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ERRATA

Technical Rsport No. 100

Iine 11:

"ae(ec) = pentode current..."
should read:

"ac(e c)) = pentode grid current...”
Line 6:

"ec(t) [ec(t) = Ec(t.) 4o
should read:

"e (t) [recall that e (t) = E_(t) +..."
Iine 9

".s.are indicated by vectors.”
shouid read:

", .18 indicated by vectors.”
Line 8:

"outeide L, also result.. ot
should read:

"outside L, (except those on the E, axts) nlso result..
Line 14:

"Gs = 1000 pt"
should read:

"C, = 1000 pr*
Iine 5 from bottom:

"mode 18 altered."”
should read:

"modes 13 eltered.”
Iine 14:

"o .amplitude mode..."
should read:

"« camplitude-rodulated mode..."
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ERRATA (continued)

Technical Report No. 100

Iine 13:
"!c in the region..."
should read:
"!c and satisfy a Lipschitz condition in the region..."
Iine & from bottom:
"8 > R]."
should read:
"B > R]."
Mg. 4.5(b):
"20 usec/cm" end "8 v/ca"
should read:
"22 usec/inch" and "8.8 v/inch," respectively.
[Note that the horizontal line below the t axis corresponds to

ec ."&o]

In all figures [except Fig. 4.5(b), noted above] where the scale is given as
"v/ca" or "usec/cm," change "cm" to "side of smallest square.”



L\
SWAC W



TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF SYMBOLS

ABSTRACT

1.

2.

INTRODUCTION

MATHEMATICAL CHARACTERIZATION

2.1 Equivalent Circuit

2.2 Mathematical Characterization of the Oscillator

2.3 Determination of the Approximating System of Differen-
tial Equations

SOLUTION OF THE APPROXIMATING SYSTEM OF DIFFERENTIAL
EQUATIONS

PHASE-PLANE CONFIGURATIONS AND MODES OF OSCILLATION PRE-

DICTED BY THE MATHEMATICAL ANALYSIS

k,1 Introduction

4,2 Determination of Waveforms for the Phase-Plane
Configuration

4.3 Practically Stable-in-the-Large Equilibrium Point
Phase-Plane Configuration [The (PSILE) Configuration]

L.k Stable Limit Cycle-Unstable Equilibrium Point Phase-
Plane Configuration [The (SLC-UE) Configuration]

4,5 Stable Limit Cycle - Stable Equilibrium Point Phase-
Plane Configuration [The (SLC-SE) Configuration]

4,6 Effect of a Circuit Parameter Variation on the Phase-
Plane Configuration

EXPERIMENTAL RESULTS

5.1 Introduction

5.2 The Experimental Oscillator and Characteristics

5.3 Experimental Procedure for Display of Operating Path
5.4 Operation of the Experimental Oscillator

CONCLUSIONS

APPENDIX

REFERENCES

DISTRIBUTION LIST

iii

Page

iv
vii

ix

11
12
1k

15

2k
29
29
31
32



Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.1
1.2
1.3

1.k

.1.‘5
1.6

1.7

1.8

109
2.1

2.2

2.3

2.5

3.1

3.2
3.3
3ok

k.1
4,2

b3

LIST OF ILLUSTRATIONS

Oscillator circuit
Grid-current characteristic
Plate-current characteristic

Illustration of a stable closed operating path
or limit cycle

Example of amplitude-modulated oscillation
Small signal &,
"Average g " over the (E, E.)-plane

Illustration of a typical squegging-mode operating
path or limit cycle

Illustration of multimode operation
Equivalent circuit for oscillator

Simplified equivalent circuit for oscillator
Grid conductance versus e,

Plate transconductance versus e,

An illustration of the dependence of gp on A with a
riven set of parameters E and EC

Illustration of method of constructing of solution
paths in the (E, Ec)-plane phase

Typical E versus (E, Ec) surface
Typical éc versus (E, EC) surface

Typical phase-plane representation of the approxi-
mating system

Portion of a solution path in the phase-plane

(E, Ec)—plane diagram example of a (PSLE) con-
figuration

(E, Ec)-plane diagram example of an (SLC-UE)
configuration

iv

Page

12

13
20

2l

22

27
28
28

29
31

33

Lo



Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

bk

k.5
k.6

L.7

4.8
)4'09
k.10

4,11

k.12

4,13

b1k
4.15

L.16

b.17

4.18

4.19

4.20

L.21

5.1

Iist of Illustrations (cont'd)

Sketch of limit cycle in the neighborhood of
the Ec-axis

Typical grid-voltage-waveform squegging mode

Typical grid voltage waveform for an amplitude-
modulated mode

(E, E )-plane diagram example of an (SLC-SE)
configuretion

Grid-voltage waveform for example in Section 4.5
Plot of 1/n [® - tan @] versus @
Definition of angle &

Angle & of the Ec = 0 contour in the phase plane
vs Gg/Gc

Ranges of ¢ and ¢ in various regions of the
(E, Ec)-plane

Plot of %(x - % sin 2x) versus x

Definition of the angle 7

[th -

m Ggf] surface over the (E, Ec) plane

Typical equilibrium point locus for various
values of Gg

Typical variation in PRP with G_ for G_< G
ypic aria g for G, gl

Phase plane configuration and possible oscillation
modes versus Gg--first pattern

Typical veriation in PRP with G _--first pattern.
(PRP of zero corresponds to CW ffode )

Phase-plane configuration and possible oscillation
mode versus Gg--second pattern

Typical variation in PRP with G_--second pattern.
(PRP of zero corresponds to CW fode )

Experimental oscillator circult and parameters

v

Page

42
43

Ll

45
L8
50
51

52

53

53

54
54

55
57

57

58

59

59
61



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5.5

5.4

2:5

5.6

5.7
5.8

5.9

A.l

A.2

List of Illustrations (cont'd)

Actual characteristics of tube used in
experimental oscillator

Experimental system for display of oscillator
operating path

Variation of CW operating point for
62.5 umho < Gg <

Experimentally observed waveform and operating path
for Gg = 143 pmhos

Experimentally observed waveform and operating path
for Gg = 20 umhos

PRP versus Gg for ES = 80 volts

Experimentally observed waveforms and operating
paths for Gg = 71 umhos

Experimentally observed operating paths and wave-
forms. Eg = 170 volts

Regions in the vicinity of the equilibrium point A

Phase-plane relations leading to IA = +1

Page

61

62

63

3n

65
67

68

69
™
77



LIST OF SYMBOLS

Page

Symbol

Page

13
12

gl

g2
gl2

th

P ]

Glf
hf

GGGGGGG

1h
1k

3k, 36

m123AO
ghthILLLMNPQQR

O\O F 4 O

S1C-UE

SLC-SE

18
18
18
37
37
37
37

vii

Symbol

— N
< e N
(o] o 8 A <z 0~ 0o CC123
aRVV/RunUncdmvww_A a.a a .bnunununu.ccm~wu m. vu mu HmmumueeeP‘F_F* oMmow@an a%@






ABSTRACT

One of the classical mathematical models for the self-excited
oscillator has been the van der Pol equation. However, this model does
not display several modes of behavior frequently observed in simple
oscillators. This report presents a method for analyzing a self-excited
oscillator which does exhibit several modes of behavior. The methods
employed, although quite general, are applied in detail to the analysis
of a circuit having much in common with a large number of class-C oscil-
lators.

In the circuit chosen the tube has been replaced by two non-
linear conductances representing grid and plate conduction. The result-
ing mathematical description consists of a system of three first-order,
ordinary differential equations. By employing the method of Kryloff and
Bogoliuboff, another, more tractable, system of differential equations
is determined as an approximation to the original system. This approxi-
mating system is found to be second order and amenable to solution by
standard phase-plane techniques. The phase-plane solution of the approxi-
mating system results in three configurations of limit cycles and equi-
librium points characteristic of three frequently encountered modes of
self-excited oscillator behavior (i.e., CW, amplitude-modulated, and
squegging). A qualitative relationship between the oscillator circuit
parameters and phase-plane configurations is then established allowing
the prediction of the behavior of a specific oscillator as one of its
parameters is varied. It is also found that bistable operation may
occur.

These results are checked against the performence of an experi-
mental oscillator. The actual performance of the oscillator is shown to
correspond quite closely to the predicted behavior. The several phase-
plane configurations, the variation in behavior as a parameter is varied,
and the bistable operation all occur as predicted suggesting the probable
validity of the mathematical model and giving considerable insight into
self-biased oscillator operation.

ix



ANALYSIS OF A CLASS OF SELF-BIASED OSCILLATORS

1. INTRODUCTION

It is the purpose of this report to present a method for
analyzing a self-excited oscillating circuit which exhibits several
modes of oscillation. The particular oscillator which is analyzed is
of special interest because it has much in common with a large number of
class-C oscillators. Consequently, it is possible to infer a great deal
regarding the behavior of any one of these oscillators from the behavior
of the specific oscillator treated in this report. Moreover, the analytic
methods employed in this report can be adopted for the analysis of many
other oscillators or nonlinear circuits.

