,t) with w(0,t) = 0 such that along the solutions of (2. 15)

v(x,t) < wlvx,t),t) . (2.27)
It can then be shown that, with certain reasonable restrictions, the

stability properties of the first-order auxiliary equation

r = w(r,t) (2. 28)
correspond to the stability properties of the original system. The
importance of this approach can be appreciated when it is realized that
this reduces the problem of stability of the equilibrium of the nth-order
system to the problem of stability of the equilibrium of a first-order
system. However, once again, there are still formidable problems
involved in selecting a v and an w(v, t) such that the relation v < w(v,t)
can be realized and as might be suspected, the difficulty of these problems
also increases with the order of the original system. Both Rosen [Ref. 37]
and Sell [Ref. 40] have attempted to solve this problem by using the
standard Lyapunov function v(x) = [|x|l (this function does not have
continuous derivatives so a modification of some of the original theorems
is necessary). This allows Rosen to reduce certain stability problems

to nonlinear programming problems.
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In this thesis auxiliary equations are used, but the separation
concepts reduce the problem of finding one suitable auxiliary equation
for the entire system to the simpler problem of finding several auxiliary
equations for the "pieces' of the system; i. e., a vector auxiliary equation.
Thus, the choice of a single Lyapunov function is circumvented by reducing
the problem of stability of the nth»- order equation to the problem of stability
of a system of several simpler ‘first-= order equations The form of this
vector auxiliary equation depends on the topological interconnection
features of the overall system. Apparently such an approach has not been
considered in the literature to date. Thus, there are no previous devel-

opments of this problem to be reviewed.

2.5 Detailed Summary of Results

This section gives a detailed summary of the results to follow.

It is intended first to provide an overall picture of the research for
those who are not interested in the finer details and second, to help the
prospective reader of the finer details obtain the necessary perspective.
References will be omitted throughout this section since they are given
in the detailed discussion which follows in Chapter 3.

An important concept in the development is that of the composite
system. A complex system obtained by interconnecting a set of simpler
subsystems which will be called transfer systems because they will
normally be input-output devices. The composite system may be, say,

a servo system and the transfer systems will be its parts: the motors,
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amplifiers and transducers A basic assumption is that all transfer

systems to be studied can be modeled by ordinary differential equations.

A general transfer system model is

x = f(x,t,ult))

{ y(t) = h(x(t),t) (2. 29)
where x is the transfer system state vector, u(t) is the vector (or scalar)
input and y(t) is the vector (or scalar) output. In a composite system the
transfer systems are interconnected so that the outputs of some are the

inputs of others. Thus the input, ui(t), for the ith transfer system in

some composite system is a sum of the other outputs, say

u.(t) = Z B..y.(t) , (2.30)

where the Bij 's are constant matrices. An example is shown in the

block diagrams of Fig. 5.

u(t) y(t)

—ee S e

X9

(b) A simple composite system
made up of three transfer
systems, Sl’ Sz, and S3.

Fig..5. Illustration of the concept of a composite system.



34
Note that this type of interconnection (as given in (2. 30)) implies the

usual system theory assumption that the transfer system models are not

affected by the interconnection structure. That is, there is no "loading"

of one transfer system by another.
With transfer systems clearly defined, it is possible to go on to

study some of their properties using LSM. Of particular interest is the

case where a transfer system has a region in its state space that is ASL.
Here, the definitions of Lyapunov stability, asymptotic stability, and
asymptotic stability-in-the-large have been generalized to include stability
of regions. A region M, which is a subset of En, is said to be stable
if for every € > 0 there is a & > 0 such that if the distance from
X, = x(to) to M is less that 8, then the distance from x(t;xo, to) to M will
be less than ¢ for all t > to. Asymptotic stability of M requires that M
be stable and also that for all X, less than some distance 60 > 0 from
M, the distance x(t;xo, to) from M goes to zero as t - . For
aéymptotic stability-in-the-large, this must occur for all 60 taken
arbitrarily large. These are basically generalizations of the usual
definitions of the stability of the point x = 0. If the set M is put equal
to { 0}, the usual definitions result.

