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ABSTRACT

This report primarily deals with the recovery of a clocked input (see Section 1.2) to a
known linear time-invariant system when the output, or at least a noisy version of the output,
can be observed. Another topic, receiving minimal attention here, is the identification of
the time-invariant linear system when the output can be observed and certain a priori statisti-
cal information about the clocked input is available (e.g., the power spectrum). Both of these
problems are of interest in data transmission and in communication systems using clocked in-
puts.

The input recovery problem is treated separately for periodic inputs and aperiodic inputs.
In both cases, a transform (a type of "inverse filter" different from the standard inverse
filter) is developed which operates on the output to recover the input. This transform can be
realized in the form of a computer program. When the inputs are periodic, a special type of
matrix called a circulant results which simplifies the computations necessary to recover the
input for the entire period. When the inputs are aperiodic, the time axis is divided into
intervals and the input is recovered one interval at a time. If the output is corrupted with
noise, only an approximation of the actual input is recovered, in the noiseless case the acétual
input is recovered.

A preliminary solution is suggested in the brief discussion concerning the system identi-
fication problem. This solution uses power spectrum information as well as the transform
mentioned above for the periodic case. It has been verified in special situations. However,

there is still some question about the general validity of this method.



1. INTRODUCTION

1.1 Background

This report concerns an investigation of linear time-invariant filters having clocked
signals as inputs (clocked signals will be defined explicitly in Section 1.2). This class of
inputs is of considerable interest since clocked binary input signals are the basis for a
number of schemes for developing communications systems with desirable properties.l Most of
the results reported here apply to the more general case in which the inputs are not restricted
to binary signals.

The results are developed in terms of a solution to the following problem:

Given the output (possibly corrupted by noise) of a linear
time-invariant system? forced by a clocked signal, and given
certain a priori information, obtain a description of the

linear system and/or the input sequence.

Depending upon the assumed a priori information and the desired result, there is more than one
problem to be found in this general statement. One such problem is to obtain a description
of the linear system from observation of the output and from assumed statistical knowledge
about the input (such as the power spectrum). Another problem is to obtain the input sequence
from observation of the output assuming that the linear system and certain information about
the form of the clocked input are already known.

Besides being of interest in the study of communications systems, this problem of obtain-
ing a description of the system or input sequence is of interest in a broader class of prob-
lems concerning data recovery. For instance, consider a device with a digital output feeding
a data link or, alternatively, consider a digital signal being measured by a transducer. In
these and similar problems, the recovery of the original signal from a distorted (filtered)
version that is corrupted by noise involves the solution of this problem.

The system and the signals involved will be represented by the block diagram of Fig. 1

lReference 1 presents a study of communications systems using clocked binary signals, and is
concerned with the properties of filtered binary signals and their relation to the binary
sequences which generate them.

2The results will be developed only for those systems which can be modeled by linear, constant
coefficient, ordinary differential equations.



Fig. 1. Block diagram of the system.

where c(t) is the clocked input sequence; w(t) is the impulse response of the linear time-
invariant system; y(t) is the system output; v(t) is additive noise corrupting the output;

and, y(t) is the noisy form of the output.

The input signal recovery problem receives major attention in this report. By using a
small amount of prior information about the form of the clocked input (information which
determines the particular linear space containing the inputs), we can circumvent the well-
known difficulties normally encountered in the design of an inverse filter. The "inverse
filter" which is developed is not simply the ordinary inverse filter and actually, it does
not operate in real time. However, it is a true inverse filter in that it operates upon the
output signal to recover a delayed version of the input. The result basically depends on

constructing efficient bases sets for both the input and output linear function spaces.

1.2 Representation of Clocked Sequences

In this report, a clocked signal is a sequence of time functions defined over equal
adjacent intervals of time called clock periods. The time functions in each interval are
identical except for a constant multiplier. The random binary sequence shown in Fig. 2 is

an example of this.

c(t)

. i

|
0 2T 4T 67 87 107 127 147 167
Fig. 2. A random binary sequence.

Here the function in each clock period is identically equal to one, and the constant multi-
pliers are random samples from a binary distribution of zeros and ones. In a more general

case, the time function defined on each clock period has a basic waveform b(t) for 0 <t < T,



a segment of the clocked signal of length T = Lt can be represented as

L
e(t) = j: a; q4(t) 0<t<T (1)

i=1

where L is the number of clock periods in the segment, T is the length of the clock period,

and where
b(t-[1-1]r) (i-1)r <t <ir, i=1,2,...,L
qi(t) =
0 elsewhere ; (2)
and
a; € R = the set of real numbers.

Note that the functions in the set {qi(t)] are linearly independent and thus form a basis
for the L-dimensional space of all such clocked signals. This general case is illustrated

in Figs. 3(a) and (b).

Fig. 3(a). A typical basis function, L = 10, 7 = 1.

/-/}1 2 g/l‘//]l&\]e 7 rJo =t
0 I\J LJ

Fig. 3(b). A typical clocked signal, L = 10, 7 = 1.



A special case of interest occurs when the sequence is periodic, that is, when the
sequence is repeated after L clock periods. An example is a periodic version of the binary
sequence shown in Fig. 2. Such a periodic sequence will consist of a sequence of ones and
zeros which repeats every T = Lt seconds. These signals, sometimes called "pseudo-random
sequences,” are readily generated by shift-register generators with proper feedback
(Ref. 2). The name "pseudo-random" comes from the fact that pieces (0 < t < T) of such
sequences, while completely deterministic, have the same appearance as the truly random
sequence shown in Fig. 2. Since these sequences are commonly employed in digital com-
munication systems, they are particularly applicable to this report. A general periodic
sequence of period Lt, where the basic waveform (the time function defined on each clock

period for 0 < t < 7) is b(t), can be represented as

C(t) = Z aj pi(t) -~ <t <o (5)

i=1

where

b(t-[1-1]T-nT) ol + (i-1) 1<t <nl + iT

pi(t) =

0 elsewhere (h)
for n = 0, #1, ¥2,... and 1 = 1,2,...,L
and where

aj € R .

Like the nonperiodic case described by Egs. 1 and 2, the periodic functions in the set

{pi(t)} are linearly independent and may be considered as a basis for the L-dimensional

space of all such periodic clocked signals. This general case is illustrated in Figs. 4(a)

and (b).

The representations of clocked signals given by Eqs. 1 and 2 or Eqs. 3 and 4 will be
used throughout the remainder of this report. If it is assumed that if knowledge of the
system implies knowledge of the set of functions {p;(t)) or {qi(t)} (for the periodic or
aperiodic cases, respectively), then the input i1s uniquely specified by the set of coef-
ficients {ai}. In many cases, the only quantities of interest in the signal recovery problem

are the ai’s. We can consider this problem solved when these are found.
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Fig. 4(a). A typical basis function, L = 8, 7 = 1.

c(t)
\

- 1 Ot Am
-6LU-4-2 2LU4 6 8 E~U12 14 16 Ei_'zﬁ t

Fig. 4(b). A typical periodic clocked signal, L = 8, T = 1.

1.3 State Space Representation of Linear Systems

The basic problem stated in Section 1.1 involves the study of clocked signals in linear,
time-invariant systems. Although such systems can be represented either in the time domain
or in the complex frequency domain, the time domain will generally be used since it is a
more natural setting for this particular problem.

A basic tool in time domain treatment of dynamic system problems is the state space
representation (Ref. 3). It has been shown (Ref. 3) that any physically realizable, single-
input, single-output device that can be modeled by near, constant coefficient, ordinary dif-

ferential equations has a mathematical model of the form.
% = Mx +D c(t) (5)
y(t) = h'x (6)

where x is the state vector (a column vector), x is the time derivative of x, M is a constant
matrix, b and h are constant column vectors, h' 1s the transpose of h, c(t) is the scalar
input and y(t) is the scalar output. At each instant, the state vector x may be considered
to represent information stored in the system (charges on capacitors, currents in inductors,

etc.) because of past inputs and initial conditions. Future values of the state vector will



be determined by the present state and by the future inputs. This is clear from the well-

known solution of Eq. (5) (Ref. 4)

ct

x(t525,t5) = o(t-ty)x, + ®(t-s) b c(s) ds (7)
t

e]

where zﬂt;zo,to) is the value of the state vector at time t when the initial conditions were
X at time t,. The matrix o(t-t,) is obtainable from the matrix M by various methods (Ref. 4),
and is sometimes called the transition matrix (or fundamental matrix), since it shows the
transition of x, = x(t,) into x(t) for t > t, when ¢ = 0. Equation (7) shows that the

present state §(t3§o’t0) depends upon the initial conditions x4 and the inputs in the interval

(to,t). The output y(t) is now obtained as

t
y(t) = h'x = h' (st )x, + \/\ h'e(t-s) b c(s) ds (8)
to
If the linear system has all of its poles in the left-half-plane (which implies that
the characteristic roots of M are in the left-half-plane),3 the effects of initial con-

ditions become less important as t-to becomes larger. That is, for fixed t

1i _
tog;m—oo <I)(t_to) =0 (9)
and so in the limit as to *> -
t
y(t) =\/h[g‘ o(t-s)b] c(s) ds .h (10)

=00

It is also known (Ref. 5) that y(t) can be represented as the convolution of the impulse

response w(t) of the system with the input c(t), so that

t
y(t) =Jf w(t-s) e(s) ds (11)

-00

Hence, the quantity in the brackets in Eq. 10 is, in fact, the impulse response of the

system.

3This follows from the fact that the characteristic roots of the system matrix M are the
poles of the system transfer function.

l{'The existence of (10) for c(s) bounded and of the form of Eq. 1 is assured since the transi-
tion matrix ®(t-s) is exponentially bounded.



1.4 Report Format

We will proceed with the solution of the problem in these terms: In Section 2 of this

report, we consider the recovery of a clocked periodic input signal for a known linear
system. A special "inverse filter" is constructed to operate on noiseless or noisy observation
of the output to reconstruct the input c(t). The recovery of arbitrary (nonperiodic) input
signals for a known linear system is discussed in Section 3. A method, similar to that of
Section 2, is presented to handle this case. In Section 4, we consider the problem of de-
termining an unknown linear system from statistical information about its input and from
observation of its output. The conclusions reached as a result of this research and our rec-

ommendations for further study are discussed in Section 5.



