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Abstract-This work discusses the dissolution of gas bubbles in liquids subjected to a sudden pressure 
surge, as well as lending insight to studies on rectified diffusion. The bubble growth rates for rectified 
diffusion under isothermal conditions as predicted in previous studies are much lower than the rate 
found experimentally. The assumption of isothermal conditions can be justified only for infinite 
thermal diffusivity. For real gas bubbles collapsing in a large body of liquid, however, the thermal 
condition lies between the isothermal and adiabatic limits. Our analysis was undertaken to establish 
diffusion conditions for a collapsing cavity under the adiabatic limit. Contrary to the case of isothermal 
collapse, where the increased pressure (and hence the surface concentration) can result only in an 
outward diffusional flux, the solubility inversion effect for gases can cause first inward and then out- 
ward diffusional flux during the same phase of adiabatic collapse. In particular, when the heat of 
solution, AH,, of the gas is less than (yB T0)/(l -y),  (where y = Cp/C~,, and B = gas constant), the dif- 
fusional flux changes direction at 

(BTo~I "~''-'' 

Even in situations where flux reversal does not occur, the net diffusionai outflux during collapse is 
less in the adiabatic case than that in the isothermal case. Further descriptions of mass transfer from a 
bubble collapsing adiabatically in a large body of liquid are presented. 

1. INTRODUCTION 

THE PROBLEM treated in this paper is that of  dif- 
fusion from bubbles collapsing non-isothermally 
in a large body of  liquid. Recent  reviews of  prob- 
lems of  a similar nature have been given by 
Bankoff[ 1] on diffusion-controlled bubble growth 
and by Flynn[2] on cavitation dynamics. The 
latter review discusses cyclic bubble motion in- 
duced by the application of  acoustic waves to the 
liquid. The process describing the net inflow of 
gas into a bubble undergoing cyclic motion is 
termed "rectified diffusion" [3, 4]. 

Previous studies [5, 6] on the growth of  bubbles 
by rectified diffusion are based on the implicit 
assumption of  isothermal conditions during 
bubble oscillation. This assumption is based 
partly on criteria developed for isothermal bubble 
collapse by Plesset and Zwick[7].  Plesset and 
Zwick obtained solutions to the field equations 
for collapsing bubbles using a perturbation 
technique and found that the bubble collapse 
would approach isothermal conditions if 

PacaR°2ra ~ 1. (1) 
PtCt~I 

In Zwick 's  analysis, an approximation using the 
binomial expansion was made to obtain the solu- 
tion, which consequently will be valid only for 
small thermal penetration thicknesses. It is diffi- 
cult to meet the criteria for isothermal collapse 
for bubbles with large radii, as demonstrated by 
Hickling[8]; for bubbles with high gas pressures 
and densities; and for high acoustic frequencies, 
as given by Plesset [9]. Hence,  bubbles collapsing 
under these latter conditions tend to approach 
adiabaticity. Fur ther  doubts about isothermal 
collapse conditions arise from numerous experi- 
mental observations, notably sono-luminescence 
and increased chemical reaction rates resulting 
from acoustic cavitation. In fact, the gas tem- 
perature in the bubble is expected to change 
during oscillation, and the thermal condition of  
the bubble should lie somewhere between iso- 
thermal and adiabatic. Only the time-average 
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temperature over a number of oscillations can be 
assumed to be relatively constant. 

This non-isothermal bubble condition, then, 
should seriously affect the concentration bound- 
ary condition at the bubble wall, and the effect of 
temperature on this equilibrium concentration 
must be incorporated in the solution in order to 
obtain a more precise analysis. To determine the 
exact temperature, an additional simultaneous 
equation, that for the heat flux, must be solved. 
Rather than undertaking this latter task in this 
paper, we shall consider the other bound on the 
diffusional process by assuming adiabatic condi- 
tions for the bubble. Since the surface concentra- 
tion increases with increasing pressure but 
decreases with increasing temperature during 
non-isothermal collapse, there are two competing 
factors which affect the surface concentration. 
This effect on the surface concentration will 
result in less mass diffusing out of the cavity dur- 
ing adiabatic collapse than during isothermal 
collapse, which should result in faster rectified 
diffusional growth rates under adiabatic collapse 
conditions. The predicted rectified diffusion 
growth rates assuming isothermal collapse are 
orders of magnitude smaller than the experimen- 
tal growth rates observed by Eller[10]. Since the 
isothermal condition places a lower bound on the 
growth rate, the purpose of this paper is to place 
an upper bound on the process by considering 
diffusion during adiabatic collapse. Along with 
this phenomena, our results apply directly to the 
dissolution of gas bubbles in liquids subjected to 
sudden pressure surges. 