With the aid of these new stability definitions it is possible to
define what will be called a "'gain' for transfer systems. However, it
is important to realize that this new gain is basically different from the
gain considered in the frequency analysis of single-input, single-output

transfer systems modeled by linear differential equations with constant
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coefficients. For such systems, this new gain is similar to the
maximum magnitude of the transfer function H(jw). For example,
consider the case of a system modeled by the first-order (one pole)

linear equation

1

X -ax + bu(t)
y = X

where x is a scalar. The transfer function is

and the maximum magnitude of the gain is the d-c gain g . In this
particular case, the gain obtained by estimating the size of stable regions
in the state space is also 2 (see Example 5.1). In higher order linear
constant-coefficient systems the gain obtained from these state space
techniques will be greater than or equal to the maximum magnitude of
H(jw). For other systems (multiple-input, multiple-output, nonlinear,
time-varying, etc.), this gain can best be visualized by considering the

ratio A/B where

A = the size of the region (the norm of the largest
vector in this region) in state space to which
all of the solution trajectories converge,

B = the size (norm) of the input.

The gain is an upper bound on this ratio that is valid for all continuous
and bounded inputs. For a transfer system to have a gain of this type,

it. must have regions in its state space that are ASL when the input has

a certain size (norm) and the size of these regions should depend on the
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size of the input. Transfer systems having these properties are said to
be in Class G and the gain of a transfer system in Class G can be esti-
mated using LSM and the concepts of regions that are ASL.
A particular important subclass of Class G is those transfer

systems with models of the form

% = f(x,t) + Du(t) (2.31)
{y = Hx (2.32)

where H and D are constant matrices and the null solution of the unforced

it

model

x = f(x,t) f(o,t) = 0 (2.33)
is exponentially stable-in-the-large (abbreviated ESL). This means
that there are positive constants k1 and k2 such that for any X, € o

the solutions X(t;XO, to) of (2. 33) satisfy the inequality
||x(t;xo,to)|| < ky | xOH exp { -ky(t-t )} . (2.34)

This subclass of Class G is denoted Class E. Class E is particularly
appealing for several reasons. First, Class E includes systems
modeled by (2.31) and (2. 32) when:

(a) f(x,t) = Ax where A is a stable constant matrix (all
eigenvalues of A have negative real parts),

(b) f(x,t) = A(t)x for a large class of variable matrices
A(t),

(¢) f(x,t) is a member of an important class of nonlinear
functions.

This last statement in case (c) is purposely vague since a precise
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characterization of the class of nonlinear functions for which (2. 33) is
ESL is not available. However, it is easily shown (see Section 5. 2)

that all f(x,t) where £(0,t) = 0 and
x'f(x,t) < -clxll®< 0 forx#0

lead to ESL in (2. 33). The essence of this restriction is best seen in the

first-order, time-invariant case where

xf(x) < -cx? < 0 forx#0.

Graphically, this means that f(x) lies in the shaded sectors of Fig. 6.
In higher dimensional situations the nonlinear characteristic is restricted
in a similar fashion. While such characteristics are not completely
general, they do represent a class of considerable importance. One
obvious requirement is that f(x, t) have a nonzero slope at the origin.
This type of nonlinearity is commonly encountered in applications where
linear behavior is observed in a small neighborhood of some equilibrium
but nonlinear effects become important when larger displacements are
encountered.