2. RECOVERY OF PERIODIC CLOCKED SIGNALS WITH KNOWN FILTERS

2.1 Introduction

The simplest case of the problem outlined in Section 1.1 occurs when the filter is known
exactly and the input signal is periodic. This case will be treated in considerable detail
since the approach developed in this section provides a background for understanding the
treatment of the more complex problems considered in Sections 3 and L.

First, consider the noise-free case where y = ; in Fig. 1. From this block diagram
representation of the problem it i1s clear that a possible solution would be an inverse filter
of some type to recover c(t) when given y(t). Not only are they often physically unrealizable
but they are usually undesirable in a practical sense because of problems with bandwidth and
noise. The source of this difficulty is suggested by the following development.

Consider the situation where c(t) is any periodic function with finite period T which

can be expanded in the Fourier series

® J 225 t
T
e(t) = Z Cp e (12)
k=-c0
where
T j 2k
1 T
Ce = T fc(t)e at (13)
[¢]

for k=0,£1, +2,... . Equation 13 is the discrete frequency Fourier transform of c(t) and
Eq. 12 is the inverse transform. The coefficient Y in the expansion of the output y(t)

is found by noting that

Y =Hj S C (1)

where H( jw) is the Fourier transform of the impulse response of the linear filter. The time

function y(t) can now be obtained from the inverse transform

- 3k
y(t) = z Bee o (15)

k=00



In the problem of interest here, the output y(t) is given and c(t) is sought. To obtain c(t)
-1
in the form of Eq. 13, we require the inverse operation H ~(jw) on Yk such that

-1, 2nk - 2nk 2nk
B (35 Y =5 ) B ) ¢ = ¢ (16)

It is usually true from practical consideration that H(jw) + O as ® * * » so that (see Eq. 16),
the inverse operation H'l(jw) is such that H'l(jw) > as ® > * o, Thus, H'l(jm) has an
arbitrarily large bandwidth which results in the large amplification of any noise at high
frequencies. This undesirable feature of the proposed inverse filter is sufficient to make

it unacceptable as a solution.
enk

Objections can also be raised against using the functions ej T t

for the expansion
of c(t) as in Egq. 13 since then an infinite number of the coefficients Ck must be recovered
to specify a general periodic c(t). This problem can be eliminated by using a priori
knowledge of c(t) to define a finite dimensional subspace containing all possible inputs
c(t). A set of basis functions for this finite dimensional subspace can be used to expand
c(t) using a finite number of coefficients. Finally, a transform analogous to the Fourier
transform above, can be defined in terms of this finite set of basis functions. This approach
is used below in the case in which it is known a 233932 that c(t) is a periodic clocked
signal with a known basic waveform b(t) (see Section 1.2) and clock period T. The transform
is first developed for the noise-free case and then applied to find an approximate solution
to the same problem in a noisy environment. The nature of these results is then examined.
At this point, it is desirable to establish the following convention: the transform
operation to be defined below is not carried out in real time so that c(t) is not actually

recovered but rather a delayed version c(t - 6) for some positive ©. However, throughout

this discussion this recovered input will simply be denoted as c(t) with the delay suppressed.

2.2 Development of the Inverse Filter: Fundamentals

It was shown in Section 1.2 that a periodic clocked signal c(t) with clock period T,
basic waveform b(t), and period T = Lt could be represented as
L
o) = ) oy pilt) (17)
i=1
where the pi's are defined in Section 1.2. When the ai's are arbitrary real numbers these

functions form a finite dimensional linear space, the input space, which will be denoted



by I, If the linear filter in Fig. 1 has impulse response w(t), then

t
y(t) = \/ﬁw(t-u) e(t) du . (18)

=00

Substitution of Eq. 17 for Eq. 18 and interchange of summation and integration gives

L t
y(6) = ) ay [ e py(u) as (19)

i=1 —®

L

A0 = ) ey t) (20)

i=1

where
t

zi(t) = Lfw(t-u)pi(u) du . (e1)

Since p;(t) is periodic, it follows that zj(t) is also periodic. Note that the functions
Zi(t), i=1,2,...,L, span the output space containing the functions y(t) and, if they are also
linearly independent, form a basis for the output space. It is shown below that this linear
independence of zi(t), i=1,2,...,L, is guaranteed if the system transfer function W(s) exists
and is nonzero everywhere on the jw axis.

To see the linear independence of the functions z;(t), i=1,2,...,L, under the assumption
that W(s) % O on the jw axis, assume that the contrary is true. That is, assume that there

exists some set of coefficients {ai}, not all zero, such that

y(t) = Z a; z;(t) = 0 (22)
i=1

R
for t € [0,T]. Recall that y(t) can be written as”

s(8) = [ (o) e(w) an (23)
where
e(t) = }: ay pi(t) (ok)
i=1

5Since w(t-u) = 0 for u > t, the upper limit on the integration can be taken as w rather
than t as in Eq. 18.

10



which can not be identically zero because of the linear independence of the pi(t)’s. Expand

c(t) in a Fourier series as

jnwot
e(t) = Z A_e (25)
n
n=-w
where
1 T -jnwgt
A = = fc(t) e at (26)
o
_ &
T T

and express Eq. 22 using Eq. 23 as

y(t) = fmw(t-u)i A ejn(Dou du

n=-co
N , jruo(£-u)
= }: A Jf wu) e © du
n
n=-0 =00
= anot
= Z A W( jnwy) e =0 (27)
n=-o

for t € [O,T].6 Since c¢(t) # 0 in [0,T], it follows that the coefficients An in Eq. 25 are
not all zero. Now Eq. 27 implies that An W(jnwo) = 0 for every n and since not all the A,

can be zero, it follows that for some n, W(jnmb) = 0. This result is contrary to the original
assumption and thus, the linear independence of the Zi(t)'s has been shown.

Note that in this argument, for the fixed period Lr, it was only necessary that W(s) % 0
at the discrete points jnw, along the jw axis and not on the entire jw axis as was originally
assumed. The stronger assumption is still necessary, however, since the critical points
jnwo change with the period T = Lt and it is desired that the result hold for an arbitrary
period.

Since the same coefficients, the a;'s, weigh the basis functions in both the input and

output spaces, the problem of recovering c(t) from y(t)will be solved if a method can be

6;nterchanging the integration and summation in Eq. 27 can be justified using the Lebesque
Dominated Convergence Theorem. (Ref. 6).

11



devised for obtaining the aj's from y(t), that is, a method of finding the "amount” of each
z;(t) basis vector in y(t). Such a method can be devised by finding a set of functions

£4(t), i=1,2,..., L, such that
(£;(2), 24(2)) = 3y, (28)

where Sij is the Kronecker delta function and the inner product is that given by Eq. 31 of
the next section. When a set of Zi(t)'s is found, each desired coefficient a; would simply

be given by

a; = (£5(%), v(%)) i=1,2,...,L. (29)
One method of finding these Ki(t)'s is provided by the transform TO defined in the next

section.

The process of Eq. 29 can be instrumented in a number of ways. One way is to use
digital computation which involves quantizing. This approach is like the one considered in
Section 3.4 for the aperiodic case. Another method using continuous time filters is to build
a filter with impulse response hi(t) = Ei(T-t). Then, by writing out the expression for the

inner product of Eq. 29, the coefficient a; is given by

T
aj = fzi(t) y(t) dat
o
T
= [nyre) y(e) s (30)
o

which is simply the output of the filter at t = T under the input y(t) starting at t = O with

zero initial conditions.

2.3 Development of the Inverse Filter: Transforms

Let the input space as restricted in Section 2.2 be denoted by Ip. This space is the
linear function space spanned by the set P = [pi(t) | i=1,...,1}. On this space define the

inner product

(x(t), y(t))

1
»
JaN
&
N
<\
L
ot
NS
o
=
—_
N
=
=

12



for all x, y € Ip and the norm
L
2
() = (x(t),%(¢)) (32)

for all x ¢ Ip. In Eq. 31 the bar above y(t) denoting its complex conjugate is included for
mathematical completeness even though the inner product will be restricted to real functions
here. The elements of P are clearly orthogonal with respect to this inner product.

Any c(t) € Ip has a representation

L
e(t) = z a; pi(t) = a' p(t) (33)

i=1

where the column vectors a and p(t) have the form a = colla;,...,a;] and p(t) = col[pl(t),...,

pL(t)]. It is possible to define a generalized transformation, T., on Ip so that

I

(C’pl)

DA (34)

a = Tc) = [(pi,pJ (c.pL)

where [(pi,pj)] is a matrix whose ij element is (pi,pj). Because of the orthogonality of the
members of P, this matrix is diagonal (with all elements on the diagonal nonzero) and, hence
invertible. Consequently, the transform Ty maps the input space Ip onto an input tgansform

domain space. The inverse transform of the input is given by Eq. 33, or formally as

e(t) = Ty (a) = a' p(t) (35)

A mapping similar to TI can be carried out on the output space (denoted by Op) which,

recall, is spanned by the set of functions Z = {zi(t) | i=1,2,...,L}. This transform on

Op, denoted by To, is defined as
(y,zl)
_l .
a = T,(5(t) = [(zg,2))] : (36)
(Y:ZL)
and the corresponding inverse transform is
y(t) =Ty (2) = & z(t) (37)

Here z(t) and [(zi,zj)ﬂ are defined in a fashion analogous to p(t) and [(pi,pj)]. The inner

product on Op is the same as that on Ip. The functions Ei(t), i=1,2,...,L, of Eq. 29 are

13



-1
"8 row of [(24,24)] " by

seen to be imbedded in the transform T,. In fact, denoting the i 3

. C
g ﬂi(t) is given by

=

(8) = gl | - (38)

2L,

The transformations T; and T ,as well as their inverses and the spaces involved, are shown
o
in Fig. 5. Note that here the operation of the system in transforming inputs c(t) into out-

puts y(t) is represented as a transformation G from the input space into the output space.

Fig. 5. The input and output spaces for G and the transforms defined upon them.