2. S O L U B I L I T Y  I N V E R S I O N  E F F E C T S  

The solubility of gases in liquids is given by 
Henry's Law, which relates the surface concen- 
tration to the partial pressure of the dissolved 
gas by the equation 

C~ = HP u. (2) 

The Henry's Law constant, H, is a function of 
temperature, and is given by Hildebrand [I I] as 

r--AH, To \-1 
H = Ho exp [ - ~ - o  (-~--- 1)J. (3) 

For gas-filled cavities undergoing adiabatic col- 
lapse in which only a negligible fraction of the 
gas content is diffusing out during any one cycle, 
the gas pressure inside the bubble may be closely 
approximated by the equation 

Ro 3 T 
P# = P#°(R-) ( T o ) =  P°°(-~oo)~-3 (4) 

R 
where ~ = R--~" 

Letting C,o = HoPuo, and C* = Cs/Cso, the di- 
mensionless concentration C* can be written as 

F-AH8 oxp @-,)] (f.),,, , , ,  

For isothermal bubble collapse, C* varies in- 
versely as ~ to the third power, that is 

C* = #~-z. (6) 

This means that the equilibrium concentration, 
C*, will only increase when the bubble is com- 
pressed isothermally as shown in Fig. 1. 

For adiabatic conditions, the temperature is 
given by 

E ) -  8(3,- 1) T = To = To~ - 3 ( y - l '  (7) 

and C* varies with ~b according to the equation 

r-all, (l~3(Y--1)__ 1)] qj-3v. (8) 
C* = exp L BTo 

Differentiating with respect to 0, we obtain 

oc: r-,,-s ] 
- ~  = c *  L BTo 3(y-- 1)qJ(z:'-4)--3yqt - '  . (9) 

The radius at which the concentration reaches 
its minimum value occurs when aC*/a~=O, 
which is 

¢ = ¢~r --= \ - - - - S ~ d  J . ( l  O) 
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Fig. 1. Dimensionless surface concentration as a function of 
dimensionless bubble radius forqJcr > 1. 

It is easily shown that for typical values of y the 
second derivative of C* with respect to tO is 
always positive. Therefore, C* reaches its mini- 
mum value at tO = tO~. 

Consider the implications of C* undergoing a 
minimum value at tOe,, when tOur satisfies the 
following criteria: 

tOe, > 1 (1 1) 

tO~, = 1 (12) 

tOm~. < tOur < 1 (13) 

tOer < Om~,. (14) 

.% 
o 

In these relations, Cmi. is the dimensionless mini- 
mum radius reached during collapse. 

(A) If  to~, is greater than unity, C* will only 
increase when the bubble is compressed from its 
initial radius, R0. Under these conditions the 
surface concentration for adiabatic collapse will 
always be less than that for isothermal collapse 
at the same radius. Consequently, less gas would 
diffuse out of the bubble during adiabatic col- 

lapse than during isothermal collapse. A com- 
parison of surface concentrations for isothermal 
and adiabatic collapse in which toc,> 1 is shown 
in Fig. 1. 

(B) If  toc, is less than unity but greater than 
tomi,, the equilibrium surface concentration C* 
will initially decrease until tocr is reached as the 
bubble is compressed. Upon further compression 
below toc, the surface concentration increases. 
As shown in Fig. 2, this behavior of the equilib- 
rium concentration under adiabatic conditions is 
markedly different from that under isothermal 
conditions, where C* can only increase during 
compression and only decrease during expansion. 
This peculiar behavior under adiabatic conditions 
is easily understandable if we recall that the 
solubility of gases decreases with increasing tem- 
perature and increases with increasing pressure 
[11, 12]. Thus, there are two competing factors 
which determine the equilibrium surface concen- 
tration during adiabatic collapse of bubbles, and 
the surface concentration will behave differently 
depending on the value of tour. In this figure the 

= . ~ - -  Isothermal 

Solubility inversion effects on diffusion from collapsing bubbles 

0 I I 
0 0.5 R 1.0 I-5 

F ig .  2. D i m e n s i o n l e s s  sur face c o n c e n t r a t i o n  as a f u n c t i o n  o f  
dimensionless bubble radius for CmJ. < ~cr < 1. 
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surface concentrat ion 's  dependence on temiaera- 
ture during collapse dominates until R = 0.7 R0, 
after which the surface concentrat ion has a 
stronger dependence on the partial pressure of  
the solute gas inside the cavity. 