A second appealing feature of Class E is the fact that for any

transfer system in Class E there is a Lyapunov function v(x,t) such that
c1Hx||2 < vixt) < eyllxll® (2. 35)

and its total derivative with respect to (2. 31) is such that
v < cav o+ ylul? (2. 36)

where a, v, s and c,yare all positive constants.
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Fig. 6. A nonlinear characteristic leading to
exponential stability-in-the-large.
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This second feature is very important because it opens the door
to the interconnection of the auxiliary equations [ (2. 36) with inequality
replaced by equality | for the transfer systems in the same way that the
transfer systems are interconnected in the composite system. To
illustrate this interconnection, consider the simple composite system
shown in Fig. 5(b). Assume that each of the three transfer systems is

in Class E and has a Lyapunov function

2 2 s
cil||xi|| < Vi(xi’t) < ciZHXi” , i=1,2,3 (2.37)
whose total derivative is
o 2 s
v, < -av, + yi||ui|| . i=1,2,3 (2.38)
When the transfer systems are interconnected
1
fu, 12 = lx 12 < — v ,
1 3 = Cgq 3
loyll? = Ix, 12 < = v, ,
11
lugll® = Ix, 12 < L v (2. 39)
3 - 2 = €y 2 ’
. . . 1 1
Using (2. 39) in (2. 38) with B, = — 1y, , B, =— v, , and
1 Csq 1 2 11 2
,83 = ?;—1 73 ,thereresults a system of differential inequalities,
v1 g -alv1 + ,81v3
v2 S -azv2 + Bzvl
Vg < -0gVg + B3v2 . (2. 40)

When the inequalities in (2. 40) are replaced by equalities and vi's are
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replaced by r.'s, there results the vector auxiliary system
i

. .. L.
Ty o B Ty
ol = | Py % O Ty
1“3 1 Y (2. 41)
or, in vector notation
P o= Ar (2. 42)

where A is obviously defined from (2. 41). This is a generalization

®
of the auxiliary equation described in Section 2. 4. Instead of reducing
the original system model (the composite system model of order
D N tng where n, is the order of the ith transfer system) to a first-
order auxiliary equation for stability analysis, this procedure reduces
it to a third-order system of auxiliary equations (in general, the auxiliary
system will have an order equal to the number of transfer systems in the
composite system). It is now easy to show that under certain reasonable
restrictions the stability properties of the composite system, a high

order nonlinear system, are the same as the stability properties of the

third order linear system (2. 41). Moreover, it has been necessary to

find Lyapunov functions only for the lower order transfer systems. The

construction of a single Lyapunov function for the high order composite

system as required in all previous applications of LSM has been avoided!

This procedure is, of course, generalized to a treatment of a com-

posite system made up of an arbitrary number of transfer systems with
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arbitrary interconnections. The only restriction is that each composite
system must be in Class E. Several examples illustrating this procedure

are discussed near the end of Chapter 6.



CHAPTER 3

PRELIMINARY CONCEPTS

With the material in Chapter 2 to provide a background, an
analysis of the basic problem can begin. Section 3.1 deals with notation
while Section 3. 2 introduces concepts pertaining to composite systems

and their internal structure.

3.1 Notation

The vector notation used is similar to that employed by Hahn
[Ref. 12] or Cesari [Ref. 6]. (For an introduction to vector notation
used with ordinary differential equations, see Coddington and Levinson,
Ref. 8.) Let E" denote the n-dimensional Euclidean space of n vectors,

X = col(x .,X_), wherethe x.'s (i=1,...,n) are real numbers or
n i

1 X9+ -
real valued functions on the interval T = [0, ®) of the real line. TFhe
transpose of x is denoted by x' and for all x and y in E" the inner product

N o
X.y. . The norm of a vector in E™ is

s

is defined as (x,y) = X'y =

. i’i

i=1 1
the Euclidean norm ||x[| = (x,x)? and if P is an m x n matrix of real
elements, then [Pl = min{e | alxll > [Px| for allx e E"}. A useful
metric on E" is d(x,y) = ||x—yl| and when limits and continuity are

mentioned the implied topology is taken with respect to this metric. For

any subset A of E" the distance from x to A is d(x, A) = inf d(x,y) and
yeA

for any € > 0, Se(A) ={x | d(x,A) < e}. A subset A of ED is said to be

bounded if there is a finite ¢ > 0 such that A C SG(O).