The existence of T, (hence, the existence of the inverse of [(Zi’zj)]) follows from the

fact that the transformation G is invertible when operating upon the class of clocked inputs

in the space I That is, G has only a trivial null space in Ip. Indeed, if G has a non-

p*

trivial null space in Ip, there would be some nonzero vector of coefficients é such that
A, -
y(t) = a' z(t) =0 (29)

for t ¢ [0,T]. However, this is forbidden by the linear independence of the functions

z;(t), i=1,2,...,L.

The vector a, obtained using the transforms Ty and T_, is a vector in a finite dimensional

0’

space as compared to the infinite dimensional spaces employed in Eq. 13. Also, in the trans-

form domain (the domain of the coefficients ai), the input and output are related by the

1k



identity operator. This is contrasted with the Fourier transform case where Yk =
H(j g%E)Ck. Finally, observing y(t) for an entire period of the input (i.e., for all
t e [to, to + T] for some to) we can take the transform defined by Eq. 36 to get the vector
2. The desired signal, the input c(t), is then specified by this & vector and can be
recovered by using the inverse transform of Eq. 35. Note that this total operation is
actually a type of "inverse filter" in the sense that it operates on the output y(t) to
produce a delayed version of the input c(t). However, this operation cannot be carried out
in real time.

At this point, the problem can be solved in the single step a = T (y(t)). If the matrix
[(Zi,zj)] of Eq. 36 is easily inverted, then the inverse filter can be realized in a very

simple and yet exact fashion—no approximations having been made. The feasibility of this

metrix inversion step is considered in the next section.

2.4 Development of the inverse Filter: Computation

As described in Section 2.3, the recovery of c(t) from the noise-free shifting output
y(t) can be accomplished by merely taking the transformation in the output space. This oper-

ation is
(Y:Zl)

_a_ = T (y> = [(Zi’zj)] : (LI-O)
(Y;ZL) .

From a computational standpoint, the only difficulty in this procedure is the inversion of
the matrix [(zi,zj)]. The fact that this matrix is invertible has been discussed in Section
2.%3. This matrix is an L x L matrix where L is the period of c(t) in terms of clock periods.
Thus, L is usually large and a straightforward attempt to invert [(zi,zj)] is futile for long
periods. Fortunately, a closer examination of this matrix will reveal that this difficulty
can be circumvented.

In developing an inverse for [(Zi,zj)], we use the fact that this matrix has the follow-
ing special structure: (1) it is symmetric, and (2) it is a circulant (Ref. 7). The sym-
metry is obvious from the fact that (Zi,Zj) = (Zj’Zi)' A matrix is a circulant if each row
contains the elements of the previous row, shifted one element to the right.7 This shifting
is performed in such a way that the last element of any given row becomes the first element
of the following row. This circulant property for a given L x L matrix [(zi,zj)] with

elements fij’ can be characterized by the equations

7When the matrix is formed by shifting the rows one element to the left we get what F. M.
Waltz calls "left circulants" (Ref. 8). Many of the properties displayed here are not
properties of left circulants.
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13 7 Tia, g e

Ty, = T g i o= 1,2,...,L-1 (k1)

The fact that [(Zi,zj)] is actually a circulant is easily verified by showing that its

elements satisfy Eq. L1. First note that the basis functions, pi(t), i=1,...,L have the

property
p;41(t) = pilt-r) i = 1,2,...,L-1
p(t) = p(t-7) (42)
Then from Eq. 21
t
zi+l(t) = k/qw(t-s)piﬂ(s) ds
t
= L‘/\w(t-s)pi(s-T) ds
t-T
=Jf w([t-T—(s-T)]pi(s-T) a(s-1)
= Zi(t-T) (h})

Using this result in the inner product on Op gives

(2341,2541) = f z3(t-1)z4(t-1) at

1l
N
i
—~
[0
N
N
Cae
—~
[}
~—
o))
[2)
—
=
=
N

1]
N
e
—~
w
-
N
[
—~
5}
-
o))
w
—
=
1
N2

The equality between Eq. 4l and Eq. 45 follows from the periodicity of the functions in-
volved. A comparison of Eq. 46 and Eq. 41 shows that [(zi,zj)] is indeed a circulant.
From the definition of (Zi,Zj> it is clear that [(zi,zj)] is a real symmetric (hermitian)

matrix and, thus, there is a unitary matrix U such that

[(z;,z,)] = Ur U (47)

1i77J
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where

I = diag [7_, ]

o 71

an eigenvalue of [(zi,zj)], k=0,1,...,L-1

<
=
1]

U*

I

complex conjugate transpose of U.

That the eigenvalues are nonzero follows from the existence of T, established in Section 2.3.

Moreover, since U is unitary, U* = U-l and the inverse of [(zi,zj)] ig simply written as

-1 -1

((z,,2z,)] = Uur U (48)
17y
-1 . . . -1 . 1 1 . .
where T is easily obtained as I' = = diag [;—— yeeey ;———]. Hence, if the eigenvalues of
o L-1
-1
[(Zi’zj)] and if the unitary matrix U can be found, the required matrix [(zi,zj)] is

easily obtained from Eg. 48.
Except for the special properties of circulants which facilitate the calculation of

their eigenvalues and eigenvectors, Eq. 48 would not be a simplification of the inversion

)]

problem. lLet dj, j=0,1,...,L-1, be the elements of the first row of the matrix [(Zi’ZJ

so that the dj are related to the fij of Eq. 41 by the expression

a = 11,31 3=0,1,2,...,1-1 (49)

The symmetric circulant structure of [(Zi,Zj)] then implies that the dj are interrelated by

the expression

3=1,2, .u L odd

L1
2

4 = 4.

L

j=l,2,...,5 -1 Leven (50)

L .
Letting 1y, k=0,1,2,...,L-1, denote the L roots of the equation r = 1, that is

2nkJ
o= e L = cos 2%5 + J sin E%E k=0,1,...,L-1 (51)

8The notation diaglyy,...,77_3) denotes the diagonal matrix with the elements yg,...,71_1
along the main diagonal.
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it has been shown (Ref. 7) that the eigenvalues, 7y, of a circulant are given by

2 L-1
+d, 1, + +d

A T =T T P

k=0,1,...,L-1 (52)

That Yo k=0,1,...,L-1, is real can be emphasized by rewriting Eq. 52 as

erk bk
7e = 4o * 24y cos ==+ 24, cos — (53)
/
2a cos M(L-1)k if L odd
L-1
— L
2
+ ..+-ﬁ
n(L-2)k
edp, cos n(1-2)k + (-l)k da
5 -1 L 3 if L even
-
L-
which is possible by the symmetry of the matrix and the fact that rﬁ and rk P are complex

conjugates. It is a property of real symmetric circulants that the eigenvalues occur in
L
pairs of equal eigenvalues such that if L is even we get two unpaired and 5 - 1 sets of
L-1

paired eigenvalues and if L is odd we get one unpaired and ‘E— sets of paired eigenvalues.9

The corresponding eigenvector is given by

1
Ty
1
2
1 2 .
U; = (f) r i=0,1,...,L-1 (54)
i
rP'l
1 L i J
1
where (f) is the constant necessary to make the Ui of unit norm. This orthonormality of

U; for i =0,1,...,L-1 is shown in Appendix A. The eigenvector U; forms the i+l column of
the matrix U (which is unitary because of the orthonormality of the vectors Ui) and, hence,
the inversion can be performed by Eq. 48. It is a general property of symmetric circulants
that the inverse is also a symmetric circulant. Thus, to specify [(zi,zj)]-l, only the

first row (denote it by gi) is needed. Note from the definition of r, (see Eq. 51) the

K

properties

9The authors would like to acknowledge their indebtedness to Dr. F. M. Waltz of the Cooley
Electronics Laboratory for much helpful information concerning symmetric circulants and
the example appearing at the end of this section.
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If we define the vector n whose components are defined by ny = L , 1=0,1, ...,L-1, then
71

gi can be expressed by

' g (59)

-1
Thus, Eq. 58 gives the explicit calculations for the first row of [(Zi’zj)] and its

circulant structure gives the rest. It can be shown that the general i, j element of this

inverse is given by the equation

N L-1 L1 ok
- 1 k J-1
)7 = = 0
Gy, = 1 ), = (60
k=0

It is estimated that by using the above method for finding [(zi,zj)] at most 4L
computer storage locations are necessary where L is the number of clock pulses per period
of c(t). Comparing this with L2 locations necessary for a general inversion, we see that
the above method will permit much larger sequences to be handled. Time estimates for carry-
ing out this inverse can be determined from the fact that there are approximately BLE/M
multiplications in this process of inverting an L x L circulant. On an IBM 7090 digital
computer it takes at most 30 microseconds to perform a multiplication so that the total
time involved should be on the order of (O.9L2/4) X ]_O_LL seconds. This means that if L is
one thousand, the inversion time would be less than 25 seconds.

Before the inversion technique of Eq. 48 was developed, a computer program was written
(using a general inverse) to check the feasibility of solving the signal recovery problem
by means of Eq. 36. Several examples were checked and excellent results were consistently

obtained. One such example used a linear system with impulse response given by

t

w(t) = 0.385 e 2 -e’5t[2.59 cos 5t - 1.60 sin 5t] (61)

The pole-zero plot of this system is given in Fig. 6 below. A seven pulse (L=7) periodic

binary input was used and the vector a defining this sequence was
a = col. [1, 0, 1, 1, 1, O, O]. (62)

This vector was recovered by the transform with only a small amount of error which can be
attributed to computer round off error.

A generalization in the form of the basic function pi(t), i=12,2,..., L, is possible.
Previously they have been assumed to be mutually orthogonal (a result of their definition,

Eq. 4). However, for the existence of the transform To it is only necessary that these basis
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r = T
L-1 L-p
p
T = T
k pk
Toltk = Tk

are seen to hold where p = 0,1,2,...,L.