(C) Consider  next  the case where ~0cr is below 
the minimum radius reached during collapse. The  
minimum radius is a function of  the amount  of  
gas in the cavity at the initiation of  collapse, the 
ratio of  specific heats, and the change in the num- 
ber of  moles in this cavity during collapse. In 
Fig. 3 we observe that the surface concentrat ion 
o n l y  decreases as the bubble collapses; as a 
result, the gas diffuses into the bubble during 
collapse. F o r  the collapse of  the bubble, C* 
will only increase if ~cr I> 1, and will only de- 
crease if qJ~ < ~0m~ < 1. 

(D) The  case of  ~0~r equal to unity is of  un- 
usual interest, and the variation of  C* with 
for this case is shown in Fig. 4. In this case C* 
will only increase, whether  the bubble is com- 
pressed or expanded from its initial radius. Con- 
sequently, the bubble will only dissolve ff ~c~ = 1, 

4 

Jlo ~ i ~,~:,.o 

i , 
0 0.5 1.0 1"5 

= R / R  o 

Fig. 4. Dimensionless surface concentration as a function of 
dimensionless bubble radius for ~ = 1. ,.o[ 
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Fig. 3. Dimensionless surface concentration as a function of 

dimensionless bubble radius for qJcr < qJmJ. < I. 

regardless of  whether  the bubble is compressed 
or expanded from its initial radius. 

To  fur ther  delineate these criteria, we shall 
now consider the case of  the pure collapse of  
gas-flied cavities and determine the amount  of  
diffusion from the bubble in any one complete 
cycle. 

3. EQUATIONS OF MOTION 

We shall briefly review the development  of  the 
equations describing bubble motion. F o r  a gas- 
filled cavity collapsing in an incompressible 
liquid, the liquid phase continuity equation in 
spherical coordinates is 

O(r2V) = O. (15) 
Or 

F o r  no evaporat ion or condensation on the 
cavity wall, Eq. (15) can be integrated to give 

r2V = f ( t )  = R2/~. (16) 
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In the absence of body forces and external tem- 
perature effects, the momentum balance gives 

o v , ,  o v  oP IV. l  p - g i - , - v y -  Yi (17) 

Substitution for V from Eq. (16) into Eq. (17) 
and integrating between the limits r = R and r = 
oo gives the following dynamic equation govern- 
ing the collapse of the cavity: 

R R + 3 R 2  = P t ( R ) - - P ®  
P (18) 

It is noted that the divergence of stress tensor is 
zero for a Newtonian fluid, and Pt(R ) is given by 
the force balance as 

Pt( R ) + ~,~,z + ~-~ = Pu + z,'~,u. 

For negligible spatial variation in density inside 
the cavity, it has been shown by Fogler[13] that 
the above equation can be put in the form 

R~+3R2=Pu--P® 20" [~ 
Pt Rp R--p(4/zt+3K). (19) 

Since for ideal gases the dilational viscosity is 
zero, and for large or moderate size bubbles the 
viscous and surface tension effects are negligible, 
Eq. (19) reduces to 

R R + 3 R 2 = P g - P ~  (20) 
P 

Defining new dimensionless variables 

4. DIFFUSION EQUATIONS 
Next we shall consider the diffusion of the gas 

in the liquid to and from the gas bubble which is 
undergoing either collapse or radial oscillation. 
The diffusion equation in spherical coordinates 
is 

OC vOC D ~r ( OC) 
Ti o r = 7  r -ff  " (22) 

The radial velocity, V, in this equation can be 
obtained from Eq. (16). 