It is well known that the analysis of self-excited oscillating
circuits presents formidable difficulties. These difficulties arise
from the inherently nonlinear character of such circuits. For example,
the plate and grid currents of a pentode as functions of grid voltage
are two nonlinear functions which arise often in such circuits. As a
consequence of the nonlinear character of these circuits, their mathe-
matical characterization must involve nonlinear differential equations
and, perhaps, even nonlinear difference-differential equations. Un-
fortunately, it is seldom the case that these mathematical characteri-
zations can be both reasonably identifiable with the physical system and
easily integrated. The usual problem is that if the mathematical charac-
terization adheres closely to the physical system then the nonlinear

differential equations are depressingly difficult to handle. Conversely,



if the mathematical characterization is overly simplified, important
aspects of the physical system's behavior do not appear in the analytical
results. Moreover, even in the case where a satisfactorily simple mathe-
matical characterization has been found it usually happens that exact
solutions of the resulting nonlinear equation cannot be readily determined,
and some approximation technique must be employed. Thus, two approxima-
tions are involved: (1) in the selection of the equation, and (2) in its
solution. Clearly, then, the analysis of self-excited oscillating cir-
cuits demands a suitable compromise to this mathematical characterization
problem.

One of the classic solutions to the above compromise problem
is the use of the van der Pol equetion as a mathematical characterization
of a CW oscillator [Ref. 1]. Although it cannot be questioned that this
use of the van der Pol equation has given powerful insight into the
operation of CW oscillators, it is also true that it does not lead to
an understanding of many phenomena which are observed in oscillators)
e.g., nonsinusoidal oscillations. In order to appreciate why this is
true it is merely necessary to recall the assumptions which must be made
so that the van der Pol equation can be employed. Some of these are
that (1) no grid current flows, (2) the grid bias is supplied from a
regulafed source, (3) the linear feedback network around the tube is a
simple parallel resonant tank circuit, (4) the only possible stable

oscillation is well approximated by a sinusoidal function,l and (5) the

lIt is not true that the van der Pol equation has a sinusoidal solution.
However, the first approximation to the periodic solution is a sinu-
soidal function. It is this approximation that is usually assumed in
characterizing the oscillation of a van der Pol oscillator. It should
also be added that the van der Pol equation is a suitable mathematical
characterization for the "build up" of oscillation in some oscillators.



plate current as a function of grid voltage is well approximated by a
linear plus a cubic term in the grid voltage.

It is clear that assumptions (1) and (2), particularly in the
case of an oscillator with grid-leak type bias, are not likely to apply
to the experimental situation. Furthermore, it is possible for relatively
simple oscillators to exhibit nonsinusoidal and aperiodic oscillations;
therefore, assumption (4) without doubt limits the applicability of the
van der Pol equation. Assumption (3) guarantees that the nonlinear
differential equation which characterizes the oscillator is second order
whether it is the van der Pol equation or not. Obviously this limitation
to a second-order equation is desirable from a mathematical point of
view, but it is also obviously not completely realistic from a physical
point of view. There are, usually, parameters that must be neglected
before a second-order equation can be attained. Assumption (5) is
Justified as long as the operating point of the oscillator is constant.
On the other hand, in the case of squegging oscillators, which are
treated in this report, this assumption does not lead to a realistic
representation of the plate current as a function of grid voltage.

It can be seen, then, that the use of the van der Pol equation
involves quite a number of restrictive assumptions. Since there are
simple experimental oscillators which exhibit considerably different
modes of oscillation from those predicted by the van der Pol equation,
it is reasonable to attempt to eliminate or alter the above assumptions
so that a new mathematical model can be obtained which exhibits these
other modes. It is manifest that this new méthematical model should be
as simple as possible; moreover, it should be of & form amenable to

solution by known methods. Otherwise it will be a poor solution to the



compromise problem which was mentioned previously.

In this report a mathematical model is selected which exhibits
some of the oscillation modes that are often associated with a grid-leak
biased oscillator. The oscillation modes of interest are (1) CW oscil-
lation, (2) amplitude-modulating, (3) self-pulsing or squegging, and
(4) multimode operation. The last term refers to the possibility of

more than one stable mode of oscillation for a given set of circuit

parameters.
This mathematical model is
- ‘, developed from a consideration of
?Ef/l r—k ' " the circuit shown in Fig. 1.1.
ol ¥
6g CT 6, giq Lp Note that this circuit is very
e e
§C__ Ji, L1y ) similar to the circuit usually
ve, K J’*Eb associated with the van der Pol
Fig. 1.1. Oscillator circuit. oscillator [Ref. 1]. ﬁowever,

there are differences between this
circuit and the van der Pol oscillator which are sufficient to make the
present circuit considerably more general than the van der Pol circuit.
The obvious difference is the addition of the RC grid.leak circuit be-
tween the tank circuit and the grid. Beyond this it is assumed that
grid current can flow, Although the analytic methods which will be
employed are applicable to a more or less arbitrary grid characteristic,
the specific example worked out in detail in this paper is based on the
assumption that the grid current versus grid voltage is as shown in
Fig. 1.2, Similarly, the plate current versus grid voltage characteristic
assumed in the detailed example is as shown in Fig. 1.3, even though the

analytical techniques apply to a more or less arbitrary plate charac-

teristic, N



This choice for the plate current
characteristic allows varying
operating points to be handled
realistically, and should be con-
trasted with al(ec) =I +cee, -

3

c2ec whichl is assumed for the van

der Pol oscillator. It is shown

GRID CURRENT - ac( ec)

o

GRID VOLTAGE - ec
below that the circuit in Fig. 1.1

Fig. 1.2. Grid-current
requires a third-order nonlinear characteristic.
differential equation for its

characterization as opposed to the second-order van der Pol equation.

It is apparent that this circuit

=~
é %3 along with the assumptions regard-
g ing the characteristics of its
E elements is representative of a
d large class of oscillators.
Before analyzing the circuit
0 shown in Fig. 1.1, it is worth-
R 0]

while to consider a qualitative

GRID VOLTAGE - e,

discussion of its modes of operation.
Fig. 1.3. Plate-current
characteristic. In the case of the CW or constant
amplitude mode of oscillation the
grid voltage, e, is well approximated by

ec(t) =E, + E cos (wt +8) , (1.1)

where Ec , & constant, is the grid bias voltage developed across the grid

leak capacitance, Cg, and E is the amplitude of CW oscillation measured

YThe symbol "a" is used for current to avoid the confusing symbol for the
derivative of "i" in the dot notation (dx/dt = x) to be used later.

2



at the tank circuit. The grid bias voltage arises from the pulse of
grid current which occurs during each cycle of oscillation (i.e., when
e, > 0) and replenishes the charge on Cg. The constant amplitude mode
results when over one cycle of oscillation the charge added to Cg during
grid conduction is just equal to the charge lost by discharge through
the conductance Gg. For such a mode to exist as a steady state behavior,
it is necessary, of course, that it be stable. That is, any disturbance
away from this equilibrium should decay over a number of cycles instead
of growing. In other words, if this mode of oscillation is unstable it
will not be observed experimentally even though it is mathematically
possible.

If the CW or constant amplitude mode of oscillation is unstable,
the oscillator may take up some other mode of oscillation which is stable.
For example, imagine the neighborhood of an unstable CW mode as a
starting point. The grid voltage is now represented by

ec(t) = Ec(t) + E(t) cos (wt +6) . (2.2)

Since the CW mode is unstable, Ec(t) does not approach the constant Ec

- of Eq. 1.1 as t = ® nor does E(t)

OSCILLATION AMPLITUDE (E)
° approach the constant E of the same
STABLE CLOSED OPERATING PATH
(STABLE LIMIT CYCLE) equation. Instead, as is shown
® later in this report, they may
e UNSTABLE CW
g MODE approach a closed operating path in
03]
(a]
= . the (E, Ec)-plane. Such operating
(O]
., paths, similar to the one illus-
¢
e/

¢ trated in Fig. 1.4, are common to

several modes of oscillator opera-
Fig, 1l.4. Illustration of a
stable closed operating tion (e.g., amplitude modulated and
path or limit cycle.



squegging). It can be seen that the operating path in Fig. 1.4 corre-
sponds to a grid voltage which is an amplitude-modulated waveform super-
imposed upon a periodically varying bias level. A typical grid voltage
waveform for this mode is shown in Fig. 1.5.

In order to appreciate the operation

3 of the oscillator in this mode, it
% is necessary to note that the
g "average gm" (this concept is made
§ precise later in this report) of the
tube is a function of both E and Ec’
Fig. 1.5. Example of
amplitude-modulated oscillation. For the specific plate-current

characteristic shown in Fig. 1.3
it can be seen that the small-signal &n for the tube is as shown in
Fig. 1.6. This small signal &n is, of course, the limit of the "average
gm" as E - 0. The complete be-

havior of the "average gm" as a

€
function of E and E, (again assum- é
ing the plate characteristic of g
Fig. 1.3) is depicted in Fig. 1.7. §

&
For certain regions of the (E, Ec)- ;;
plane the "average gm” is above
some critical level which is as- : g

. . GRID VOLTAGE - e
sociated with a "loop gain of one'; ¢

consequently, E(t) is an increas- Fig. 1.6. Small-signal &n
ing function of t in those regions.