Eq. 54, we see that U has the form

1 1 1
1 Ty r2
1 To r)
1 T T
v o= X > °
Ji
1 ra1 0 free

r

L-3

(55)

Using these properties and the rows of U given by

(56)

-1 _ _
From the fact that U is unitary and symmetric, it follows that U = U*¥ = U where U is the

complex conjugate of U. Thus

_
1 1 1
70 70 70
10n T2
71 71 71
plee - 1L i
V1L 75 75 75

1 Tr 10

_7L-l 7L_1 7L-l

)

71-1_

-1
where T, is the complex conjugate of rp. Finally then gi, the first row of[(Zi,Zj)] =

k
-1 R
ur "u*, is given by

-1 -1 i L-

1 S
g- ) L) 2
i0 " 4=0 't i=

[u}

o
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Fig. 6. Pole-zero plot for linear system of Eq. 2.50.

functions be linearly independent since that (plus an assumption on the linear system, see
Section 2.2) is sufficient to assure the linear independence of the functions zi(t),
i=1,2,...,L. If, in addition to linear independence, the pi(t)'s retain the shift properties

of Eq. 42, the matrix [(zi,zj)] will have the highly desirable circulant structure.

2.5 Performance of the Inverse Filter in the Presence of Noise

When v = O in Fig. 1, so that a noise-free version of y(t) is observable, the mapping
To(y) results in a complete recovery of the coefficients a of the input signal and, thus, an
exact recovery of a delayed version of the input c(t). On the other hand, when only ; = y+v
is available,the resulting E = To(g) will have an error associated with it. In general, the
noise v will not be in O (the space spanned by the z;(t), i = 1,2,...,L) so that y will not
lie in Op.

When the transform T, is applied directly to ¥, the vector of inner products (the right-

most vector of Eq. 36) effectively carries out an orthogonal projection of'§ onto Op. Any

component of ; in OéL, the orthogonal complement to Op, is eliminated by this projection.lo

1014 is sufficient for the existence of these orthogonal spaces that Op be contained in a
complete normed linear inner product space (i.e., a Hilbert space) containing all functions
V.
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e~ L
Thus, if y =y + vy + Vo where y + vy € Op and v, € Op we get

122

z=y+v (63)

where & = T (¥). The portion of the noise which is in Oy, i.e., V1, cannot be removed using
linear operators since there is no way to distinguish it from the signals. The above idea of
the orthogonal projection of ¥ onto Op is displayed in Fig. 7 in which y is the true signal,

J- .

¥ is the noisy signal and the noise v is broken up into components vy € Op and vp € Op

OL
p

Fig. 7. Representation of the output space O0,, its orthogonal
complement D’ and the various signal and noise vectors.

Here E'E is the signal recovered by using E = To(?) and 1s seen to be in error by an amount
equal to the noise component in Op‘ It can be shown that Ty has the effect of choosing ]

to minimize H§ - E E”: a result which coincides with the intuitive idea of orthogonal projec-
tions.

It is desirable to have a measure of the amount of noise corrupting the recovery of a
signal coefficient ayx. This can be studied in terms of a signal to noise ratio in the kth
"channel" of the transform T, (i.e., the part of T, which recovers the coefficient a;).
Recall that the functions £;, i=1,2,...,L, (see Eq. 28) are imbedded in the transform To.

That is, the vector a is given by T, as

[( Zl;Y)— F( zl,y)1
o -1 lagent |20 [V (64)
_( ZL:Y)_‘ __( IZL,y)J
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where the inner product is

T
(£y,y) = le(t) y(t) at

]

(65)
and T = Lr. The Zi(t)'s span the same L-dimensional subspace as the zi(t)'s and satisfy the

condition of Eq. 28. Let the noise v(t) be zero-mean white noise with a power spectrum of

2.

? volts®/c.p.s. (that is, the covariance of v(t) is R(T) = r® 8(7) volts®; 8(r) is the Dirac
delta function). It is now possible to find the amount of energy for the interval [0,T] in
the space spanned by the function lk(t). Note that because of the lack of orthogonality

of the lk(t), the sum over k of these component energies will exceed the total signal energy.

The component of v(t) colinear with fi(t) is

(V(t): lk(t))

66
412 )

v, (t) n(t
1

That is, the noise v(t) is split into components vi(t) colinear with f(t) and vy (t)

orthogonal to lk(t) and only the colinear component affects the kth channel. The expected

energy of this noise signal in the interval [0,T] is

T
Nig = E f vi(t)dt
O[T ’
T C’[v(s)/z (s)ds}
= E f ku /Zi(t)dt
o [ 45
T T
= 1 - \/qlk(T) k/\E {(v(7)v(s))ty(s)ds | dr
(% o
T T
1
= T T- g)ds T 6
T2,/ [’ZK( | o] o

Since the convariance R(T

1k

-s) is given by TEB(T-S), this becomes

o T
T 2
- f 2(r)ar
e S
2
r  volts - seconds. (68)
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Note that this is the expected noise energy in the kth channel at the input to the transform
TO. The noise in the kth channel at the output of the transform T, is given by the quantity

(V(t),zk(t)) so that the corresponding expected noise energy in the interval [O,T] is

T
e = F [v(t),fk(t))gdt

=
1l

Copoap

It
ffflk(T)E {V(T)V(S)}lk(s)dv ds at
[0}

o O

T

{

2
r

2 2
T lk(T)dT at

o~—u -

2
eyl at

OC§\\3+9

1l

2 2
el (69)

L

In the same manner, the signal y(t) = L a, zk(t) is broken into a component y,(t)
k=1

colinear with £ (t) and yﬁL(t) orthogonal to £ (t). The colinear portion is

(4 (£),¥(t))
¥ (t) 5 £t
el
Ak
= £,(t) volts (70)
le

which is the only part of interest to the kth channel since the orthogonal portion is
eliminated by the operation of Eq. 65. The corresponding energy in the interval [O,T]

at the input to Ty in the kth channel is

T
sy = [ v a
(0]
82 .
= —kE zf{ t)at
[ 45l
2
K
= 2 (71)
I,



At the output, the signal energy in the kth channel for the interval [O,T] is

2]
1

T

b = ] (), wen? e
0]
T

2
u/\ak at

0]

I

2
ay. T (72)

Thus, the signal to noise ratio in the kth cahnnel at both the input and the output of the

transform To is

2

Sk Sk Sok % (73)
e

Me Mmoo Nox Tl

We see that as the norm of [y increases, the signal to noise ratio becomes poorer.

To gain an understanding of how HlkH can change, consider the two-dimensional case of
Fig. 8. Note that z7 and z, span the same space, but in one case they are orthogonal, while
in the other, z, has a component colinear with z;. To satisfy Eq. 28, 17 must be orthogonal
to Z, and its inner product with 2z, must be unity. Thus as 24 and 25 become more colinear

HikH,k = 1,2, must increase to satisfy Eq. 28. Note that when z1 and z, are orthogonal

HZkH will be minimum and, in fact, szﬂ = rl ” .
12k
1
Zl A
8!
( "%

2

Fig. 8. The dependence of HlkH, k = 1,2, upon the collinearity
of z; and Zo -

To be able to evaluate the signal to noise ratio of Eq. 75 it is necessary to find

). As

H!kug. This can be expressed in terms of the eigenvalues of the matrix [(zi,zJ

before, denote the first row of the matrix [(zi,z.)]_l by the vector g} so that (see Eq. 64)

J
ﬁl(t) is given as

n(t) = g z(t) (74)
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Then, using the inner product of Eq. 31, ”/ZlH2 can be expressed as

2
N (g8 2(t), g} 2(¢))

1
T

- g [ A0 (oaeg

o
= 1 r
where él is the complex conjugate of the vector gl. When we replace these quantities by their
equivalent representations of Egs. 47 and 59, we have

2 1 toI7 T
ol = [0t T [0 T Ul U a)

= % ' I'n (76)

From the definitions of T and n it then follows that

Fl‘
1
2
1
Hllll =7 '
1
L-1
21 1
. z 71 (17)
i=o

Since the index k simply represents a shift in time, it follows that

L-1

2 2
Y T (79)

i=o0

for k = 1,2,...,L. It should be noted that the guantity on the right side of Eq. 78 is the

-1
same as the diagonal elements of the matrix [(zi,zj)] (i.e., the first element of gi, see

2
)] 7 is found we also have Hlkﬂ .

Eq. 58). Thus, once [(zi,zJ

Example:

To become acquainted with the results that can be expected, a simple example was studied
and |4, ]| was calculated for a variety of sequence length and filter parameters. For sim-
plicity, the filter was chosen to be a single pole RC network (see Fig. 9). The clocked

periodic inputs (period Lt) were chosen to be all clocked signals whose basis functions,
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pi(t), i=1,2,...,L, consist of square-topped pulses with pulse width equal to the clock
period T. Note that HlkH will not depend on the particular input chosen but rather only on

the subspace involved which, in turn, is defined by the basis functions.

T

- C z(t)
|

1l
I

T
c(t)
|

Fig. 9. The linear system for the example of Section 2.5.

For this filter and this set of basis functions, the first row of the circulant

[(Zi’zj)] is found to be given by

(1-0)(215"7H)

g = (Zl,zl) = T - RC n
(1-v7)

Rc(l-b)2 L-i i-2

4 (Zl’ 1.1 Ty LP *b ] (79)
2(1-pY)

i=2,3,...,L
-7 /RC
where b = e . The clock frequency was chosen as 1000 c.p.s. (so that T = 0.001 seconds)

and sequence lengths of from 2 to 500 pulses per period were used. The resulting values
of HlkH for RC time constants of from 0.002 to 0.024 seconds are shown in Table 1 below.
The graphs in Figs. 10 and 11 illustrate these results.