42
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The notation A C B means A is a subset of B, while A C B means
A is a proper subset of B. If R - En, then R® is the complement of R
in En, R is the closure of R and B(R) is the boundary of R. If M C E"

and 0 € M, then s[M] = sup |lyll is the "size" of M. If M, and M

~ yeM 1 2

are two subsets of En, containing the zero vector, then M1 is smaller
than M2 if S[Ml] < s[Mz] and the cartesian product M1 X M2 is

defined in the usual manner as M; x M, = { (ml, m,)| m, € M, and
my € M, }. If f(x) is defined on R C E" and B CR, then

f(B) 4 { f(x) ' x € B}. If v(x) is a positive definite scalar function
(defined in Section 4. 2), then R, = {xlv(x) < h}. For any clearly

| defined ti € T the set [ti’ ) will be denoted by Ti [i.e. , if t0 €T,
then T_ is the set [’to, w)].

The differential equation x = f(x,t) is normally an nth-order
vector differential equation with x(t) and f(x,t) denoting n-dimensional
vector valued functions defined on T and E" x T, respectively. A
solution to this differential equation is a function x(t Xy to) such that
to € T, x(to;xo,to) =X, and £ [x(t;xo, to)] = f(x(t;xo, to),t) for all
te To‘ It is generally assumed that all differential equations satisfy
conditions sufficient to guarantee the existence, uniqueness, and continuity

of all solutions in t, X and to (continuity from the inside is implied at

the boundary of any closed region). 6

A variety of such sufficient conditions are available in the literature
[Refs. 6, 40] , but no specific conditions are assumed here. Necessary
and sufficient conditions are not available.
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Finally, let C be the normed linear space of continuous, bounded

n-dimensional vector functions on T with norm [ x(t) ||c = sup Ix(t)l.
teT
Similarily, let CO < C such that x € CO implies lim x(t) = 0.
t -

3.2 Composite Systems, Transfer Systems, and Models

As mentioned in the introduction, a composite system is an
interconnection of simpler subsystems. The basic building blocks of the

composite systems considered in this report are called transfer systems.

Def. 3.1: A transfer system is any input-output device whose

terminal variables may be characterized by relations of the

X
{ y(t)

where x(t) is an n-dimensional state vector, u(t) is a p-

form
f(x, t,u(t)) (3.1)

1l

h(x(t), t) (3.2)

dimensional input vector and y(t) is a q-dimensional output

vector.

Def. 3.2: The terminal relations (3. 1) and (3. 2) characteri-

zing the transfer system are called the transfer system model.

Example 3. 1: Consider the electric network shown in Fig. 7.

M\
n
@]
Q
1
»
I
~

—»i=u r
|
|
|
I
|
]
|

Fig. 7. Network for Example 3. 1.
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The dotted box contains a transfer system. When the input u(t) is a
current u(t) = i(t), the state x(t) is the voltage across the capacitor
x(t) = e(t), and the output v(t) is this same open circuit voltage y(t) = e(t),

then the transfer system model is

{ y(t) = x(t)

A composite system can now be defined as an interconnection

of transfer systems.

Def. 3.3: Consider a set of m transfer systems,

Si’ i=1,...,m. A composite system is an interconnection

of these transfer systems so that for the ith transfer system

the (vector) input u is given as

where y]. is the (vector output of the jth transfer system, u is
an external (vector) input to the composite system and Bij’ Gi
are constant matrices. (Note that only linear interconnections

are allowed. )

The partitioned matrix

i ‘ | .
Pu ) Pra { o P |

B = By By - | Byy | 3.3)
_Bmli Bm2 P . BmmJ'
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where the submatrices Bij’ (i,j = 1,...,m) are the same as those used
in Def. 3.3, will be termed the composite system interconnection matrix
or simply the interconnection matrix since it indicates the type of inter-
connections present in the composite system.
If the individual transfer systems are nith—order systems modeled

by
{ Xi = fl(Xi, t? ui(t)) ’

y.

i hl(xl’ t) ’

with state vectors x, = col[xil, e ’Xin] fori = 1,...,m, then the

m
composite system will be an n = Z nith—order system with state
i=1

vector x = col[xll, ces ’Xinl’le’ co ’X2n2" P STEEE ’anm] and
the composite system model will be