In the remainder of the (E, Ec)-plane, E(t) is a decreasing function of

t. Now consider the oscillation shown in Fig. 1.5 and its associated
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1 "

operating path on the "average &, surface shown in Fig. 1.7. Imagine
that at point A in Figs. 1.5 and 1.7 the values of E and Ec correspond
to an "average gm" which is slightly larger than the critical "average
gm". The amplitude of oscillation, E(t), must be an increasing function
of ¥ at this point. Moreover, because grid current is not flowing, the
grid leak capacitor, Cg, must be discharging; consequently, the bias
voltage Ec(t) must be increasing toward zero. However, at point B grid
current begins to flow. Shortly after point B the charge added to Cg
each cycle by grid conduction becomes greater than the charge lost
through the grid leak resistor Gg; consequently, the grid bias, Ec(t),
goes through a maximum and starts to decrease. Since the "average gm"
is still above the critical level in the corresponding region of the
(E, Ec)-plane (see operating path in Fig. 1.7), E(t) continues to in-
crease while Ec(t) decreases. However, it can be seen from Fig. 1.7
. that as Ec(t) becomes more negative the "average gm" begins to drop off
and eventually at point C it becomes less than the critical level, At
this point E(t) starts to decrease. At point D, E(t) has become so
small that no grid current flows; therefore, at this point Ec(t) begins
to increase toward zero again, If the circuit parameters are properly
selected, E(t) will decrease more rapidly than Ec(t) increases, and
Ec(t) will not be able to "catch up" with E(t) until the E and E, corre-
sponding to point B are reached. This locus of E, EC points in the
(B, Ec)-plane describes an amplitude.modulation mode operating path of
the oscillator.

Note that in the foregoing discussion the effect of grid

conduction upon the loop gain has been ignored. Obviously, it reduces

the loop gain as grid current flows over a larger and larger portion of



the RF cycle. This effect is not neglected in the analysis which follows.
As the rate at which Ec(t) increases after point C becomes
smaller and smaller, the amplitude.modulated mode transforms into another
closed operating path mode, that is, the squegging mode. The (E, Ec)-
plane operating path for a squegging mode is shown in Fig. 1.8, It is

clear that such an operating path
0 OSCILLATION AMPLITUDE (E)

will lead to an E(t) which is small

/STABLE CLOSED OPERATING PATH

for a major portion of its period; (LIMIT CYCLE)

UNSTABLE CwW

J

i.e.,, the RF will appear in pulses.

ol § MODE
(7]
Merely on the basis of Fig. 1.8 s .
[a]
there does not appear to be a 5
6\
fundamental difference between the §@>
Ly

" squegging mode and the amplitude-

modulated mode. However, there is
Fig. 1.8. Illustration of a
a significant distinction between typical squegging-mode
operating path or limit cycle.
them. In the case of the amplitude-
modulated mode the entire oscillation is deterministic. On the other
hand, it is assumed that in the squegging mode E(t) becomes so small be-
tween pulses that it is dominated by circuit noise. Consequently, each
pulse is initiated by a noise voltage instead of the remnants of the
preceding pulse. It follows that in the case of the squegging mode the
oscillation is not deterministic, rather it is stochastic. The pulse

spacing will be a random variable about some mean value; the phase of

each pulse will be a random variable; pulse heights will vary, and so onl.

lSome previous literature has defined "noncoherent squegging” (noise ex-
cited) and "coherent squegging" (remnant-energy excited) as two separate
modes of behavior. From the viewpoint of the present analysis the dis-
tinction seems unnecessary since coherent squegging is actually no
different from the remainder of the amplitude-modulated mode. In this
report the term squegging oscillation will be used only in the case where

each pulse grows from noise.
10



In the case of multimode operation, more than one mode of
oscillation is possible for a given oscillator configuration. For ex-
ample, two stable closed operating paths might exist in the (E, Ec)-plane.

Or, as shown in Fig. 1.9, the point

in the (E, Ec)—plane corresponding
0 OSCILLATION AMPLITUDE (E)

to a stable CW mode might be sur-

STABLE CLOSED OPERATING PATH
(STABLE LIMIT CYCLE)

rounded by an unstable closed
UNSTABLE CLOSED OPERATING

PATH (UNSTABLE LIMIT CYCLE) . . .
v - operating path which in turn was

MODE surrounded by a stable closed

GRID BIAS (-E)

operating path.

Before proceeding it should

be noted that a thorough appreciation
Fig. 1.9. Illustration of
multimode operation. of the details of the approximating
procedure employed in Sections 2.2
and 2.3 is not a necessary prerequisite to an understanding of the re-
mainder of this report. Therefore, a reader interested mainly in the

final results and their application may find that simply skimming these

two sections to pick out the details will suffice.

2. MATHEMATICAL CHARACTERIZATION

The mathematical characterization of the oscillator which is
considered in this report (Fig. 1.1) is developed in this section. This
characterization consists of a system of three first-order ordinary
differential equations. Then another more tractable system of differen-
tial equations which is intended as an approximation to the original
system is determined through careful inspection of this original system.,

The solution of this approximating system is carried out in Section 3 of

11



this report. The equations are first developed for specific grid-and
plate-current characteristics, and then generalized so that they apply

to arbitrary grid-and plate-current characteristics.

2.1 Equivalent Circuit

The circuit of the oscillator considered in this paper is shown
in Fig. 1l.1. An equivalent circuit for this oscillator is shown in Fig.

2.1. The plate circuit of the pentode has been replaced by an equivalent

a

y ¢ k
C
o[ ¢ NONLINEAR
- a,(e) A Gp§ Lp% éLg G,_g§ G,§ CT Gg§ GRID RESISTOR
° e e, | °° a.e)
| | I

Fig. 2.1. Equivalent circuit for oscillator,

nonlinear grid-voltage-controlled current source whose characteristic is
shown in Fig. 1.3. The grid conduction of the pentode has been modeled
by a nonlinear resistor whose characteristic is shown in Fig. 1.2. The
various symbols in Fig. 2.1 designate the following circuit elements.
al(ec) = pentode plate current as a function of pentode grid
voltage. It is assumed that 8y is independent of the
" pentode plate voltage. A plot of a specific al(ec) is
shown in Fig. 1.3. (The symbol "a" has been used to

denote current quantities throughout this report in order

to avoid the confusing "i" representation for di/dt.)

Gp = the equivalent shunt conductance combining losses in Lp
and the pentode plate resistance.
Lp = the inductance of the plate coil. It is assumed that

‘the distributed capacitance of this inductance may
12



be neglected.

L = the inductance of the grid coil.

M = the mutual inductance between Lp and Lg. M is always

positive for the cases of interest.

GL = the equivalent shunt conductance due to losses in Lg‘
g

Gl = the conductance associated with an external load.
C = tank circuit capacitance. This capacitance includes

the distributed capacitance of Lg'

Cg = the grid leak capacitance.

Gg = the grid leak conductance.

ac(ec) = pentode current as a function of the grid voltage.

A plot of a specific ac(ec) is shown in Fig. 1.2.

Assuming that

1

= > 10
w LG )
Qp PP

it is easily shown that the equivalent circuit in Fig. 2.1 can be re-
placed by the even simpler equivalent circuit in Fig. 2.2. The new
elements which appear in Fig. 2.2

have the following definitions:

I\ I 4 M
C
(e,) g 8 = =— g
ale, L ¢ ‘ e 5 l ogleg) Lg 1’
e ec
| [T Ler,
Fig. 2.2. Simplified equivalent ' 5
circuit for oscillator. Q' = Gl + GL + %E : .
g Lo ©

The circuit shown in Fig. 2.2 is the center of attention

throughout the remainder of this report.

13



2.2 Mathematical Characterization of the Oscillator

The mathematical characterization of the simplified equivalent

circuit shown in Fig. 2.2 is readily shown to be

1 de d
4 - — — - - =
G'e + & fedt + C Tt Cg T (e ec) a(ec) 0 (2.1)
Ge +af(e)+C fl-(e -e)=0 (2.2)
g c c' e gdt ‘e ' '

Differentiating Eq. 2.1 and letting e = de/dt, e = dee/dtz, etc, gives

C a(e )
o Gl . l g .o . (] -
e+ Fetrpe+ (e - ec) - — = 0 (2.3)
Ggec + ac(ec) - Cg(el- ec) =0 . (2.4)

da
« G e 1 1 [, : c - da - ] -
+—5-e+1-—c—e+6-[(}gec+a€—c-ec-a§:ec = 0 (2.5)
. .G a.(e,)
(6 -e)+-2e + =0 . (2.2)
C C
& g

The system formed by Egqs. 2.2 and 2.5 can be transformed into a
&
system of three first-order equations by introducing the new variable b,
where

b = e. (2.6)

The resulting system is

. Gg ac(ec)
e, = b-g2e - —% , (2.8)
g g
) da
s 1, c da 1
b = - G (G + Gg el dec )b -ige
da
1 c da
L + 55; [Ggec + ac(ec)] EE: - EE;'+ Gg R (2.9)

which is in the customary form for a system of three first-order

4



differential equations; that is,

~

e = gl(e’ € ),
1 e = gle, e, 0), (2.10)
Lb = g3(e: €. b) .

Equations 2.7, 2.8, and 2.9 comprise the desired mathematical characteri-

zation of the equivalent circuit shown in Fig. 2.2.