Note from Fig. 10 that ”Ik” quickly levels off, i.e., saturates, as L increases and in
fact for this example, “lk“ is constant within 0.01% when L is larger than light. Thus,
the signal to noise ratio ;E of Eq. 7% does not change with increasing L once ”lk” has
reached its saturation value ”lk”s' From Fig. 11 we see that “gk“s increases in a straight
line relation with RC over the range tested. It is likely, but not an established fact, that
this straight line can be extended to give “lkHs outside of the range tested. In any event,
an upper bound on the saturation value Hlk”s for any combination of T and RC in this example
can be obtained from the expression

-1/2
el = ™ g < [ - ero =22

_L->oo
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e

RC L=

seconds 2 L 6 8 10 100 500
0.002 158.43 1%8.38 136.98 136.88 1%6.87 136.87 1%6.87
0.004 311.61 270.46 267 .51 267.30 267.29 267 .29 267.29
0.008 620.56 537 .73 531.76 531.33 531.29 531.29 ———
0.012 930.07 805.70 796.71 796.07 796.02 796.02 ———
0.016 1239.9% 1073.95  1061.97  1061.10  1061.05  1061.0% S
0.020 1549.55 1342.05 1327.07 1326.02 1325.93 1325.92 ———
0.024 1859.6k4 1610.72 1592.68 1591.39 1591.34 1591.26 ——

Table 1. Results of example giving ”lkH for various filter parameters
and various length sequences.

The experimentally determined values of ”lkHs were consistently about 60% of the value of the
right hand side of this expression.

For the case of RC = 0.002 seconds, the term HZKH2 in the expression for §§ (see Eq. 73)
results in a contribution of approximately -43db in this signal to noise ratio.k Though this
is poor, it may not be so bad as to negate the usefulness of the transform T,. DNote that
;i also depends upon ay and r which will vary with the particular situation.

We found that by using the circulant structure of the matrix [(zi,zj)] a very efficient
computer program could be written to find the eigenvalues. When L = 500, the largest sequence

for which the example was run, a computing time of omly about 15 seconds was required on an

IBM 7090 digital computer to find the eigenvalues of the 500 x 500 matrix [(zi, zj)].

2.6. Inclusion of A Priori Knowledge About the Coefficients

Unitl now the output of the transform T, has been considered to be the solution to the
problem. When additional a priori information is available with regard to the values of the

ai's (say, that the a;'s are binary in which case the inputs c(t) no longer form a linear

i
space), this information can be included as a nonlinear filtering operation used in conjunc-
tion with the linear filtering which has been discussed. One possible method for performing
this nonlinear operation would be the following two step process. First, apply the transform
TO to the observed signal to obtain the unconstrained E vector. Second, assuming the elements
a; to be restricted to some proper subset (say 8) of R, choose a as that vector with elements

L
~ o 1/2
in S which minimizes some distance function such as ['Zl (ai-ai) ] / This constrained

l=

estimation problem has been discussed by Rice (Ref. 9). Other types of nonlinear operations

could be devised depending upon the a priori information available concerning the ai's.
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1800 —
RC = 24 m.s.
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RC = 20 m.s.
1 —
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L

Fig. 10. Results of example showing ”Zk” vs. L for various filter parameters.
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Fig. 1l. Results of example showing saturation value I|zk|Is vs. filter parameters,
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3. RECOVERY OF APERIODIC CLOCKED SIGNALS WITH KNOWN FILTERS

When the input clocked signal c(t) is not periodic the signal recovery technique de-
scribed in Section 2 breaks down. Recall that the transform To(see Eq. 36) for the periodic
case requires the output for a full period of the input signal before the transform can be
carried out. Clearly this is impossible for an aperiodic input. There are also situations
where c(t) is periodic but the period of c(t) is so long that the techniques described in
Section 2 are not practical. One is forced to work with pieces of y(t) that do not contain
a complete period of c(t). In any case, it is desirable to be able to handle the problem
stated in Section 1 for clocked input signals without useful periodic structure. This section
considers a method for the recovery of these aperiodic signals from both noise-free and noisy
observations of the output when the filter is known (see Fig. 1). A transform somewhat like
TO is developed for this purpose.

Another approach to this problem which was studied, but which will not be developed
here, is to use Wiener-Kalman filtering theory (Ref. lO) to estimate the initial conditions
at some time t,. Once the initial conditions are known and their effect removed, transform
very similar to T, of Section 2 can be used to recover c(t) for t > to. This method was
found to be inferior to the result of the method this section discussed because it is a two-
step process: first, estimating, and second, applying a transform. The method in this section
on the other hand, is just a one step process of applying a transform. No noticable simpli-
fication in applying the transform is achieved by the estimation step.

At this point, it should be suggested that an approximate solution to this problem for
some situations could be obtained by simply applying the transform TO of Section 2 to a segment
of the output of length Lt seconds. This solution ignores the initial conditions and assumeg
that the output is periodic with period Lr. Assuming that the impulse response will decay
rapidly enough relative damaging effect of incorrect initial conditions will only be impor-
tant in the first part of the Lt time interval. Then if the basis functions qi(t) are of a
pulse type (such as in Fig. 3a), the approximation of the coefficients, the aj's, will be
better toward the end of the Lt time interval than at its beginning. Except for the first

few clock periods, this approximation would be expected to be rather good.
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5.1 Problem Representation and Notation

Consider a section of a clocked signal c(t) that is L clock pulses long starting at time

ty. Any such section of c(t) can be written as
L
c(t) = Z a; 9;(t) ty <t <ty + Lr (81)
i=1

Now, referring to Eq. 8, define two row vectors a'(t-t,) and B'(t-t,) as

g'(t-to) = h'@(t-to) (82)

and

B (t-tg) = [By(t-t ), -0, Br{t-t,)]

where

t

Bj(t—to) = f h' ¢(t-s)b qj(s)ds jg=1,2,...,L .
to

Then, using Eq. 81 in Eq. 8, interchanging the order of integration and summation, and by

using the definitions of Eq. 82, y(t) can be represented by

L

y(t) = a' (b=t )x, + Z as8;(t-t,) (83)

J=1
for t, < t <t, + Lr. Again defining the vector a = col. [al, a2,...,aL], Eq. 83 can finally

be written as
y(t) = a'(t-tg)xy + B (t-ty)a t, <t < b+ L (8k4)

Note that if the system is observable (Ref. 11), the elements of the vector g(t—to) are
linearly indpendent. This can be seen from Eq. 84 by letting a be zero (i.e., the input
c(t) is zero over this time interval). The system is observable, if and only if, there is
no nonzero X, such that o'(t-ty)x, = 0 in [t, to * Lt). This is precisely the condition
required to ensure that the elements of g(t-to) are linearly independent. Observability
will not be assumed for the system since, as will be discussed later, linear independence of
the element of gxt—to) is not necessary for the recovery of a.

We will now establish the linear independence of the elements of the vector E(t'to)
by using a result of Appendix B. Referring to Eq. 8&, let the initial conditions X, be

zero and consider only the forced response.
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y(t) = g'(t-t,)a (85)

The elements of B(t—to) are linearly independent if there is no nonzero a such that
y(t) =0 in [to,to + Lr). We show in Appendix B that a necessary and sufficient condition
for an input to give a zero output over this interval is that the input c(t) must be given
by the control law

h'M z(t)

e(t) = - :T (86)

where E(t) is the state of the system and the other quantities are defined in Appendix B.

From the control law of Eq. 86, we see the additional condition that x, = x(t_) = O implies

o)

that c(to) = 0. Substituting this control law into the system representation (Eq. 1 of

Appendix B), we see that the system behaves like the unforced linear system

x(t) (87)

Because of the zero initial conditions, the state E(t) will remain at zero and the control
c(t) remains at zero. Thus, y(t) =0 in [t,,t  + Lt), when x, = O, implies that c(t) =0

in this interval which, in turn, implies a = O. This establishes the linear independence of
the elements of E'(t-to).

It is important that the subspace spanned by the elements of g(t-to) be disjoint from
the subspace spanned by the element of E(t-to). In general it turns out that these two
subspaces are not disjoint. A more complete discussion of this appears in the next section.

With a known filter and a given set of basis functions {qj(t)} for the sequence c(t),
the vectors @'(t-t,) and B'(t-t ) in Eq. 84 can be evaluated. Therefore, since we observe
y(t), the only unknowns in Eq. 84 are the vectors %, and a . The solution of Eq. 84 for

%, and a by means of a transform method similar to that of Section 2.3 is discussed below.

3.2 Solution Using Transforms

When y(t) is available for observation without additive noise, the solution of Eq. 8k
for x, and a is straightforward using a transform similar to Eq. 36. Rewrite Eq. 84 to give

y(t) as the scalar product of two n + L dimensional vectors, that is

y(t) = 7' (b=t )w  t, St <ty + L7 (88)

33



where

y(t-tg) = col. [alt-ty),8(t-ty)]

w = col. [x,,a] .

Note that the function 7;(t-tg), i = 1,2,..., n + L (vhere 7;(t-t,) is the ith element of

the vector, y (t—to)) span the output space for t € [t_, t5 + It). It is now possible to

0’

define a transform ToL on this output space to recover the vector w. This transform is

formed by taking the inner product of both sides of Eq. 88 with 7i(t-to) for all i=1,2,...,

n + L, and then multiplying both sides of this set of equations by the matrix [(71;73)]_

-1
(defined in a manner analogous to [(zj,z:)] = of Section 2.3). Thus, T,q is given by

dJ
[ (3,71) W
(v,7,)
w = (r(0) = Ly, (89)
IR

where now the inner product (f,g) is given by

t o+ Lr
0

(o) = [ moeoa (0)

%

Note that the transform T ; operating on y(t) gives the vector of coefficients w (consisting

of a and X ). This is precisely the vector necessary to expand y(t) for t e [t

=0 or To L)

in terms of af(t-t,) and g'(t-t,) as in Eq. 8L4. Only the vector a is required for recovering
the clocked function c(t), and X is really unnecessary. It is seen from Eq. 99 that by con-

. . -1
sidering only the last L rows of [(71,73)] we could obtain a and not x_.