~ e o= —— m _—
X4 fl(xl’ t,j—zl Blj hj(x].,t) + G1 u)
m
{ %X = Xo|= fZ(XZ’t’j_Zi sz hj(xj,t) + G2 u | = f(x,t,u),
m
X fm(xm,t,j;1 ijhj(x],t) + G_ u)
y(t) = hx,t) , (3. 4)

where y(t) is the output of the composite system. It should be pointed
out that this sort of interconnection implies the usual system theory

assumption [Ref. 44] that the individual transfer system models are

not affected by the various types of interconnections; that is, there is no
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"loading"' effec;_t of one system on another. This in itself greatly simplifies
the rﬁ\echa,nisms;through which instability of the composite system can
dccuxf.’ The exterr;al input u is included to emphasize the fact that the

. chmposite system itself might be a transfer system in a larger composite.

If the individual tranfer system models have the form

{ X, = fi(xi,t) + D u, (3.5)
v; = 'Hixi _ : (3. 6)
fori=1,...,m, where Di and Hi are matrices and the interconnections

are such that
ui = ?Bijyj + Giu
then sinée .= H, x.
Y i%y

D.u, = ) D.B.H x, + D, G u,
i'i i i71) 7575 i’i

and the composite system model takes on the particularly simple form

B Xy = fl(xl,t) + Cllxl + CygXg + CygXg + ... Clmxm+K1u
X9 = f2(x2,t) + C21X.1 + CooXg + CooXa + ..o + szxm+K2u
1
}'cm = fm(xm, t) + Coi¥1 * szx2 + Cm3x3 + ..+ Cmmxm+ K u
y = hx,t), (3.7)

-
where Cij = DiBinj and K, = D, G,. Equation (3.7) can be further

i.

refined fo the form
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f(x,t) + Cx + Ku

X
{ y = h(x,t)

(3.8)

(3.9)

where x is the composite system state vector, f is a column vector of

the fi's and C is the partitioned matrix

[~ | I | I
Ci11C12 1 C13 o | Cim
C = “c~-+_cnm:_5-—[-“_r—c_?
= 91 ! Cog ' Coz -1 Copy
t ! |
I | | _:
e fm — g — A —
wcml I Cm2 : Cm3 ; ) : Cmm
and K is the partitioned matrix
Ky
K = 2
K
- mﬂ

(3.10)

(3. 11)

Since Cij = D, Bin]., the C matrix defined in (3. 10) will serve the same

purpose as the B matrix of (3. 3) in indicating the type of interconnections

present in the composite system.



CHAPTER 4
STABILITY DEFINITIONS AND THEOREMS

Precise definitions of the various types of stability to be used
throughout this thesis will now be given. Sufficient conditions for the
existence of these various types of stability are then obtained using LSM.
The stability definitions are given in terms of regions in the state space.

This generalization of the usual definitions will be useful in Chapter 5.

4.1 Stability and Boundedness of Solutions of Differential Equations

The stability and boundedness definitions to be given refer to
solutions of the ordinary differential equations which are models for the
systems (transfer systems and composite systems) of interest in this
report. 7 The definitions given below are a generalization of the
standard stability definitions [Ref. 12] which characterize the behavior
of solutions of the differential equation in the neighborhood of the null
solution x = 0. (The behavior in the vicinity of any fixed solution can
be reduced to this problem by a change of variables. See Section 2. 3).
The generalization is the characterization of solution behavior in the
neighborhood of a fixed set M or set of solutions rather than a fixed
equilibrium point x = 0 or a fixed solution. This generalization of the

No attempt is made to give a complete list of commonly used stability
definitions and the omission of specific definitions does not imply that
the present results cannot be extended to these forms. Those chosen

are representative of the stability concepts found valuable in a majority
of applications.