2.3 Determination of the Approximating System of Differential Equations

An approximating system of differential equations is selected
in this section. In order to make this selection more plausible, a co-
ordinate transformation is used to recast the system represented by
Egs. 2.7, 2.8, and 2.9 into a form which allows physical intuition to be
employed in the selection of the approximating system.

The coordinate transformation in question is of the following

form:
-
e = B cosvV, (2.11)
{ e, =B +Ecosy, (2.12)
(P = -oFsiny, (2.13)

where W, = l/'JEE is a constant, and in certain manipulations which
follow the substitution ¥ = wot + 06 is employed. Since the Jacobian of

this transformation is given by

cos ¥ 0 -E sin V¥

(e, € b)

m = det cos ¥ 1 -E sin g = -Emo, (2.1)4-)
w0, sin v O <DOE cos ¥

it follows that Egs. 2.11, 2.12, and 2,13 form a satisfactory coordinate

transformation when E # 0.

15



Application of the foregoing coordinate transformation to the
system represented by Egs. 2.7, 2.8, and 2.9 results in a new system of

the following form.

C .
E = hl(E) EC’ \V) 2

9 éc = b(E, B, ¥) , (2.15)
‘l.f = h3(E: Ec) \U) ’

~

where h

1 h,, h, are periodic in ¢ with period 2x.

2> 73

It should be realized that the above system is still exactly
equivalent to the original system given by Egs. 2.1 and 2.2, As yet no
approximations have been made; only coordinate transformations and sub-
stitutions have been employed. Clearly, it is only necessary to find
the solutions of the aboye system, Eq. 2.15, in order to determine com-
pletely and exactly the behavior of the simplified equivalent circuit
shown in Fig. 2.2. Unfortunately, this task is not easy. Therefore,
another, more tractable system is considered instead of Eq. 2.15. ?his
approximating system of equaﬁions must satisfy two important requirements;
(1) it must be possible to integrate the system by simple methods (in
this case graphical), and (2) its solutions must well approximate those
of Eq. 2.15. Proving that the second of these two requirements has
indeed been satisfied is by no means a trivial problem and is not attempted
in this report. However, it is shown that the solutions obtained through
consideration of the approximate system do agree well with experimentally
observed solutions. Moreover, a certain amount of intuitive justification
is employed in the selection of the approximating system.

At this point the line of reasoning which is followed is the

same as the line of reasoning employed by Kryloff and Bogoliuboff [Ref. 2].

16
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Integration of Eq. 2.15 over an interval of length T and division by T,

where T is a nonzero constant, gives

t+T
E(t + T% - B(t) _ : tf n,[B(g), B_(£), ¥(g)lag
E(t+T)-E(t) [ T
- =7 tf nlE(e), E(8), v(e)lag  (2.16)
t+T
Wee D) -v®) L1 p nieGs), B(e), wledas

t
Now assume that for sufficiently small T, ec(t) [ec(t) = Ec(t) + E(t) cos y(t)]
is "locally cosinusoidal"; that is, ec(t) can be well approximated within
the interval of integration of Eq. 2.16 by E, +E cos (ot + 90), where
EC, E, w, and 60 are constants. Note that among other things this
assumption implies that the "RF" components on either side of the capaci-
tance, Cg, in Fig. 2.2 are equal to one another (see Egs. 2.11, 2.12,

and 2.13). This consequence appears reasonable as long as

where Gc is the slope in Fig. 1.2. The "locally cosinusoidal" behavior

of ec(t) motivates the rewriting of Eq. 2.16 as follows:

e t+T t+T
B 1) -B() 1 S mEE N %tf {n,[E(x), E_(2), w(2)]
- h (8, E x)} g ,
E(t+T)-E(t) t+T t+T
=1 ] {hlE By Nat e [ mlE(), E(E), w(e)]
- hy(E, B_ x)} at , (2.264)
t+T t+T
\w(t + TT) - y(t) | % tf i {h3(E, E,, Mg + @1- tf n,lE(e), E, (), w(2)]

- hy(8, B, M} at



where A = w§ + 60. It is then assumed that in each of the above equations
the approximation is sufficiently close to ec(t) to allow the second
integral to be ignored relative to the first integral. If T is then

set equal to 2x/w and it is noted that each hj(E, E,, M) (j =1, 2, 3)

is periodic in A with period 2x,or¢ with period 2n/w, the right-hend

sides of Eq. 2.16-A can be approximated as follows:

2n
A\ 1
T - gof hl(E, E, AN = fl(E, Ec) ,
AEC 1 2n
\ T of he(E, E, AN)an = fe(E, Ec) , (2.17)
2x
Ay 1 -
- Et- - é;of h3(E) EC, }")d}\ = f3(E} EC) )

where At =T, AE = E(t - T) - E(t), 6B, = Ec(t +T) - Ec(t), and

&y = ¥(t + T) - y(t). The final step in the selection of an approximate
system of differential equations is simply to replace Eq. 2.17 by.the
system of differential equations which it suggests. Thus, the approxi-
mate system is selected as follows:

r dE _
ag = fl(E’ Ec) 1]

dEc
! =

1]

fQ(E’ EC) ’ (2.18)

ay
L = f3(E, Ec) .

This system of equations is the approximate system which replaces the
exact system given by Eq. 2.15. It must be emphasized once more that
the above system is considered instead of the exact system. The arguments

which lead up to Egqs. 2.18 are not a rigorous justification for their use.

18



but only a demonstration that this substitution of Eg. 2.18 for Eq. 2,15
is at least plausible. Finally, it might beé noted that at no point in
the above discussion has it been necessary to determine explicitly the
period, T, or its counterpart the frequency w.

It now remains to determine the form of the functions fl(E, Ec),
f

E, Ec), and f_(E, Ec). The first step in this determination is the

X K
use of the coordinate transformation given in Egs. 2.11, 2.12, and 2,13
to transform the dependent variables in the system of differential
equations given by Egs. 2.7, 2.8, and 2.9. This latter system is re-

written below.

Co.

e = Db
{ éc = b - ale,) (2.19)
L b = - B(ec)b - wie + 7(ec) ,

The following substitutions have been made;

0y = iE (2.192)
G = G'+6G_, (2.19b)
afe,) = g; [Ggec +ale)], (2.19¢)
1
Ble,) = 5 {6+ g,(e,) - g le,)} (2.194)
7(ec) = 5%—-{[Ggec + ac(ec)][Gg + gc(ec) - gm(ec)]} (2.1%e)
g
where:
dac
gelel) = 5~ (2.19¢)
and
g (e,) = C%—% . (2.19g)

19



Carrying out the coordinate transformation of the dependent variables

presented in Eq., 2.1k gives the following system of equations.

( . . 2 7(E) EC.’ \y)
E = - B(E, E,; V) E sin“y - ——F— siny,
. (o}
$E = -alg, By, ¥) (2.20)
'y 7(E) Ec’ ‘y)
= - I - rme———
\W w, B(E, E. V) sin ¥ cos ¥ Ty cos
The above system corresponds to Eq. 2.15. .

The system of equations corresponding to Eq. 2.18 is given by

: ar y(E, E_, \)

° )
. 1 2n
=g [' a(E, E,, >‘)] dr (2.21)

o)

y 1 2 7(E, B, N)
Vo= 5 J [wb - B(E, Ec’ A) sin A cos A - e C0S A
© o)

Before the integrals (2.21) can be evaluated, it is necessary
to determine the exact expressions for o(E, E,» v), B(E, E,» V), and
v(E, E, V). Referring to the definitions of these functions which

follow Eq. 2.19, it can be seen that the determination of «, B, and y

reduces to the determination of

] o

Ag.le) _ B
¢ “c gc(ec) = dac/dec, gm(ec) = da/dec,
and ac(ec). A wide choice is possi-
Ge
i ble for these functions, but (as
G, = SLOPE OF
4 CURVE(FIG 1.2 pentioned previously) a specific
0 > set of functions will be employed
0
GRID VOLTAGE - e here in order to go through the analy-
c
Fig. 2.3. Grid conductance sis, which follows in some detail.
versus €,. The assumed dependence of a, on e,

20



is shown in Fig. 1.2. Figure 1.2 also indicates the dependence of &,
upon e, which is depicted in Fig. 2.3. Similarly, it follows from

Fig. 1.3 and the definition of a(ec)l that the dependence of g wupon e,
is as shown in Fig. 2.4, Substituting for e, by means of Eq. 2.12 gives
g, 8., 8nd a_ as functions of E, E,, and A (recall that ¥ —\); that is,

gC(E’ Ec: )\)

1

gc(Ec + E cos A)

]

gm(E, E, A) gm(Ec + E cos \)

and
ac(E, E, A) = ac(Ec + B cos A) .

For the integration of Eq. 2.21, the dependence of &, 8ur and ac upon A
must be known. E and Ec are treated as parameters insofar as these inte-
grals are concerned. A typical situation is illusti'ated in Fig. 2.5. 1In
this figure note that the symbol ¢ has been introduced for the conduction

angle, Thus,
f‘

1 (R-E,
cos for E > |R - E |
E c
g =<0 forEc_<_RandE<|R-Ec| (2.22)
|« forEc_>_Ra.ndE<[R-Ec[.