An inverse transform TIL can be defined as was done in Section 2 which will operate

on ¥ to reproduce the input c(t) in the interval [t

or Bo * Lt). This is simply the result

of Eq. 81, that is

e(t) = TIL () = a' a(t) (1)

where q(t) = col.[ql(t),...,qL(t)].
A few words must be said about the existence of the transformation ToL' Let X denote

the space of all initial conditions L9 and let D denote the space of all clocked inputs
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for t e [tg,t, + Lr) written in the form of Eq. 81. It is then possible to consider the
linear system as a mapping Gp, of the input product space Ip = X @D onto the space Op of all
outputs in the interval [t,, t, + Lr). That is, the output y(t) for t e [t,, t, + LT) can

be given by

y(t) = ez, c(t))

il

(-t )w . (92)

Thus, the question of the existence of the operator TOL (i.e., the existence of the inverse
[71,7j)]'l) reduces itself to the equivalent question of whether or not GL is invertible.
Note that an equivalent condition to GL being invertible is that the elements of Zﬁt-to)
are linearly independent. Appendix B shows that, in general, Gy, is not invertible (i.e.,
that it has a nontrivial null space). However, GL can be made invertible over a suitably
restricted class of allowable inputs. To illustrate what this restriction must be let N
denote the null space of Gy, and let S be the subspace of Ip consisting of the class of

allowable inputs. If S and N are disjointll then the operator GL giving the output y(t) as

Gr(£(to,t)) = y(t) (where f(ty,t) denotes the ordered pair (x5, c(t)) € 8) is invertible so
that the operator T 7 does exist. If, however, S and N are not disjoint, there exist elements
£1(ty,t) and fo(ty,t) in 8 so that fl(to,t) - fg(to,t) € N and we can never distinguish be-
tween f,(t,,t) and f,(ty,t) since they are mapped into the same point in Oy by Gp. Thus, the
condition for invertibility of GL (hence, the condition for the existence of TOL) is that the
subspace of allowable inputs S cX@®D be disjoint from the null space N CX@®D of the trans-
formation GL'

In the particular situation considered here, a nontrivial null space N can arise only if
the subspace A spanned by the elements of g(t—to) is not disjoint from the subspace B spanned
by the elements of Q(t—to). That is, assuming observability, this is the only way in which
the elements of Z(t'to) can be linearly dependent. This follows from the previously es-
tablished fact that both the elements of g&t—to) and the elements of E(t-to) are linearly
independent.

It should be mentioned that if the system is not observeble (i.e., the elements of
g(t—to) are not linearly independent);but if the subspaces A and B are disjoint, the input
vector a can still be recovered, even though the initial condition vector x, cannot. In

this case, the matrix [(71,73)] will be singular but the pseudo inverse (Ref. 12) can still

llNote that two disjoint linear subspaces have the zero element in common, that is, S and

N are disjoint, if and only if, S N N = (0}.
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be used. This will provide a vector w whose %, part will be the one of minimum norm of all
those vectors yielding the same g'(t'to)io product. Because of the disjointness of A and B
and the linear independence of the elements of E(t-to), the resulting a vector will be
correct.

Assuming that A and B are disjoint, a comment should be made concerning the degree of
"closeness" of A and B. In the ideal case in which there is no noise present, this is of no
concern; but with any noise present at all (whether from a noisy signal or round off error),
this can be important. Note that the signal y(t) is represented by two vectors: Xy determin-
ing an element of A which is the projection of y(t) onto A along B, and the vector a determin-
ing the projection of y(t) onto B along A. When operating upon the noisy signal ;(t), the
projections do not give vectors x, and a representing the time signal y(t). That these

resulting errors become worse, relative to the time vectors as the subspace A and B get close,

is demonstrated in Fig. 12. Here we consider two dimensional Euclidean space (the time

- A

Fig. 12. Comparison of the effect of noise in close subspaces
(e.g., A' and B') to subspaces not close (e.g., A and B).

dependence being suppressed) where the subspaces A and A' are spanned by o and Q' respectively,
and the subspaces B and B' are spanned by B and B', respectively. Note that & and B are
orthogonal while Q' and B' have colinear components, thus, A' and B' are considered closer
than A and B (a more general measure of closeness will be defined later). Iet y be the
signal and v be the corrupting additive noise.

In the situation considered in this figure, the error in the initial condition xg is

not affected by the closeness of A and B. However, considering the vector a, we see that
~, ~

ET > % . Thus, the noise resulted in a larger relative error when the two subspaces were
a

close.
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It is now necessary to consider a more general measure of closeness. The subspaces A

and B can be considered to be close if the quantity supremum (h;,h,) is almost unity, where
hjeAh-€B

the inner product is given by Eg. 90 and where h; and hs have unit norm. The subspaces A

and B are not close if this quantity is small compared to unity. Note that this measure

is a generalization of the idea that as A and B became more colinear, they get close.

From the above discussion, we see that in a noisy situation it is desirable that the
subspaces A and B are not close., Note that the elements of A consist of decaying exponentials
starting at time to. However, most of the clocked signals of which one thinks are highly
discontinuous signals like sequences of impulses and sequences of finite length square pulses

which do not give elements of B that "look like" exponentials starting at time to. Thus,

with these inputs it is unlikely that ﬁuprgmum (hl,h2) will be close to unity.
1€Aho€

It is useful to consider some properties of the null space N of the transformation Gr.
Two properties of N, established in Appendix B, are: (1) if the state of the system, x(t),
has dimension n, then N has dimension n - 1, and (2) a necessary condition for an input to
be in N is that c(t) have an arbitrary number of derivatives in the interval [tg, to + LT).
From the second property, it would appear that any discontinuous c(t) would give an input not
in N. However, since discontinuous functions can be approximated closely by continuous func-
tions, it is not safe to say in any practical situation that if a c(t) "looks" discontinuous
the input is not in N, It is again more meaningful to talk about the closeness of €he sub-
spaces A and B. The following question concerning the null space remains open: Can N con-
tain any inputs which are clocked signals of the form of Eq. 81, that is, can the c(t) given
by Eg. 85 ever be a clocked signal?

In general, the matrix [(y1,73)] of Eg. 89 lacks the symmetric circulant structure dis-
cussed in Section 2.4 for the analogous matrix [(zi,zj)]. Thus, it is not possible to use
the simplified inversion procedure of Section 2.4, Rather, a standard procedure must be used.
This presents no real problem, however, since we have the freedom of choosing an L small

enough to keep the computation of this inverse within reason.

Note that this transform procedure can also be considered as an inverse filter in the
generalized sense discussed before. That is, ToL operating on y(t) gives the vector w which
defines the input c(t)(by means of Til).

In applying this transform technique for the case of aperiodic inputs, the user has a
certain amount of flexibility in his approach. When considering the first Lt time interval

of interest, the transform T,r, must be applied directly to find both the initial conditions

X, and the input vector a. However, when considering the second Lt time interval and all
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the succeeding intervals, either the transform T r can again be used or the knowledge gained
from the past interval can be used to construct the initial conditions for the next interval.
To be more specific about this alternative procedure, let t, denote the beginning of the first
Lt time interval so that t; = t4 + iLt, i = 0,1,2,..., is the beginning of the i + 1 st time
interval. Now, to recover c(t) for the i + 1 st time interval we use the initial conditions,
Eo,i’ and the a vector for the ith interval (which were found previously) to comstruct the
initial condition X5, 1412 for the i + 1 st interval. The effect of these initial conditions,
X, 141, can then be subtracted from y(t) to give (see Eq. 83)

L

r(t) £ y(t)- o t-ty)x, 14q = Z a;B:(t-t;) (93)
- =0,1i+1 J7J 1

J=1
The problem now reduces to recovering the a;'s from r(t) where the Bj's are given (see Eq. 82).
Note the functions Bj(t—ti),j = 1,2,...,L, span the space of all r(t) for t; <t < t;4 SO
using this finite spanning set a transform operating on r(t) can be defined in the same manner
as TO of Eq. 36 to give the vector a. In defining this transform replace zj(t) of Eq. 36 by
Bj(t-ti) and the inner product to be used is like that of Eq. 31 but with the integration
taken over the interval [ti,ti+l]. Note that, this method of updating the initial condition
has the undesirable effect of allowing errors to accumulate and it is expected that applying

the transform T,y directly to each time interval will give more dependable results, espe-

cially if there is an appreciable amount of noise present.

5.5 Performance in the Presence of Noise

Suppose that only a noisy version of the output y(t) = y(t) + v(t) (see Fig. 1) is
available for observation. In general, the noise v(t) will have a component which lies in
output space spanned by the functions 7i(t—to),i = 1,2,...,n + L, so that applying T.f,
directly to ¥(t) will result in a vector w which is in error. Following the same argument
as that of Section 2.5, if the transform ToL is applied to the noisy signal ;(t), all noise
orthogonal to the output space is removed. Thus, again, an estimate of the input is obtained
by projecting ;(t) orthogonally onto the output space and finding the vector input w which
would result in this projected output.

The underlying ideas of Section 2.5 concerning signal-to-noise ratios could be carried
over to study an analogous concept here. However, compared to Section 2.5, the calculations
involving HlkH would be complicated by the lack of circulant structure in the matrix

((ry, 7501
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The comments of Section 2.6 concerning procedure when given a priori information about
the vector a apply directly to this case.

3.4 Approximate Transform Using Sampling

To simplify the computation involved in applying the transform Tor, @ method which uses
sampling to approximate ToL can often be used. This is carried out in the following manner.
Sample y(t) at the set of times [t;} where t; € (to,to + Lr) for i = 1,2,...,m>n + L. The

m equations formed in this way can be put in the matrix form
y=Huw (9k)
where w is defined as in Eq. 88 and where:

¥ = col.ly(ty),5(t0), . ,5(t,)]

7' (t - ty)]

7' (1, - o)
H =

't - t)

L m -

Recall that l’(t—to)is a row vector with n + L elements.

It 1is necessary to establish that, whenever the transform TOL exists, the set of sampl-
ing times [ti} can be chosen in such a way that the matrix H is of maximum rank. Recall that
existence of ToL implies that the elements of the vector valued function_z(t-to) are linearly

independent, that is, whenever
a' Z(t'to) =0 (95)

for every t e [to,to + Lt) then a =0. It is sufficient to let m =n + L and show that there
does exist a set of n + L sampling times {t;} such that the n + L vectors in the set

{y (ti-to)li =1,2,...,n*L}, are linearly independent. Note that the vectors in this set are
linearly independent, if and only if, they span the n + L dimensional Euclidean space En+L.
Assume no such set of sampling times can be found. Then the values of the vector valued
functions ¥(t-t,) lie only in a proper subspace, say Q, of En+L for all t e [tg,t, + L7).
It is then possible to choose a vector r which lies in En+L and is orthogonal to Q. That
is

r'y(t - ) =0 (96)
for every t € [tg, to * Lt). However, this is contrary to the linear independence of the
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elements of Z(t'to) so that there does indeed exist a set {ti} of n + L sampling times such

that H is of maximum rank.
It should be pointed out that in practice such a set {ti] will not be difficult to find

and, in fact, a great many such sets exist. The particular method of choosing the set {ti]

will depend upon the situation but, in many cases, a suitable set can be found by picking at
least one t; in each of the L clock periods in the interval [to,to + Lr) until n + L times
t4{ have been chosen.