49
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stability definitions (and the associated stability theorems) leads to the
introduction of several new concepts in Section 5 and appears to have
possibilities of further applications not considered in this thesis. When
M = {0}, these definitions reduce to the familiar forms for the behavior
in the neighborhood of (stability of) the equilibrium solution, x = 0 [Ref.
12].

Consider the solutions of the vector differential equation
x = f(x,t) x(t) = x (4. 1)

where £(0, T) = 0. This equation can be considered as a model for

either an unforced system (u(t) = 0) or a forced system with a fixed

u(t) that is included in f(x, t).
Def. 4.1: The solution x(t;xo, to) of (4. 1) is bounded on a bounded
set M if x(T ;x ,t ) C M.
0’0’ 0o =

Def. 4.2: A bounded set M in the state space of (4. 1) is stable

if for every € > 0 there exists a 6 > 0 such that x(TO;S{)(M), to)
CSE (M). 8

The following theorem shows that Def. 4.2 implies Def. 4. 1.

Theorem 4. 1: If a bounded set M in the state space of (4.1) is

stable, then, the solutions of (4. 1), starting on M, are

bounded on M.

8 Recall that X(TO;SB(M)’ to) is the set of all points x(t;xo, to) for

(t,x )e T xS
0 0 ¢
x(t;xo, to) for t > t0 obtained with X € SG(M)'

(M) or;, in other words, the set of all solution paths
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Proof: For any (x_,t )e MxT, let dy(x o t) = ts61’11? [d(x(t;xo, to)s M)].
)
If dM(—N_I, T) = 0, the Lemma is proved. If dM(x('), té) # 0 for some

(x('), té)) €e Mx T, thenlete = 3 dM(x'O, t(')). From the stability of M

there is then a 6 > 0 such that X, € S.(M) implies d (xo,to) < €.

)
(M) and thus d

M
(xo, to) < €

i

? ™M i 3 '
But X, € M implies X, € S(5 M

L 4t . o .
3 dM(xo, to). Since dM > 0, this implies that dM(xo, to)

]

0 on

Mx T. Thus, the solutions starting on M are bounded on M.

Def. 4.3: A solution x(t;xo,,to) of (4. 1) approaches a set M if

lim d(x(t;xo,to),M) = 0,
t—o0

If all the solutions starting in some SG(M) approach M, then the set M
might be called quasi-asymptotically stable. This property in itself

does not insure that the solutions are uniformly bounded.

Def. 4.4: A bounded set M in the state space of (4. 1) is

asymptotically stable (AS) if it is stable and if there is some

¥ > 0 such that every solution x(t;x09 to) of (4. 1) with X € Sy(M)
approaches M; that is lim d(x(t;xo,to), M) = 0 for every

t—

X € S?/(M).

The above definitions consider behavior in an arbitrarily small neighbor-
hood of M. For applications this is frequently unsatisfactory and neigh-
borhoods of reasonable size must be considered. One approach to this

problem is to consider stability-in-the-large.
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Def. 4.5: A bounded set M in the state space of (4.1) is

asymptotically stable-in-the-large (ASL) if it is stable and for

n . ) _
every (xo,to) e E xT, t11n:o d(x(t,xo,to),M) = 0.

A stronger form of ASL is ultimate boundedness [Ref. 45].

Def. 4.6: The solutions of (4. 1) are ultimately bounded (UB)

on a bounded set M if for every (xo, to) e E" x T there is a

T > t0 such that t > 7 implies that x(t;xo, to) € M.

If M = { 0}, then the above definitions (with the exception of Def. 4.6)
reduce to the usual definitions [Refs. 12,16 or Section 2 above] for

stability of the equilibrium solution, x = 0.

Def. 4.7: The equilibrium solution x = 0 of (4. 1) is said to be

stable, asymptotically stable, or asymptotically stable-in-the-

large if the set M = { 0} is stable, asymptotically stable, or

asymptotically stable-in-the-large, respectively.
Two further implications of ASL are shown by the following theorems.