This symbol, o, simplifies certain equations that appear later in this

report. The dependence of g, and

a, upon N is similar to the depen- 4 Imlec)
dence of g, upon A\ as depicted in Gm
Fig. 2.5. 1In th f d

g 5. 1In the case of g, an . :MX[SLOPEOFG }
a, the conduction angle is desig- M Lg LCURVE (FIG 1.3)
nated ¢ and defined as follows: R OO >

GRID VOLTAGE - e,

E
-1 e
cos ("‘g‘) for E 2 IEcl ’ Fig. 2.4, Plate transcon-
? = (2.23) ductence versus e .
0 for E<|E]| .

lSee p. 13, 21
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Gm Gm
0 B o o__ 1 1 1
10 Al >
R ! e 0O o m (2m-0) 2w (2w+0) 3w
! I
Ee | 0 .
0] X .
a Fig. 2.5. An illustration of
the dependence of gp on A with
' a given set of parameters
E —_— T E a.nd EC.
! 2m-a
-2
/ 2T+0
v

It then follows from Figs. 1.2 and 2.5 and Egs. 2.22 and

2.23 that

gc(Ec + B cos N) =X

gm(Ec + E cos ) =<

and

~

LOforcp<>\.<(2ﬂ-CP) ’

.
G for 0 <A< o end (e = g)<A<2n,

0 for g <A< (21 - g) ,
.

Gc(Ec + E cos \) for

ac(Ec+Ecos>\.)= 0<A<pand(en - PIS A L 2n

0 for p <A< (2 - 9)

22

G, for 0 S A< ¢ and (e - g)<angen,

(2.24)

(2.25)

(2.26)



Substituting Egs. 2.24, 2.25, and 2.26 into Eq. 2.22 and

carrying out the indicated integrations gives the following system of

equations,
[ E Gm 1 . Gc 1 -
E = 55-[};-(0 - 5 sin 20) - — (¢ - 5 sin 29) - G
. Ec Gc E
E, =-5 Gg + = (9 + ﬁ: sin 9) |, (2.27)

’ G

V= Ll ?E(G +26 -G )(9+ % sin 20) ‘e
V=0, - 2Cngb c 1w Ve g nm Ptzs P+ =3
E 2G 2G G
\_ 1. c c . ng .
(o + 5 sin 20) - = | = (Gc + 2Gg - G,) sin ¢ + —= sin ¢

The above system constitutes the app:oximating system of differential
equations and is equivalent to Eq. 2.18. The analysis of this system
is carried out in the following section of this report. However, before
going on to this analysis it is worthwhile to recapitulate the assumptions
which are associated with the selection of Eq. 2.27. These assumptions
are as follows:

(a) Qp 2 10 and capacity on plate side of transformer is
negligible. (Introduced just preceding Fig. 2.2.)

(b) E(t), Ec(t), and [y(t) - wt], the variables associated
with the original system, Eq. 2.20, are slowly varying functions of

time relative to a "period of oscillation" T; i.e.,

g
E b

discussion following Eq. 2.16.)

.

7|
—%—l, and l(w _®)plare small quentities. (See the
c w

G +G

(c) 7%“5—_E'<< 1 (See the discussion following Eq. 2.16)
o g
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3. Solution of the Approximating System of Differential Equations

The approximating system of differential equations, Eq. 2.27,
was developed in the foregoing section. In this section, a phase plane
is introduced which is suitable for determining the solutions of this
approximating system. A detailed discussion of the implications of
this phase plane is then carried out in Section 4 of this report.

Referring to Eq. 2.27, it can be seen that the approximating
system is a second-order system, although at first glance it might
appear to be a third-order system. This fact can be appreciated by
noting that all three derivatives, é, éc’ and & are functions of E and
Ec only: V¢ does not appear on the right-hand side of any of these
three equations. Consequently, the first two equations form a system
which is independent of the third equation. V¢ itself can be determined
from a straightforward integration of the third equation. However, the
resulting y(t) is not a satisfactory approximation to the y(t) which is
associated with the original differential equation, Eq. 2,19, This
merely means that the approximating system which has been selected here
does not yield useful information about the variations in the instantane-
ous frequency of oscillation. Since a method which is essentially
similar to the one employed in this report does not result in satis-
factory information about frequency shifts for even a linear system
[Ref. 3], the limitations of the present method are not surprising.

The mathematical characterization of the E and Ec variations

is, therefore, of the form

: -E Gm 1 Gc 1
E==—=1[G-—=(0-3%sin20) + — (9 - 5 sin 29)] ,
2C B3 2 T 2
(3.1)
-E G
. c c E .
EC = C———g [Gg + - (CP + E—-c sin Cp)] .
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Formally, the general solution of the above system is

E

i)

E {(t -t )5 B, E }

c E, { (t - to); Ey Eco} ’

where Eo and Eco are the values of E and Ec, respectively, at t = to.

(3.2)
E

L}

Thus, given initial conditions Eo and ECo and an initial time, to
(usually to can be assumed equal to zero), a solution of Eq. 3.1 is
formally represented by Eq. 3.2. A solution of special interest would
be one for which the right-hand sides of Eq. 3.1 vanish simultaneously
Such a solution would correspond to a CW mode of oscillation and be of
the form

E a constant ,

L}

(3.3)

E
c

It is clear from the form of Eq. 3.1 that standard phase

a constant .

n

plane techniques [Ref. 4] can now be employed to investigate its solu-
tions. However, before a phase plane is introduced it is worthwhile
first to consider carefully the form of Eq. 3.1. In particular, note
that the terms inside of the brackets in Eg. 3.1 can be identified as
conductances or averaged conductances. In the first equation, G is the
conductance associated with the tank circuit losses; that is, G is a
linear conductance. In the same equation, the expression

G

=(3:

sin 29)

op =

can be considered to be a voltage-dependent conductance which is associated
with the high frequency current flow in the grid. The voltage dependence
is clear from the definition of ¢, Eq. 2.23. Let

G
{5, 8} =2 (o- %—sin 29) (3.4)
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It can be shown that for grid current versus grid voltage
and associated gc(ec) characteristics other than the ones presented in

Figs. 1.2 and 2.3

2n
td {E, Ec} = i— / gc(Ec +E cos V) singxy avy . (3.5)

c
o
The remaining expression inside the brackets of the first

equation of Eq. 3.1 is

m 1
—ﬂ—(c-é-sin&;) .

In a manner which is similar to the definition of Gﬁf, this remaining
term can be considered to be a voltage-dependent conductance arising

from tube amplification. Thus, let

G
Gif{E, EC}E 2 (o - 5 sin 20) , (3.6)

and in the general case with plate current versus grid voltage ana as-
sociated gm(ec) characteristics other than the ones presented in Figs. 1.3

and 2.4,
2n
/ gm(Ec + E cos V) sinzw ay . (%.7)

&m@’EJE
)

m

A

Note that Gﬁf is the "average gm" which was mentioned in Section 1.

In the second equation of Eq. 3.1 there are two terms inside
the brackets. The first term, Gg, is Jjust the linear conductance of the

grid leak bias circuit. The second term is

G
c E
—;((P-PE:Sin(P).

This term can be considered to be a voltage-dependent conductance

associated with low frequency current flow in the grid. Let

G
1f _ "¢ E ‘
GC = 2 ((P + E—; sin CP) . (5,8)
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In the general case with a grid-current versus grid-voltage characteristic

other than the one shown in Fig. 1.2,

2n
1f 1
GC = -é-,'tE—c- Of ac{Ec + E cos W}d\y . (3'9)

Substituting Eqs. 3.4, 3.6, and 3.8 into Eq. 3.1 results in the

following simplified expression:

E = é%'[G - th {E’ Ec} * Ggf {E’ Ec}] .

] " (3.10)
E_ = (-3-;- [Gg . Gif {E, EC}] .

This expression together with Egs. 3.5, 3.7, and 3.9 is the generalized
approximate system of equations which applies to oscillators which have
grid and plate characterizations other than those shown in Figs. 1.2 and

1.3.

The construction of an

(B, Ec)-phase plane for the

specific oscillator characterized
DIRECTION OF SOLUTION

by Egs. 3.10, 3.4, 3.6, and 3.8 PATH THROUGH POINT (x,y)

can be carried out in a straight-

forward manner. In order to EcV

determine the direction of the Fig. 3.1. Illustration of
method of constructing of

solution path through any point ' solution paths in the

(E, Ec)-phase plane.
(x, y) in the phase plane it is

merely necessary to substitute the appropriate values E = x and Ec =y

into the right-hand side of Eq. 3.10 and then use the resulting ﬁ and

éc to determine the solution path direction as demonstrated in Fig. 3.1,
Owing to the relative complexity of the right-hand side of

Eq. 3.10, it is not particularly helpful to employ the method of iso-
27



clines, which is often used in the construction of phase planes. How-
ever, the two equations of Eq. 3.10 can be used separately to determine
é or éc versus E and Ec surfaces,
and these surfaces are an aid in
either the construction of the
phase plane or a visualization of
its construction. Using the ac(ec)
and a(ec) characteristics of Figs.

1.2 and 1.3, these surfaces appesr

as shown in Figs. 3.2 and 3.3.

It follows from the surfaces

of Figs. 3.2 and 3.3 that the

Fig. 3.2. Typical é versus
phase-plane configuration for (E, Ec) surface.

Eq. 3.1 is similar to the typical
one shown in Fig. 3.4, Needless to say, the appropriate phase plane
for a particular set of oscillator
e parameters, although to some extent
similar to Fig. 3.4, can be signi-

ficantly different in character.