Note that for vectors formed by sampling, such as y above, the operation analogous to the

inner product of Eq. 90 is the scalar product

<, =18 (97)

where

I+

= col.[f(tl),f(tg),...f(tm)]
g = COl-[g(tl);g(tg))"'g(tm)]

It is evident from this definition of <f, g> that replacing the inner product (f,g) in Eq.

89 by <f, g , the analogous transform to Ty1, of Eq. 89 is ToLS given by

wo= T _(y) = (H‘H)—lH'X -H'y (98)

oLS
Here H+ is the standard pseudo inverse (Ref. 12). It is known that ot as given above exists
whenever H is of maximum rank so that the operation of Eq. 98 can be carried out whenever ToL
exists.
If the noise free signal y(t) is observed, it is sufficient to let m = n + L. The
matrix H is then square and, since the set of sampling times [ti} can be chosen such that

H is of maximum rank, it is invertible. We then obtain w directly as

w=HTy (99)

However, if only §(t)(the noisy signal) can be observed, it is desirable to introduce re-
dundancy into the sample vector i by letting m > n + L. Hence, a signal y(t), describable

by the n + L dimensional vector w, is represented along with corrupting noise in anm >n + L
dimensional space. This provides added information to aid in making a better estimate of the
true y(t), i.e., the true w. When this is done, w can be estimated by means of the pseudo-

inverse H' to get

(100)

1<
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which has the effect of projecting the m dimensional representation of 7(t) onto an n + L

dimensional space. This is an orthogonal projection so that all the noise outside the n + L
dimensional space spanned by the vectors H w (for all E) is removed, the only component left
being that in the space spanned by the H w's. Note that because of the orthogonal nature of

12

the projection, = vt i is the vector which minimizes Hi -1 E“ over all w.

1=

If digital computation is to be used, this sampling method will most likely require
considerably fewer computations than the full transform ToL‘ This is due to the ease of
calculating the sequence inner product <f,g> compared to the integral inner product (f,g) of
Eq. 90. However, there are other methods of forming (f,g), such as by analog computation.

This same type of sampling technique could also be used in the periodic case considered
in Section 2. Note that this sampling method is actually an approximation to the transform
Ty or ToL (of Section 2.3 and 3.2, respectively) and, in noisy situations, this sampling
technique will give poorer estimates than the original transform TO or ToL'
To see that the result using sampling is poorer when noise is present, compare the two

methods in the following way (done here for the periodic cases TO and TOS)‘ Recall that

using the transform To the coefficient aj is obtained by the expression (see Section 2.2)

a; = (y(8), £;(8)) (101)

In a similar manner, the sampled transform T,g gives a; by the expression
a; = (8y(t), L) (102)
where § is a sampling operator and the L; are vectors such that

(s zj(t), Ly) = Sij (the Kronecker delta)

for i,j = 1,2,..., L. Using the adjoint operator of S, Eq. 102 can be expressed as
a; = (y(t),8% Ly) = (y(%), £;(¢) + 21,4(%)) (103)

where li(t) is the component of S* L;i in the subspace Op spanned by the functions
z;(t), i = 1,2,...,L, and Ifl(t) is the component in the orthogonal complement of this sub-

space. Note that the zi(t) of Eq. 103 are identical to the zi(t) of Eq. 101. Also note

12The norm “E” of a vector x is defined as
m 1/2

sl < )
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that, in general, liL(t) is not zero for if it were then S¥ L; e Op. However this would,
in turn, imply that there was no function ZL(t) in Ot (the orthogonal complement of Op)

such that

(5 £(t), L) 40 (104)

and, indeed, such a iL(t) can be found. This is done simply by picking its values at the
sampling times such that Eq. 104 holds (an easy way to do this is to let é‘(t) = z,(t) at
these sampling instants) and then constructing ZL(t) between these sampling instants such
that iL(t) é Op. Now consider the result when these two operators are applied to a noisy
signal J(t) = y(t) + v(t) where y(t) is in Op and where v(t) has a component v1(t) in Op

L ~
and another component v2(t) in O Using T, we get an approximation aj of the true a, as

D

o2
1}

1 (¥(t), £;(¢))

1l

(y(£),23(%)) + (vi(t),2;(%))

a; + (v(t),25(¢)) (105)

The resulting approximation gi when using T g is

a>
1}

L= (5e),0508) + 2k ()

]

(56, £3(£)) + (v (), 2,(¢))

(v,(8), £(5))

1

+

ag + (vi(),5(8)) + (vy(t), £.1(x)) (106)

A
Thus, we see that the result, aj, using T g has an additional term corrupting the true ay

so that ;i is a better approximation.
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4. PERIODIC CLOCKED SIGNALS INTO UNKNOWN FILTERS

Another aspect of the basic problem outlined in Section 1.1 involves the determination
of a description of the linear system itself from a priori information about the input and
observation of the output. To date this problem has not received a great deal of attention.
However, preliminary results presented below suggest one possible approach to this problem
when the input clocked signal is known to be periodic. The procedure developed is based on
determination of the squared modulus of the transfer function of the unknown system from
power spectra of the input and output signals. The inverse filter developed in Section 2 is
then used to find the actual transfer function corresponding to the squared modulus function.

Referring to Fig. 1, let ®.(w) be the power spectrum of the periodic input signal, c(+t)
(with period T), and let Qy(m) be the power spectrum of the noise-free output, y(t). That

is, ¢C(w) and ¢ (w) are line spectra whose amplitudes at the discrete frequencies n fy =

y T
n =0, *1, *2,..., represent the power in the signals c(t) and y(t), respectively, at those
frequencies. The square of the modulus of the system transfer function W(s) is then given

by (Ref.lB)B

[W(jow) |~ = ERE) (107)

For a binary clocked periodic signal the spectrum envelope is independent of the par-
ticular input signal and determined entirely by the basic waveform, b(t), and the clock period
T, (see Egs. 2 and 4). For example, if c(t) is a periodic binary sequence made up of positive
and negative square pulses (i.e., if b(t) is a unit pulse) with clock period T, then it is
easily shown (Ref. 14) that the envelope of ¢,(w) is

sin(%L) 2

Envelope EDC(a)ZI =K (108)

(%)

where K is a constant depending on pulse amplitude. Moreover, if T is not known a priori, it

can be obtained from observation of y(t) using some of the techniques suggested in Ref. 14,

1
5Note that Eq. 107 holds regardless of whether the input is perodic or not, however, the
following discussion concerning @C(m) depends upon the periodicity of c(t).
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The output power spectrum (or its envelope) can, at least in principle, be obtained
from the observation of y(t). Methods for doing this are discussed in Ref. 15. If only
¥ = y + v is observable and v is white noise, then @;(w) is simply ®y(w) plus a constant
In practice, techniques for the recovery of Qy(w) from observations on ; will depend on the
signal-to-noise ratios encountered.

Assuming that ¢, and @, have been obtained, the squared modulus of the system transfer

y

function W(s) can be obtained from Eg. 107 (up to an unknown multiplicative constant). If

it is assumed that the transfer function is a realizable physical network,then the poles of
W(s) corresponding to the known lW(jw)l2 are uniquely defined in the left half plane.
However, there still remains an unresolvable ambiguity in the location of zeros of W(s). This
ambiguous W(s) can be represented as a minimum phase version Wm(s) plus an unknown all-pass
section (see Fig. 13). This is seen to be simply an ambiguity in the sign of the real part
of the zeros of W(s). To completely determine the transfer function W(s), it is necessary
to remove the ambiguity in zero locations, that is, to remove the "all-pass ambiguity" noted
above.

This all-pass ambiguity can possibly be removed in the following way. If c(t) is a
periodic clocked signal with period T = Lr and known basic waveform, b(t), then for each
possible combination of Wm(s) with all-pass sections, as suggested in Fig. 13, there will be

only one inverse filter in the sense of Section 2.3. If, in addition we know a priori thee

o d X do do
—% + = ——x¢
-c -b -a - b -Cc -a b
o -d -do -d o
Wm(s) Wl(s) Wz(s)

Fig. 13. Relation between a minimum phase, Wm(s); an all-pass, Wl(s);

and a nonminimum phase filter, W(s).
the set containing the coefficients, a; i=1,2,...,L (recall c(t) = a'p(t), Eq. 33), one might
hope to select the (hopefully unique) inverse filter which produces an output of ai's in the
given set. The combination of Wp(s) and all-pass sections corresponding to this inverse
filter would then be selected as the proper transfer function W(s). This approach would be
of value if the following conjecture could be proved for the set of coefficients in a par-
ticular situation:

The set of coefficients produced by the inverse filter
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a = T(y(t)) (see Eq. 36) will lie in the correct co-
efficient set only if the inverse filter TO corresponds
to the actual filter W(s) used in producing y(t).

To date, attempts to prove, disprove, or obtain more general or specific true versions
of this conjecture for particular coefficient sets have failed. However, in a sample problem
involving a binary clocked signal and a relatively simple filter, this conjecture has always
been found to hold true. The filter and input signals used were those described earlier
in the example of Section 2. In all cases, regardless of whether the minimum-phase filter
or one of its nonminimum-phase variations was used as the true filter, the above method did
pick out the correct filter and recover the sequence. Figure lh, shows the pole zero plot
for the minimum-phase filter Wl(s) and its possible nonminimum phase variations Wg(s) and

WB(S), Table 2 gives the computer output for the three inverse filters corresponding to

Wl(s), Wg(s), and Wz(s) where Wg(s) was used as the true filter. From this, it is seen that

the output of We'l(s) (the inverse filter in the sense of Section 2.3 for Wg(s)) is much more
-1 -

nearly binary than that of Wy (s) or W l(s). Note that this use of the information about

the coefficients is really a form of nonlinear filtering.