Theorem 4. 2: If a set M in the state space of (4.1) is ASL, then

the solutions of (4. 1) are bounded for t > to; that is, there is a
constant b(xo, to.) such that le(t;xo, to') | < b(xo, to) for all

t>t
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Proof: Given any € > 0 thereisart > to such that t > 7 implies

d(x(t;xo, to), M) < €. Thus, for allt> 7, the solutions are

bounded in SE(M)O Then choose any fixed ™ > T. On the closed
interval [tO,Tl], x(t;x , t ) must be bounded because it is a continuous
function of t (continuous on the left at to)o Thus, the solutions are

bounded for all t_>_ too

Theorem 4. 3: Let M be a bounded set in the state space of (4. 1)

containing the origin. Then, for any (xo, to) e E"x T,

Ixttsx , t ) < dix(tx , t.), M) + s[M]
and, in addition, if M is ASL
() lim d(x(t;x ,t ), M) = 0 for all (x ,t ) E'x T,

t—-

(b) d(x(t;x ), M) = 0 for all (t, X s to) € T0 x0x T,

t
o’o

(c) d(x(t;xo, to), M) is continuous in t, X s and t0 at all

points in T0 xE"x T.

Proof: The bound on the norm of x(t;x ) is a restatement of the

o’ to
.. triangle inequality while propérty (a) follows immediately from the
definition of ASL. Property (b) holds because x = 0 is an equilibrium

point that is contained in M. Property (c) follows from the continuity

of d(x, M) in x and the continuity of x(t;xo,, to) in t, X s and too
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4, 2 Sufficient Conditions for Stability and Boundedness of Solutions of

Differential Equations

In this section, sufficient conditions for the several types of
stability é,nd boundedness defined in Section 4. 1 will be obtained through
the application of LSM. Two different approaches will be employed to
obtain two sets of sufficient conditions for each of the definitions in
Section 4. 1.

The first approach is essentially a straightforward application
of the original procedures attributed to Lyapunov [Refs. 12,27] where
sign definite (or semi-definite) functions (Lyapunov functions) are used
to establish solution behavior in terms of a generalized metric on the
state space.

LetR C SE(O) for some € > 0 with 0 ¢ R,

Def. 4.8: A real valued function v(x), defined in En, is said

to be positive definite [ positive semi-definite] on R (recall

that R® is the complement of R in E") if x ¢ R® implies that

vix)> 0 [v(x)z 0] and v(0) = 0.

Def. 4.9: A real valued function v(x,t) defined on E'x T

is said to be positive definite on R x T if v(0, T) = 0 and

there is a function w(x), that is positive definite on R and

such that v(x,t) > w(x) on REx T.

Note that the behavior of v(x), v(x,t) or w(x) inside R is immaterial.
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Def. 4.10: A real valued function v(x,t) defined on E'x T

is said to be positive semi-definite on R® x T if v(x,t) > 0 on

R® x T and v(0, T) = 0.

Def. 4, 11: The functions v(x) and v(x, t) are said to be

negative definite [ negative semi-definite] if -v(x) and -v(x, t)

are positive definite [ positive semi-definite].

IfR = { 0}, then replace R in the above definitions by E", For instance,
a real valued function v(x), defined in En, is said to be positive definite
on E"if x ¢ E" implies that v(x) > 0 for x # 0 and v(0) = 0. These are
the usual definitions of sign definite functions [Ref. 12]. In their domain
of definition, all of the definite and semi-definite functions defined above
are assumed to be continuous and to have continuous first partial
derivatives with respect to all arguments. In all cases where v(x,t) is

a Lyapunov function, v (x,t) denotes the total derivative of v(x,t) with

respect to the differential equation under consideration (see Section 2. 3).