The particular example given

in Fig. 3.4 shows the phase-plane

configuration for an oscillator

which exhibits only a stable CW

Fig. 3.3. Typical E_.versus mode of oscillation. As is dis-
(B, Ec) surface.

cussed in detail in Section k4,

other modes of oscillation are possible and have their corresponding

phase-plane configurations.
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OSCILLATION AMPLITUDE (E)

Before going on to Section k4 x P ————
POINT AT ORIGIN

£ = 0 CONTOUR

it is worthwhile to consider just

a few of the salient features of

STABLE EQUILIBRIUM
POINT "A"

Fig. 3.4. First, note that the

GRID BIAS (E¢)

contours of é = 0 and éc = 0 from

£ =0 ALONG THE &
E; AXIS %
c \ \\6;/
\\<O

Figs. 3.2 and 3.3 are shown in XY

Fig. 3.4 (notice that the E = O Fig. 3.k, Typical phase-plane
representation of the

contour also includes the Ec—axis). approximating system.

The ihtersections of these two

contours obviously correspond to two equilibrium points, where one is
stable and the other is unstable. The dashed curve shown in Fig. 3.4

is the E = IEC| locus. Its significance is that it divides those com-
binations of E and Ec for which grid current flows from those combinations
for which no grid current flows. These curves maintain roughly the

same topological relation to one another as circuit parameters are varied,
even though the ﬁ = 0 and ﬁc,z O contours do shift in the phase plane.
Consequently, these curves are used extensively in the discussions in

Section k4.

4. PHASE-PLANE CONFIGURATIONS AND MODES OF OSCILLATION
PREDICTED BY THE MATHEMATICAL ANALYSIS

4,1 Introduction

In the foregoing sections, a mathematical model for the oscil-
lator circuit of interest was developed and a phase plane in which
solutions for this mathematical model could be determined was introduced.
It was also shown that generalized conductances (see Egs. 3.5, 3.7, and
3,9) could be defined and employed when grid and plate characteristics

other than those shown in Figs. 1.2 and 1.3 were of interest. The various
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phase-plane configurations which are of interest and their associated
modes of oscillation are discussed in this section. Most of the remarks
in this section apply to the case in which generalized conductances are
considered, although the examples presented are limited to the originally
assumed grid and plate characteristics.

The phase-plane configurations of interest are divided into
three classés. The first class consists of all those phase-plane con-
figurations in which there is only one stable equilibrium point and this
equilibrium point is practically stable-in-the-large; that is, given
almost any initial conditions the solution path converges to the stable
equilibrium pointl. This first class is discussed in Subsection 4.3
and is designated as the "Practically Stable-in-the-Large Equilibrium
Point Phase-Plane Configuration" or the (PSIE) configuration.

The second class of phase-plane configurations consists of all
those configurations in which there 1s at least one stable limit cycle
and no stable equilibrium points. This second class is discussed in
Subsection 4.4 and is designated "Stable-Limit-Cycle Unstable-Equilibrium-
Point Phase-Plane Configuration" or the (SIC-UE) configuration.

The third class of phase-plane configurations consists of all
those configurations in which there is at least one stable limit cycle
and only one stable equilibrium point. This third class is discussed
in Subsection 4.5 and is designated "Stable-Limit-Cycle Stable-Equilibriume

Point Phase-Plane Configuration" or the (SIC-SE) configuration.

lFrom a theoretical point of view it is not stable-in-the-large, because
no initial conditions on the E,-axis result in a solution which con-
verges to the stable equilibrium point. Since E = O but E, > O on the
E. axis, all solutions which start on the E, axis converge to the un-
stable equilibrium point at the origin. Thus, this unstable equilibrium
point must be a saddle point; therefore, for practical purposes, all
solutions will bypass it and converge to the stable equilibrium point.
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Associated with eny given phase-plane configuration is one or
more modes of oscillation. As was mentioned in the introduction of
this report, these modes of oscillation are of three types. These types
are (1) the CW mode, (2) the Amplitude-Modulated mode, and (3) the
Squegging mode. Sometimes it is convenient to consider Amplitude-Modu-
lated and Squegging modes together as a single mode. In that case the
name "Limit-Cycle mode" is used. The relation between these modes of
operation and the three classes of phase-plane configuration is brought
out during the discussion of each configuration. In particular, it is
shown that a given mode of oscillation is not necessarily associated with
only one class of phase-plane configuration.

In the last subsection, the effect of varying a circuit para-
meter is discussed. The parameter considered as an example is the grid-

leak conductance, Gg.

4.2 Determination of Waveforms from the Phase-Plane Configuration

Before going into a discussion of the various phase-plane
configurations, a short review will

be given of the method whereby the

waveform associated with a given
solution path in the phase plane PORTION OF A
SOLUTION PATH
can be determined. Consider the

portion of a solution path shown

in Fig. 4.1. It is assumed that

this solution path results from an -Ec v
application of the technique illus- Fig. 4.1. Portion of a

solution path in the phase-plane.
trated in Fig. 3.1 to a pair of
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equations
E = fl(E, Ec)

E =1

(] 2(E’ Ec) *

It is not possible to determine E and Ec as functions of time from

Fig. 4.1 alone. In order to meke this determination, the value of E or
éc at each point along the solution path must be known. This information
is available if the solution path shown in Fig. 4.1 is plotted onto the
(E, Ec)-plane in either Fig. 3.2 or Fig. 3.3, or, similarly, if contours
of the E or éc surfaces are plotted onto Fig. 4.1. In either case curves
of either E versus E or éc versus EC along the solution path can be
determined. It then follows that the time interval between any two
points (say points A and B in Fig. 4.1) can be determined by either of

the following two line integrals:

B
At = [ TaE,
A E
or
B
at= [ TaE_ .
A E

4.3 Practically Stable-in-the-Large Equilibrium Point Phase-Plane
Configuration [The (PSIE) Configuration]

A (PSLE) configuration is, as the name implies, a phase-plane
configuration in which there is only one stable equilibrium point and in
which this equilibrium point is practically stable;in-the-largel. An
example of a (PSIE) configuration is shown in Fig. 4.2, This figure
presents the phase-plane configuration associated with the mathematical

model when the specific grid and plate current characteristics of

lSee the footnote on p. 30.
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Figs. 1.2 and 1.3 are assumed. The model parameters used arel

Gm = 2390 umho
Gc = 1920 umho
G =G' + Gg = 398 umho
C_ = 1000 pf
g P
C = 300 pf.

In Fig. 4.2 the contours of both the E and ﬁc surfaces are shown and the
direction of the solution paths at various points (found by the method
illustrated in Fig. 3.1) are indicated by vectors. A significant feature
of Fig. 4.2 is that with the exception of the EC axis all initial condi-
tions, Eo and Eco’ result in solution paths which converge to the equili-

brium point A. Two such solution paths are shown as Tl and T, in the

2
figure. Thus, if the coordinates of the Point A are designated EA and
ECA’ it is clear that after a transient interval2 an oscillator charac-

terized by the phase plane in Fig. 4.2 will reach a CW mode of oscillation
which is of the form

ec(t) = E,, +E, cos ot

(k.1)

e(t) = E, cos w t

Moreover, this will be the only possible stable mode of oscillation. It
is shown later that some of the other phase-plane configurations can have
more than one stable mode of oscillation. If one were interested in de-
signing a CW oscillator with grid-leak bias, it is evident thaththe (PSIE)

configuration would be desirable.

lG' is defined on page 13. Gg is shown in Fig. 1.1.

2The waveform associated with the transient behavior may be determined by
integration along the particular solution path as described in Section
4.2, For example, the waveform of oscillation built up from noise would
be obtained from an integration along path Tl'
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As has been mentioned previously, the approximating system of
differential equations, (2.27), employed in this paper does not give a
suitable approximation to the instantaneous frequency of oscillation.
Consequently, ﬁhe frequency of oscillation is arbitrarily assumed to be
equal to w in Eq. 4.1.

Ideally it would be desirable to be able to determine from
the circuit parameter values whether or not the phase-plane configuration
associated with a given oscillator is a (PSIE) configuration. Unfortu-
nately, this determination is not easily completed. In particular, it
is not easy to obtain necessary as well as sufficient conditions for a
(PSIE) configuration. On the other hand, it is possible to determine
in a straightforward manner whether the equilibrium point A is asymp-
totically stable-in-the-small, but the extension to stability-in-the-
large is difficult. If a suitable Liapunov function were determined,
Liapunov's Second Method could be used to obtain sufficient conditions
but not necessary conditions. Consequently, only the conditions which
are necessary and sufficient for the asymptotic stability-in-the-small

of the equilibrium point A are presented in this subsection.

Asymptotic Stability-in-the-Small of the Equilibrium Point A:

The determination of necessary and sufficient conditions for
the asymptotic stability-in-the-small of the equilibrium point A is ac-
complished with a standard linearization technique discussed in detail
in many places [Refs. 3, 5]. Therefore, only the outline of the argu-
ment which leads up to the stability criterion is presented.