The following dimensionless parameters trans- 
form the original equation from the spherical 
Eulerian coordinate system to Lagrangian 
coordinates: 

h = Ro 3 = R-~ro 3--t~ (23) 

~r 

9Dt, f = Ro--- T I//4(T t)  dr'  (24) 
0 

and 

0 U C--Co 
O--h - =  Co (25) 

Thus, Eq. (22) can be transformed to 

0 ~U = __# ( r  4 1 a sU~ (26) 
d$Oh Oh \Ro4¢" Oh2]" 

Upon integrating Eq. (26) with respect to h and 
rearranging, we obtain 

au  ( h~ 4/3a 2U 
0 ~ =  l + , z ]  oh ~. (27) 

t n0%/e  z = ~, where te = 

R and , 

Equation (20) can be written in the form 

P® 
(21) 

The transformed initial and boundary conditions 
are as follows: 

Initial condition 

U(h, O) = O. 

Boundary conditions 

0 u c,(~) - c0 
(A) ~--  (0, ~b) = Co (28) 
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a u  (B) ~ (oo, ~b) = O. I 

I The  diffusion into the bubble is given by a o 

dn 4zrR2D O-~R r=R ~ - =  (29) 
~ ~o 

o r  

dn 4r rC R z a U ' ~  t" ~ - = ~  0 0 - ~ / - t u ,  ).  ( 3 0 )  o 

5. DISCUSSION 
The  equations of  motion (21) and diffusion (27) 

are coupled through the dimensionless radius t~ 
and the gas pressure Pg. However ,  since the 
change in the mass of  the gas in the bubble is 
very small during any one cycle of collapse and 
rebound, it can be considered constant for  that 
cycle, thus enabling the gas pressure to be evalu- 
ated from the ideal gas law. As a result, the 
bubble radius at any time, t, can be determined 
directly from the equation of  motion. Solutions to 
the diffusion equations can now be readily 
obtained once the radius-time functionality has 
been established. Accordingly,  the numerical 
scheme outlined in the appendix was carded  out 
and the typical results obtained are discussed 
below. 

Figures 5-7  present  the dimensionless radius, 
dimensionless concentrat ion driving force,  and 
diffusional flux at different values of dimension- 
less time. Figure 5 shows that, for  ~cr = 0.7, the 
dimensionless surface concentrat ion difference 
initially decreases and reaches a minimum when 

approaches 0.7. Upon  further collapse below 
~cr, the pressure dependence is dominant in the 
surface concentrat ion relationship, causing C* 
to increase and reach a maximum value at Omi,. 
Similarly, during the rebound, the concentrat ion 
first decreases until Oc~ is reached, after which 
the concentrat ion again increases. 

The  effect of  this changing surface concentra- 
tion on the concentrat ion profile within the liquid 
is shown in Fig. 6. The  dimensionless concentra- 
tion difference of  the solute gas is shown as a 
function of  the radius, r, in the liquid at various 

I 
-I.o i!o 2.0 

1.0 

0-5 

0 

Fig. 5. Dimensionless concentration driving force and bubble 
radius as a function of time for Stain < ~cr < 1. 
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Fig. 6. Dimensionless concentration profile at various times 
during collapse for ~m~n < tkcr < 1. 

times. Initially the dimensionless concentrat ion 
difference is zero throughout the liquid. At  time 
z = 0.66 the surface concentrat ion and the con- 
centration at points close to the surface have 
decreased below the initial concentrat ion result- 
ing in diffusion of  gas into the bubble. The  shape 
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Fig. 7. Mass flux and dimensionless concentration driving 
force as a function of time showing flux reversal during the 

collapse for ~ln < ~ < 1. 

ingly outward owing to the change in sign in the 
concentrat ion driving force. During the initial 

2.0 rebound period, the flux is inward as the surface 
concentrat ion is decreasing until ~b~ is again 
reached,  and then the flux is outward as is pre- 
dicted by the concentrat ion profile. 

Figure 8 presents  the dimensionless concentra- 
i o ~ tion driving force, defined by  Eq. (28A), as a 

function of  the bubble radius, while Fig. 9 gives 
the flux as a function of  dimensionless radius. 
Figures 8 and 9 cor respond to the case of  iso- 

0 ~IO I-0 , 2 0 0  

-I "0 
0 .6  ~ 

"~o.4 oo 

0 hO 2.0 0 
r = t l t c  

Fig. 8. Dimensionless concentration driving force and bubble 
radius as a function of dimensionless time for one cycle of 

isothermal oscillation. 

o f  this profile remains essentially the same until 
~-= 0.68, when Oct is approached.  After  ~0cr is 
passed,  the concentrat ion on the bubble surface 
is higher than that at the points in the immediate  
vicinity of  the surface, resulting in diffusion f rom 
the bubble into the liquid as shown by  the profile 
for r = 0.8. At  this same t ime the concentrat ion 
at large distances f rom the bubble surface is at 
its initial value, and consequent ly  one observes  
a minimum in the concentrat ion out in the liquid. 
The  concentrat ion profile flattens rather  rapidly 
in this region owing to the diffusion to this mini- 
m u m  from both sides of  this region. Similar 
curves for  other  t ime intervals are also shown in 
this figure. 