Theorem 4. 4: Let v(x) be positive definite on E', I Ry (as

defined in Section 3. 1) is a bounded subset of E" and v (x,t)
is negative semi-definite on R}c1 x T, then all solutions of (4. 1)

starting on R, are bounded on R, .

h h
Proof: With (xo, to) € Rh x T, assume that for some t2 > t0
. ) =C =C A = .
the solution x(tz,xo, to) € Ry (note that Rh = (Rh)c), Since

the solutions are assumed continuous in t and v(x) is continuous in

X, there is a time t1 where to < t1 < t2 such that x(tl) € B(Rh).,
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Since x(tz) € 'ﬁ}cl , then v(x(tz)) > h = v(x(tl)) in a region where
v(x,t) < 0. This contradiction shows that the solutions remain

in Rh for all t > tou

Theorem 4. 5: Under the hypothesis of Theorem 4. 4, the set

Rh is stable.

Proof: Given any € > 0, choose a ¥y > 0 such that ﬁhﬂ/ C8, (R,)-

This is always possible due to the continuity of v(x) in x. Then

choose 6> 0sothat S,(R.)CR, . Now, if x € 85R,)C

6( h) h+y 6( h)

Rh+y , the solution x(TO;S O(Rh)’ to) is bounded on Rh+y - Se (Rh)

by Theorem 4., 4. Thus, R, is stable.

h

Theorem 4. 6: Let v(x) be positive definite on E" and assume

that R, is a bounded set. If v(x,t) is negative definite on

h

Rﬁ x T and negative semi-definite on B(Rh) x T, then every

bounded solution of (4. 1) approaches Rho

Proof: If (xo,to) € Eh x T, then by Theorem 4. 4, x(t;xo, to) is

bounded on R, and Def. 4.3 is satisfied trivially. If x(t;xo, to)

h

is any other bounded solution, then there is a constant P such
that ”x(t;xo, to) | < P and a closed, bounded set D where s|[D]> P

such that D D R, and x(t;xo, to) is bounded on D. Choose 6; > 0

h

such that R C Dand X € (D-R Since the region

)0
h+<31 h+<31

(D-R (- I_{ﬁ is closed and bounded (and hence compact),

h+61)

V(x,t) < -w(x) < 0 (w(x) is positive definite on En) takes on a

maximum value, say -a < 0 therein. Along the solution x(t;xo, to)
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in this region,

t
v(x) = v(xo) + f v dtgv(xo)-a(t-to)o

t
0

Since v(x) > 0 for all x # 0, the solution can remain in this region
for only a finite length of time., Since the solution is bounded on D,

it must then approach R, . Thus, given any & > 0, there is a

b
T4 > to such that t > T4 implies that X(t;xo, to) € Rh+6° It is now
only necessary to show that this last statement implies that
d(x(t), Rh) becomes arbitrarily small. Given any € > 0, choose

6> 0sothatR - Se(Rh)° Then, for any € > 0 thereis a

h+6
T > t, such that t >7 implies x(t;xo, to) €R, .5 C Se (Rh)o Thus,

t > 7 implies that d(x(t;xo, to),Rh) < €, and the solution approaches
Rh"

Theorem 4. 7: Let v(x) be positive definite on E" and Rh be

a bounded subset of E, If v (x,t) is negative definite on
ﬁﬁ x T, and negative semi-definite on B(Rh) x T, then the set

Rh is asymptotically stable (AS).

Proof: Stability follows from Theorem 4. 5. Since Rh is stable,

the solutions may be bounded in some Se(Rh) by choosing X, in
some Sa(Rh)" Then choose D as some closed bounded set such
that Se(Rh) C D. All solutions with X € S(S(Rh) are then bounded
on the closed bounded set D O Rho The remaining hypotheses of

Theorem 4. 6 are then satisfied so all solutions starting in S G(Rh)

approach Rh and this set is AS.
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Theorem 4. 8: Let v(x) be positive definite on EY I v(x,t)

is negative definite on R_ﬁ x T, negative semi-definite on B(Rh) x T,
and thlrl1 v(x) = o, then the set R, is ASL.
X || =0

Proof: The set Rh is stable by Theorem 4. 5. Given any (xo,to) €

E" x T, there is a scalar ® > h1 > V(XO) such that Rh is bounded,
1

(the selection of such an h1 is always possible

Rhl D Rh’ X, € Rh
bec