The system of differential equations under consideration is,

again, of the form
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t=t
I

£,(8, E,) ,
(4.2)

=
[}

(B, E,) 5
and at the equilibrium point A, which has coordinates EA and ECA’ the

following conditions are satisfied by definition of an equilibrium point:

£ (B

1 =0,

0 Eop)
(4.3)
E

£, (E 0.

27N CA)
Asymptotic stability-in-the-small is determined by the behavior of the
solutions of Eq. 4.2 in the neighborhood of the equilibrium point A.

Let

and

In a small neighborhood of the equilibrium point A, the linear approxi-
mation to Eq. 4.2 (i.e., the variational equation) is given by

Bfl afl

(4.4)
of of

If the partial derivatives in Eq. 4.4 are denoted by~

T
A is the point E = B, E_ = .

Bihen characteristics are as given in Figs. 1.2 and 1.3 and Eq. 3.1 applies, the partial derivatives are

fig = K sin 20, - K, sin 29 = %0, - K9 - K, , (4.ka)
rmc = 21(1 sin 0y - 2K, sin LY (b.4v)
fop = -K5 sin g, , (4.ke)
tEEc = K, - K9, , (4.4a)
sihere G G
% . e = &
SR K2 = & K5 =
G G
K, = =& K. = <
v T, 5 7,

end o) and ) ave the conduction angles defined in Eqs. 2.22 and 2.23 and evaluated at the point A, It is
seen later (Section 4.6) that equilibrium point A must occur in the region where
0<g<n
0<p<X
2
and thus et potnt A the Bgs. 2.22 and 2.2 deseribe a one-to-one relstion between (E,, Egy) and (o), 9,).

In addition to stability tests the partial derivatives are frequently useful in investigating
the behavior of the £ end £, surfaces throughout the plane. With the exception of f1g, the above forms are
valid at all points if the angles o and ¢ are properly evaluated in accordance with their definitions (see
Fig. 4.11). However f1g Was obtained by combining

oty 1 1

s - Kl(u+§sin2u) »Kz(w+§sin 29) —Kj )

vhich is valid everywhere, with EQ. 4.12, hich is velld only at point A. Thus, the original form, df,/3E,
should be used at points other than point A.
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J .
S—E_’A = fJ.E (3=1,2),
and
a‘fj
gE_— = ij (J = l) 2) 2
c'A c

it follows that the characteristic equation of the linear system (4.4),

is given by
2

A - [flE + 2o ]x + [flEfaE -0 fEE] =0. (4.5)

c c c
The equilibrium point A is asymptotically stable-in-the-small if both
roots of Eq. 4.5 have negative real parts, and unstable if one or both
rooﬁs have positive real parts. Whether or not both these real parts
are negative could be determined by means of the quadratic formula.
However, by using index theorems it is possible to dévelop a consider-
ably simpler stability criterion.

First, note that if

£155om - fmcfaE <o,

the roots are both real and of opposite sign; therefore, the equilibrium
point A is a saddle point, and if point A is a saddle point its index
must be -l*. However, it is shown in Appendix A that under a few

rather loose restrictions on the system the index of the equilibrium
point A m st be +1. Therefore, it follows that point A can not be a
saddle po?nt;and

flEf2E -flEf2E>O.

The above inequality'implies that the roots of Eq. 4,5 both

'have negative real parts if and only if

<0, (4.6)

£ .+ 7
1E EEC

*For a complete discussion of types of equilibrium points and indexes see [Ref. 5].

37



and both have positive real parts if and only if

flE + f2Ec >0.

An application of the above criterion to Fig. 4.2 [either by
measuring the slopes flE and fEEC in the figure or by using the relations
(4.%a) and (4.4d) and the coordinates of the point A] shows that the equili-
brium point is stable. Evaluation of the roots of the characteristic
equation shows that the equilibrium point in Fig. 4.2 is a stable focus;
thus, the spiraling of the vectors into point A is anticipated.

In addition to being a simple expression, the stability condition
(4.6) allows certain conclusions to be drawn directly from the phase-plane
configuration. This can be seen by referring to Fig. 4.2, Assume in this
figure that the general shapes of the E = 0 and the éc = 0 contours do not
alter markedly as the circuit parameters are varied over small intervals.

Then consider the sign of f._, for various positions on the ﬁ = O contour.

1E
Note that this contour takes on a minimum value of the ordinate, Eg’ Just
to the left of point A. Since E is positive for all points above the

ﬁ = 0 contour and negative below, it follows by inspection that for all

points on the E = O contour to the left of the minimum Ec point

> .
flE 0

Similarly, it follows that for all points to the right of this minimum

EC point

flE <0,

It also follows by inspection that for all points on the éc = 0 contour

fEE < 0. Consequently, the intersection of the E =0 and éc = 0 contours
c

tells something about the stability characteristics. In particular, if

the éc = 0 contour intersects the E = O contour to the right of its mini-

mum Ec point both flE and fEE are negative; therefore, Eq. 4.6 is auto-
c
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matically satisfied, and the equilibrium point A is stable. Furthermore,

in order for the equilibrium point A to become unstable, the ﬁc = 0 con-
tour must intersect the é = 0 contour sufficiently far to the left of its

minimum Ec point to allow the positive f2E to cancel out the negative
c

flE in Eq. 4.6. In other words, the boundary point on the ﬁ = 0 contour

between stability and instability of the equilibrium point A is just to

the left of the minimum Ec point,

L.} Stable-Limit-Cycle Unstable-Equilibrium-Point Phase-Plane
Configuration [The (SLC-UE) Configuration]

In this case the phase plane possesses two equilibrium points,
point A and the origin, which are both unstable and at least one stable
1limit cycle encircling point A. All solution paths beginning at any point,
except point A, inside this limit cycle converge to the limit cycle.

This limit cycle may, in turn, be encircled by other limit cycles. The
only requirements on the limit cycles is that the outermost be stable and
that they alternate their stability characteristics; that is, the first
is stable, the next is unstable, and so on. An example of an (SLC-UE)
configuration is shown in Fig. 4.3. This figure presents the phase-plane
configuration which is associated with the mathematical model of Fig. 2.2

with the parameters:
‘ G = 2390 umho

m

G, = 1920 wmho
G = 275 umho
C_ = 1000 pf
g P
C = 300 pf

Again the grid and plate current characteristics of Figs. 1.2 and 1.3
are assumed.

The contours of both the E and éc surfaces are shown, and the
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solution-path directions are indicated by vectors. In this case the
(SLC-UE) configuration possesses one limit cycle, i.e., the limit cycle

labeled Ll' An application of the stability criterion reveals that the

equilibrium point A is now an unstable focus (note that the éc = 0 con-
tour intersects the E = O contour well to the left of the minimum Ec
point). Thus, all initial conditions inside Ll result in solutions

which spiral out to L It should be noted that all initial conditions

1.
outside Ll also result in solutions spiralling to Ll.

a short transient, such as Tl in the figure, all initial conditions lead

Therefore, after

to operation on L.; i.e., there is only one stable mode of operation.

15

Note that a part of the limit cycle Ll appears to coincide
with the Ec axis; however, this is not the case. If the vregion of the
(E, Ec) plane in the neighborhood of the Ec axils were expanded it would
be found that below the E = O contour the limit cycle would be close to
and approaching even closer to the Ec axis., This may be seen from Eq.
3.1 by noting that in this region ¢ = ¢ = 0 [Eq. 2.22 and Eq. 2.23],
and thus

E=-

G
2 E o

giving a solution E(t) which decays exponentially toward zero. This
decay continues until, on crossing the E=0 contour, E becomes positive
and the limit cycle begins to depart from the Ec-axis. (A sketch of the
behavior is shown in Fig. 4.4.) Therefore, it is always assumed that

the limit cycle, Ll’ does not touch the Ec axis., However, the minimum

separation between L. and the Ec axis does determine whether L. corre-

1 1
sponds to a squegging mode or an amplitude-modulated mode of oscillation.
In order to make this distinction it is necessary to consider residual

circuit noise,

L1



When the limit cycle, Ll’ is extremely close to the Ec axis
for a reletively long time (it can be shown that the time necessary to
traverse the limit cycle on its

increasing Ec side is many times 0

vm

greater than the time required for
its decreasing Ec side, cf., Fig.
2.3), as in Fig. 4.3, the result-
ing oscillation exhibits two im-
portant characteristics., First,

since E is very close to zero for

a relatively long time, the oscil-

lation waveform is in the form of

4

a train of RF pulses. Secondly, Ecw

between pulses E becomes so small Fig. 4.4, Sketch of limit
cycle in the neighborhood

that residual circuit noise, which of the Ec-axis.

is not considered directly in the

mathematical analysis of this report, becomes the dominant tank voltage,
and a stochastic character is evidenced in the train of RF pulses. For
example, there is small or no correlation between the pulse phases;

also the time interval between pulses has some "jitter" associated with
it.

In this report, the limit cycle L, is said to be associated

1
with a squegging mode of oscillation if the limit cycle comes so close
to the Ec axis that there is zero (or, sometimes, just small) corre-

lation between the phases pulse to pulse. Figure 4,3 illustrates such

L2



a situationl. A typical gridwvoltage waveform for a squegging mode of

oscillation is shown in Fig. 4.5.

//\
[ 10 20 30——-’_20_-4\\ I 50\ 60 70 80 %0
) \\\ )l

e~ VOLTS

N

-12
\/ PRP & 87 uSEC

(a) Theoretical result.