X 5 x 5 X 5
° 20 ol 2

%3 91 T3 oy 1 3.9~ y
o |-2 S o |-2
X -5 X -5 X -5
Wl(s) W2(S) W3(s)

Fig. 14. Minimum phase filter Wl(s) and possible nonminimum phase variations.

b5



Inverse Filter Outputs

True True

Sequence Wy M (s) W, (s)Filter Wy ()
1 1.279709 x 107+ 9.999999 x 1071 1.4%6202 x 10°
0 -3.062445 x 1071 1.564622 x 1077 -1.122676 x 1071
1 -7.172019 x 107° 9.999998 x 107 1.356072 x 10°
1 £.088381 x 1072 1.000000 x 10° 1.288630 x 10°
1 1.914498 x 107+ 9.999998 x 107t 1.493220 x 10°
0 -8.180243 x 107° 8.940697 x 10'8 2.083545 x 107°
0 3517730 x 107* -2.980252 x 1070 2.621020 x 107

Table 2. Comparisin of inverse filter outputs with the true
sequence where W2 (s) corresponds to the true filter.
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5. CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

It was shown in Section 2 of this report that when a known linear system is driven, by
a periodic clocked signal (as given by Eq. 3), this input signal can be recovered by observa-
tion of the output. A transform, or "inverse filter," T (y(t)) (see Eq. 36) was developed to
perform this task. It was shown that To exists provided the system transfer function has no
zeros on the jw axis. This transform can be constructed in the form of a computer program
and the length of period (in terms of clock pulses per period) that can be handled depends upon
the size of available computing equipment. To apply T,, it is necessary to compute the inverse
of a particular matrix, a problem greatly simplified by the symmetric circulant structure of
this matrix. It was found that using this structure, a 500 x 500 matrix, could be inverted
in less than 25 seconds. Much of the effectiveness of this transform method comes from the
fact that the transform is not carried out in real time. The method is restricted to cases in
which the output (or a noisy version of the output) can be observed over an entire period of
the input signal.

If the linear system output can be observed without appreciable additive noige, the trans-
form can be applied directly provided the sequence length is short enough for the available
computing equipment. When there is additive noise in the observation, the transform can
still be applied to give an estimate of the true input.

The problem of recovering a clocked input signal to a known linear system when the signal
is aperiodic is considered in-Section 3. The method developed for accomplishing this is an
extension to aperiodic signals of the transform technique which was developed in Section 2
for periodic signals. This new transform, TOL(y(t)) (see Eq. 89), recovers a segment of the
clocked input signallllL from observation of a segment of the output. The existence of ToL
depends upon the inputs satisfying certain necessary and sufficient conditions. As with the
transform of Section 2, T ; does not operate in real time and can be constructed in the form
of a computer program. When the system output is observed without noise, the transform is

applied directly to recover the input. When noise is present, the result obtained by applying

L .
1 For a description of such an input segment see Eq. 1.

b7



ToL removes all noise orthogonal to the linear space containing the output to give an estimate
of the true input. This transform (and that of Section 2) can be approximated by using a
sampling technique.

In Section 4 of this report, it was noted that the square of the modulus of the transfer
function of an unknown linear system driven by a clocked signal can be determined, if the
power spectrum of the input sequence is known or can be found from knowledge of the input,
and if the power spectrum of the linear system output can be measured. Assuming the system
to be realizable, the square of the modulus of its transfer function determines the poles
and zeros of the system except for a sign ambiguity in the real part of the zeros. There
is evidence to indicate that in some cases the correct zeros can be found by an application

of the inverse filter of Section 2.

5.2 Recommendations

Recall that, in the periodic case, having a large number of clock periods per signal
period does not present any actual problem. That is, if L is so large that using T, is
unreasonable, the period can be broken into segments and ToL applied to each segment. Thus,
in practical situations, signal recovery can be carried out using the transforms T, and ToL
(given by Egs. 36 and 89, respectively) providing noise doesn't render the estimates of the
input unacceptable. The authors suggest a more thorough study of the effects of noise to
determine relationships between the noise level and the quality of the estimates resulting
from T, and TOL'

The method discussed in Section 4 for the determination of an unknown filter from cer-
tain information about the input and observation of the output requires further investigation
in two areas. The feasibility of finding the power spectrum of the system output should be
studied as well as particular methods for doing this. It is also necessary to verify the
validity of the suggested method of finding the correct zeros of the system.

Finally, another suggestion for future work is the additional development of nonlinear
filtering methods to include a priori information about the allowable values of the coef-
ficients aj. In the present paper, this idea was simply introduced and only a minimum of

investigation has been conducted on this topic.
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APPENDIX A

PROOF OF THE ORTHONORMALITY OF THE VECTORS Uy

To show the eigenvectors of Eq. 54 to be orthonormal, it is sufficient to show

1l for i =k
Ug* Ux =
O for i # k i, k = 1,2,...,L (A.1)

where U;* denotes the complex conjugate transpose of the vector U;. From Eq. 51 1t is seen

that
2nkj
L

T, = e k=0,1,2,...,L-1 (A.2)

(where J =~ -1) and putting this in Eq. 54 gives

on(k-1)J b(k-1) 3 2(L-1)n(k-1)j
te O + ... +e L (A.3)

for i,k = 1,2,...,L.
For the case when i = k, each term in the brackets on the right side of Eq. A.3 is unity,

and then,
*
U U =1 k=1,2,...,L (A.L)

For 1 % k, let p =k - i and Eq. A.3 becomes the geometric progression

2npJ 2ng 2 2}223 L-1
L
Ui* Uy = I 1+ |e .> + | e + ...+ | e (A.5)
The sum of this finite term geometric progression is known so that Eq. A.5 becomes
2npj\ L
-
e 7 -1
(;anj L (n.6)
L
).

Since p is a nonzero integer, the numerator of Eq. A .6 becomes

—

P _ 1 - o . (A.7)

Equations A.4t and A.7 show Eq. A.1l to hold and hence, the eigenvectors are orthonormal.
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APPENDIX B

DEVELOPMENT OF THE NONTRIVIAL NULL SPACE OF THE MAPPING Gy,

Consider the linear time-independent system described by the equation

#(t) = Mx(t) + b c(t)

y(t) h' x(t) (B.1)

as a mapping GL from the input space onto the output space. For the aperiodic case of
Section 3, to which this applies, the input space is the direct sum of the space of initial
conditions and the space of all clocked inputs c(t) in the interval [o,LT) which are repre-
sented by Eq. 1. The output space consists of all system outputs on the interval [0,L7).
The existence of the nontrivial null space N of GL is to be shown first and then some of the
properties of N will be discussed in greater detail.

For a system modeled by Eq. B.1l, the output for t ¢ [0, Lr) is given by

y(t) =n' [eMtzo + \/neM(t~T)g e(r)ar] (B.2)

1}
(®]

(s c(t))

Recall that w is the vector consisting of the initial condition and the input coefficient

%5
vector a. To show that GL is not invertible (i.e., that it has a nontrivial null space) it

1s sufficient to show the existence of a nonzero input W such that y(t) =0 for t € [0,L7).

1]

Necessary and sufficient conditions for y(t) = 0 in [ O,Lr) are that y(t) = 0 in [0,Lr) and

that

v(0) = n'x, = 0 (B.3)

From Eq. B.1 these conditions are seen to imply that

Il
o

¥(t) = h'[Mx(t) + Db c(t)] = (B.k4)

for t e [0,Lr) which, in turn, gives the control law required to establish this identity.

That is, if Eq. B.3 is satisfied and if the input c(t) is given as

c(t) = - Ei—y—égfz (B.5)
h'b
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then y(t) = 0 for all t € [0,L;). Note that with this form of input the system behaves like

the unforced linear system

x(t) = M-|== x(t) (B.6)

If the initial condition Xy = E(O) = 0, the state of the unforced linear system remains at
zero, i.e., x(t) = 0 for t > 0. Under this condition c¢(t) = O for t > 0 so that w = O and
this 1s simply the trivial null space of Gy. However, if the initial condition Xy = gﬂo) % 0
if follows that x(t) # O for t > O so that, assuming observability [Ref. 11], c(t) # O for
t > 0. In this case, assuming c(t) can be expressed as a clocked signal (such as in Eq. l),
v # 0 and the existence of a nontrivial null space of Gp, has been established. This is also
seen to be the only null space of GL since the conditions of Eqs. B.3 and B.4 are both neces-
sary and sufficient. As a side comment, it should be noted that if the system is completely
observable and if c(t) = O on [0,Lr) then whenever Xy # 0, there does exist some tle(O,Iﬁ)
such that y(tl) £ 0.
Now, consider some of the properties of the null space N of the operator GL. We want
to show that if the system state vector x has dimension n, the dimension of N is n - 1.
Note that for every initial condition zo satisfying Eq. B.3 we get an element of N from
Eq. B.5. Then, since the subspace of n-dimensional Euclidean space which is orthogonal to
h (i.e., which satisfies Eq. B.3) has dimension n - 1, N must also have dimension n - 1.
Another property of N is: a necessary condition for an input to be in N is that e(t) be
in ¢ (i.e., c(t) has an infinite number of derivatives). That c(t) must be continuous in
the interval (O)Iﬁ) follows from Eq. B.5 and the fact that E(t) must be continuous (since
it is the solution of the differential equation representing the system). The continuity
of ¢(t) in the interval (0,Lr) follows by differentiating Eq. B.5, that is

B' M A(+)
B Y

&(t) = (B.7)

Then the continuity of g(t), as seen from Eq. B.1l, establishes the continuity of &(t) and,
hence, the existence of &(t) in (O,LT). This argument can be carried on for an arbitrary
number of steps, thus c(t) e ¢®. From this necessary condition, we see that when Gp operates
on a class of inputs not in Cm, the operator is invertible, i.e., the null space N is dis-

Joint from the input space.
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