Figure 7 shows the mass  flux as a function of  
time. As  discussed above  and shown in this 
figure, the flux is inward until a qJcr is reached;  at 
~c~, it is zero; and f rom ~ to t0m~, it is increas- 
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Fig. 9. Mass flux into the bubble and dimensionless concen- 
tration driving force as a function of dimensionless time for 

one complete cycle of isothermal oscillation. 
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thermal collapse for conditions otherwise exactly 
the same as those presented for adiabatic coll- 
apse in Figs. 5-7. Comparisons of Fig. 8 with 
Fig. 5 and of Fig. 9 with Fig. 7 clearly point out 
the differences existing between the oscillations 
of an isothermal and an adiabatic bubble. In 
adiabatic collapse, the concentration driving 
force, defined by Eq. (28A), goes through a mini- 
mum and is negative at this point as shown in 
Fig. 5; whereas, in the isothermal case, this 
driving force is always positive as shown in Fig. 
9. Consequently, in the adiabatic collapse phase 
for the conditions 0m~n < 0c~ < 1, the flux is first 
inwards and then outwards and vice-versa for the 
expansion phase. By contrast, one will note that 
the flux is always outwards during the isothermal 
collapse phase (and vice-versa for the expansion 
phase). The net change in mass of the bubble 
during one complete cycle of oscillation was thus 
found to be significantly different. A bubble, 
with an initial radius of 10 t~, gained a net mass 
of 103 molecules in one cycle of oscillation under 
adiabatic conditions with a ~ of 0.7; while for 
one cycle  of isothermal oscillation, the bubble 
lost a net mass of l0 s molecules for otherwise 
similar conditions. 

The above analysis clearly indicates that the 
temperature effect on the solubility is significant. 
The adiabatic collapse condition represents one 
bound, and the isothermal condition the other. 
The actual thermal condition of the bubble will, 
of course, be somewhere between these two 
extremes. When the changes in the bubble size 
are slow, the thermal collapse condition will be 
closer to isothermal; when these changes are 
rapid, the condition will be closer to adiabatic. 
Thus, during the initial stages of bubble collapse, 
the temperature will not change significantly; but 
during the later phase of collapse, the conditions 
approach adiabaticity [2]. 

As a result of the solubility inversion effect, 
the present theory predicts that less mass will 
diffuse out of the cavity during the latter phases 
of collapse than does the previous isothermal 
theory. Consequently, since adiabatic conditions 
predict a smaller net loss of mass during collapse 
than do the isothermal conditions, rectified dif- 

fusion bubble growth would be faster under adia- 
batic collapse conditions than under isothermal 
conditions. As has already been mentioned, 
higher growth rates have been observed by 
Eller than those predicted by theory for isother- 
mal collapse conditions. 

Application of the foregoing theory to studies 
on the dissolution of gas bubbles in liquids sub- 
jected to a sudden pressure surge would indicate 
that the bubbles undergoing adiabatic collapse 
would require a longer time to dissolve than 
bubbles collapsing isothermally. This is a con- 
sequence of the lower surface concentration 
during oscillation for the adiabatic case. In fact, 
for certain values of ~0c,, the bubbles undergoing 
adiabatic oscillation can have a net increase in 
the number of molecules in one cycle of oscilla- 
tion, while the isothermal oscillation only results 
in dissolution of the bubble. This is readily seen 
by comparing Figs. 7 and 9. For the conditions of 
Fig. 7, the calculations show that there was a net 
increase of 103 molecules for one cycle, while for 
isothermal oscillation there was a net decrease of 
105 molecules. For other values of 0~c~, there may 
not be a net increase in the number of molecules 
during the adiabatic cycle; however the efflux of 
gas from the bubble will not be nearly so great 
as predicted by isothermal behavior. 

6. S U M M A R Y  

A study of diffusion from cavities collapsing 
adiabatically in a large body of liquid has been 
performed. Previous investigations have con- 
sidered only isothermal collapse, while the 
thermal condition during collapse actually lies 
between the limits of adiabatic and isothermal 
collapse. Contrary to the case of isothermal coll- 
apse, in which the increased pressure (and thus 
the surface concentration) can only result in an 
outward diffusional flux, the solubility inversion 
effect for gases can cause first inward and then 
outward diffusional flux during adiabatic coll- 
apse. As a result of the competing effects of the 
temperature and the pressure on the solubility 
of the gas, a minimum value of the gas solubility 
is obtained at a certain "critical" radius of the 
bubble. This critical radius depends on the heat 
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of  solution, the ratio of  the specific heats, and the 
initial temperature  of  the gas. I f  the critical radius 
is smaller than the initial radius of  the bubble, the 
gas will diffuse into the bubble during collapse 
until the critical radius is reached, beyond which 
the gas will diffuse out of  the bubble. I f  the 
critical radius is greater  than the initial radius, 
gas will diffuse only out of  the bubble during 
adiabatic collapse; however,  this net  amount  
diffusing out will be less than that for collapse 
under  isothermal conditions. Other  criteria de- 
lineating the diffusion phenomena during adia- 
batic collapse are discussed in the paper. 

N O T A T I O N  

B ideal gas law constant,  cal g-mole -1 °K-1 
c heat capacity,  cal g-i OK-~ 

C concentrat ion of  dissolved gas in the 
liquid, g-mole cm -s 

C* dimensionless surface concentrat ion 
D diffusivity of  gas in the liquid, cm 2 see -I 
h transform variable, defined by Eq. (23) 

H Henry ' s  Law constant,  g-mole g-1 cm-2 
s e e  2 

AH, heat of  solution of  gas, cal g-mole -~ 
n number  of  moles of  gas in the bubble, 

moles 
P pressure,  g e m  -~ sec -2 
r spatial coordinate,  cm 

R bubble radius, cm 

/~ velocity of  bubble wall 
t time, sec 

tc Rayleigh collapse time, sec 
T temperature,  °K 
V radial velocity, cm sec -~ 
U transform variable defined by Eq. (25) 

Greek symbols 
a thermal conductivity,  g cm sec -3 
y ratio of  specific heat for gas 
r dilational viscosity, g cm -1 sec -1 
/z viscosity, g c m  -1 sec -1 
qb transform variable, defined by Eq. (24) 
p density of  liquid, g cm -s 
q~ dimensionless radius 
or surface tension, g sec -2 

dimensionless time 
¢ stress tensor, g c m  -1 sec -2 

T' dummy integration variable 
to f requency of  sound waves, sec -~ 

Superscripts 
F o r  time derivatives 

Subscripts 
0 for initial conditions 

for surface conditions 
c, for critical conditions 

rain for  minimum conditions 
g for  gas 
t for  liquid 
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A P P E N D I X  
Numerical Technique 

The equation of bubble motion (21) was solved using a 
sixth order corrector-predictor formula; the values of C* 
corresponding to various tO were calculated and stored, The 
diffusion equation was solved using an implicit (Crank- 
Nicholson)[14] method which results in the following tri- 
diagonal equations (for n > 0): 

= 2 A h ~ + U ~ , . - U 2 , n ' " "  (IA) I U 1 ~ 1  ~ U 2 ~ 1  

U t - l , n +  1 - -  (2 + h.+l) U .+~  + Ul+  1 ,n+l = - - U t - l , n  -~" 

+ (2-- An+l ) Ui, n -  U t + l , n  (2A) 

for2 ~< i~< M - - I  

2(Ah)2Ro 2 
where kn+l = 9(0~+1 + h)41atcDAt (3A) 

Uu-l,n+, -- Uu,.+, = --Uu-, , .+ Uu,n. (4A) 

Equation (1A) represents the boundary condition at the 
bubble wall and Eq. (4A) that at infinity. The maximum value 
of h was fixed an ~t~__e~_of magnitude greater than the diffusion 
thickness (8 = VDtma~) to assure very little change in con- 
centration at the point approximating the point at infinity. 

The above numerical scheme can easily be shown to be 
stable and convergent for all values of k as long as At and 
Ah both tend to zero. 

R~sum6-Cet article 6tudie la dissolution de bulles gazeuses dans des iiquides soumis ~t une hausse 
soundaine de pression, et conduit 6galement ~t donner un aper~u des travaux sur la diffusion rectifi6e. 
Les taux de formation des bulles pour une diffusion recifi6e darts des conditions isothermiques, 
pr6vus dans des 6tudes ant6rieures, sont beaucoup plus faibles que le taux d6termin6 exp6rimentale- 
ment. L'hypoth6se de conditions isothermiques ne peut ~tre justifi6e que pour une diffusivit6 ther- 
mique infinie. Pour des bulles gazeuses r6elles se dissoivant clans une grande masse liquide, la condi- 
tion thermique repose toutefois entre les limites isothermiques et adiabatiques. Notre analyse a 6t6 
effectu6e en vue d'6tablir ies conditions de diffusion d'une cavit6 qui s'effondre sous l'effet de la limite 
adiabatique. Au contraire de l'effondrement isothermique oia la pression accrue (et donc la concentra- 
tion en surface) peut r6sulter seulement en un flux diffusionnel vers l'ext6rieur, l'effet d'inversion 
de solubilit6 pour les gaz peut causer un flux diffusionnel tout d'abord vers l'int6rieur, puis vers 
l'ext6rieur, pendant la m~me phase d'effondrement adiabatique. En particulier, quand la chaleur de 
la solution, AHs, du gaz est inf6rieure h (yBTo)/(1--Y), (dans laquelle y = Cp/Cv, et B = constante 
du gaz), le flux diffusionnel change de sens b. 

/ r  x / ' , q r  BTo ll3o,-1) 
B 

M~me dans les cas oil le renversement du flux ne se produit pas, le courant diffusionnel externe net, 
pendant l'effondrement, est plus faible dans le cas adiabatique que darts le cas isothermique. D'autres 
descriptions du transfert de masse ~t partir d'une bulle explosant adiabatiquement dans une grande 
masse de liquide sont pr~sent~es. 

Zusammenfassung-Dieser Artikel ertrtert die Ltisung von Gasblasen in Fliissigkeiten, die einem 
pliStzlichen Druckanstieg unterworfen werden und gibt Aufschluss fiber Studien an rektifizierter 
Diffusion. Die Blasenwachstumsraten ffir rektifizierte Diffusion unter isothermischen Bedingungen, 
die in friiheren Studien vorausgesagt wurden, sind viel niedriger als die versuchsm~issig gefundene 
Rate. Die Annahme isothermer Bedingungen kann nur fiir unbegrenztes thermisches Diffusionsver- 
mtgen gerechtfertigt werden. Fiir tats~ichliche Gasblasen, die in einer grossen Fliissigkeitsmenge 
zusammenbrechen, befindet sich jedoch der thermische Zustand zwischen isothermischen und 
adiabatischen Grenzen. Unsere Analyse hatte das Ziel die Diffusionsbedingungen fiir einenzusam- 
menbrechenden Hohlraum unter der adiabatischen Grenze festzusteUen, lm Gegensatz zu dem Fall 
des isothermischen Zusammenbruchs, wo der erhthte Druck (und damit die Oberfl~ichenkonzentra- 
tion) nur eine ausw~rts gerichtete Diffusionsstrtmung ergeben kann, kann der Ltslichkeitsumkeh- 
rungseffekt ffir Gase zun~ichst einwSrts und dann ausw~'ts gerichtete Diffusionsstr6mungen w~ihrend 
der gleichen Phase von adiabatischem Zusammenbruch bewirken. Wenn die L6sungsw~,me AH, 
des Gases geringer ist als (TBTo)/(1-3'), (worin 3' = Cp/C~, und B =  Gaskonstante), ~indert die 
Diffusionsstr6mung ihre Richtung bei 

[( Y VBTo~F 3''-1'. 
R = Ro [ \ l  - - - -~ / \A-~JJ  

Sogar in Situationen, wo die Umkehrung der Strtmung nicht stattfindet, ist doch die Netto Diffu- 
sionsstriJmung ausw~irts wahrend des Zusammenbruchs geringer im adiabatischen, als im isother- 
mischen, Fall. Es werden weitere Beschreibungen der Stoffiibertragung aus einer in einer grossen 
Fiiissigkeitsmenge adiabatisch zusammenbrechenden Blase dargelegt. 
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