SCALES © HORIZONTAL - 20 uSEC/CM
VERTICAL - 8 V/CM

(b) Experimental result.

Fig. 4.5. Typical grid-voltage -waveform squegging mode.

lActually it is not readily obvious whether some limit cycles are associated with squegging or emplitude-
modulated modes of oscillation. However, in many cases a few simple calculations will make the determina-
tion easier. Since the limit cycle approaches the Ec axis in the region where

E<- (B -R),
no grid or plate current flows and linear circuit concepts may be applied, Thus in this region
t
-RC
E =E _e &8

and

where By, Eq, 1s any point on the limit cycle and in the specified region. An application of these equations
to Ly in Fig, 4.3 with E, = 0.1 v and E,, = -5 v shows that in the time required for E, to decay to a value
of R (R = -1.5 v), E has decayed to approximately 9 x 10-23 v, Assuming that the circuit noise is at least
as great as the thermal noise in the tank circuit, which is given by [Ref. 6]

5

& - c@ = 13.5 x 10712

it should be safe to assert that L, in Fig. 4.3 would be associated with a squegging oscillation.
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The theoretical waveformﬁin Fig, 4.5(a) was obtained from an application
of the integration technique described in Section L.2 to the limit cycle,
Ll’ in Fig. 4.3. The experimental result is an oscillograph of the grid
waveform of an operating oscillator. Since the circuit parameters of the
oscillator have been adjusted to correspond to those assumed in plotting
Fig. 4.3, a comparison of Fig. 4.5(a) and (b) gives a check on the validity
of the mathematical model.

If the limit cycle, Ll’

Ec axis for the noise to become important, the limit cycle is said to be

does not come sufficiently close to the

associated with an amplitude-modulated mode of oscillation. A typical
grid voltage waveform for an ampli-
tude-modulated mode of oscillation

is shown in Fig, 4.6. This figure

is an oscillograph of an oscillator
Fig. 4.6. Typical grid voltage grid waveform.
waveform for an amplitude- ¢
modulated mode. Obviously, if one wanted to
build an oscillator which exhibited
a limit cycle mode (i.e., either a squegging or an amplitude-modulated
mode ) the (SIC-UE) configuration with only one stable limit cycle would

be the desirable phase-plane configuration.

4.5 Stable-Limit-Cycle Stable-Equilibrium-Point Phase-Plane Configuration
[The(SLC-SE) Configuration]

In this case there are again only two equilibrium points:
point A and the origin. The equilibrium point at the origin is unstable,
and the one at point A is stable. Furthermore, there is at least one

stable limit cycle encircling point A, Since A is stable, there must also

Ly
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be an unstable limit cycle lying between the stable limit cycle and the
point A. Therefore, all solution paths beginning inside of the unstable
limit cycle converge to A, and a CW mode results; whereas, all solution
paths beginning in the annulus between the stable and unstable limit cycles
converge to the stable limit cycle and a squegging or amplitude-modulated
mode results, The stable limit cycle may be enclosed by other limit cycles
which are alternatingly unstable, stable, etc., but the outermost will be
required to be stable. A typical example of an (SLE-SE) configuration is
shown in Fig. 4.7. This figure presents the phase-plane configuration

which is associated with an oscillator model whose circuit parameters are

Gm = 2390 pmho
GC = 1920 umho
G = 326 umho
G_ = 1000 pf

g P
C = 300 pf ,

and the characteristics of Figs. 1.2 and 1.3 are assumed.

The important feature of Fig. 4.7 is that for one set of
oscillator parameters two modes of oscillation are possible. That is, this
oscillator can operate either in a CW mode (point A) or in a limit cycle
mode (limit cycle Le)l. As can be seen from Fig. 4.7, the mode which is
taken up depends upon the initial conditions., If the initial conditions
are anywhere outside of the limit cycle Le(e.g., in some small neighbor-
hood of the origin), the solution path converges to L

2

cycle mode is teken up. If the initial conditions are anywhere in the

, and the limit

annulus between Ll and L? the solution also converges to the limit cycle

lIn this case E has decayed to approximately 450 p volts at point R (see
footnote, page 43). In order to avoid an analysis of circuit noise at
this point, the squegging versus amplitude-modulated question is by-passed,
in this case, by use of the more general term.
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L, following a transient path similar to T2. On the other hand, if the

2
initial conditions are inside the limit cycle Ll’ then the solution

converges to the equilibrium point A along a path such as T One con-

1
venient method of adjusting the initial conditions of an experimental
oscillator employs an external CW signal near the oscillator frequency.
Roughly speaking, the operating point of the experimental oscillator

may be "adjusted" to a desired region of the (E, Ec)-plane by the size
and frequency of the external signal injected into the oscillator tank
circuit., This procedure distorts the existing phase-plane configuration,
but if the external signal is suddenly removed, the configuration returns
to normal and the oscillator operating point returns to a location, on

a limit cycle or at an equilibrium point, dictated by the adjusted
position (initial condition) involved.

Figure 4.8 illustrates the grid-voltage waveform for the
oscillator represented in Fig. 4.7 when operating on the limit cycle L2.
The theoretical results are obtained through an integration around the
limit cycle L2 by the method described in Section 4.2, while the experi-
mental results are an oscillograph of the grid voltage of an experimental
oscillator. Again, the parameters of the experimental oscillator have
been adjusted to match those assumed in Fig. 4.7 and thus a comparison
of (a) and (b) gives a check on the validity of the mathematical model.

Finally, note again that in an (SLC-SE) configuration the
stable limit cycle may be associated with either an amplitude-modulated
or a squegging mode of oscillation. Again this depends only on the

closeness of approach of L2 to the Ec axis. Thus, by proper selection

of eircuit parameters, either case may be obtained.
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Fig. 4.8, Grid-voltage waveform for example in Section k4.5.

4,6 Effect of a Circuit Parameter Variation on the Phase-Plane

Configuration

In the foregoing subsections the three classes of phase-plane
configurations which are of interest here were defined and described.
In this subsection, the phase plane and related concepts developed above
are employed to predict the effect of circuit parsmeter variations on

the behavior of a particular oscillator. In particular, a few examples

48



of the phase-plane configuration changing from one of the three classes
to another are given. Throughout this subsection the circuit parameter
that is considered to be variable is Gg’ The effect of other parameter
variations can be treated in a similar manner.

First, consider the effect upon the E =0 and éc = 0 contours
of variations in Gg. Referring to Eq. 3.10 and recalling that G = Gg +
G', it follows that the E = O contour is determined by

hf hf
! - =
G' + Gg G~ + G, 0, (%.7)

and the I:Jc = 0 contour is determined by

Restricting attention to the specific grid and plate current charac-

teristics considered in this report, Egs. 3.6, 3.4, and 3.8 give

G
Gif = _}tn_ (0 - %— sin 2¢) , (3.6)
th—ic-( L sin 29) (3.4)
c "7 \$-3 ®/ *
and G
1f c E .
G =— (o + E-c— sin @) . (3.8)

Determination of the éc = 0 Contour:

Therefore, Eq. 4.8 becomes

G
c

E
Gy * 3 (@ + £ sin @) = O. (4.9)
Recalling from Eq. 2.23 that

cos™ [-%] for E 2 |E | ,

o = (2.23)

0 for E < (B | ;
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it follows that Eq. 4.9 becomes

G

+= (9 - tan @) = 0. (4,10)

0%l
A

Equation 4.10 may now be solved for ¢ as a function of the ratio Gg/Gc’

and this locus,

G
Q= §§ = a constant,
c
is the Ec = 0 contour. That this contour is a straight line passing
through E = Ec = 0 with slope (-cos ¢)may be seen from Eg. 2.23,

A plot of the function 1/x (¢ - tan 9) is shown in Fig. L4.9.

¢ - RADIANS
m
o J4 2 3 4 5 6 I 8 9 10 I L2 13 14 152

0 T T | T ®C [ T ] T
T~ :\VALUE OF ()

T ——————————— S =S CORRESPOND ING ¢
G T0 £ 0
TYPICAL VALUE OF -2 ¢

~—

B .05 c A\
2

[
)

-9..

—

—I& Lo

Fig. 4.9. Plot of 1/x [9 - tan @] versus o.

As can be seen from Fig. 4.9, the @ which is a solution to Eq. 4,10
approaches O as Gg/Gb -0, and it approaches n/2 as Gg/Gc - o, Thus

the slope of the EC = 0 contour varies from -1 to O. Values of ¢ corre-
sponding to values of Gg/Gc can be obtained from Eq. 4.10 through any of

the standard techniques available for the solution of transcendental

50



equations. This solution could be plotted versus Gg/GC; however, there
is a more convenient way for presenting this information.

Since the angle ¢ is not easily measured directly in the
(8, Ec) phase plane, it is more useful to transform the solution of
Eq. 4.10 so that it can be immediately related to some angle in the phase
plene. The angle, 5, selected for this purpose is shown in Fig. 4.10.

Above the l+5°-line in this figure,

it can easily be shown by means of

> \\\ ALONG THE E AXIS
:;ix | {

¢p:5 0T (2.23) and Fig. 4.10 that

bl -1
) &, 5 = - tan [cos @l.  (4.11)
222222222?;2</ S QMOb
=2 %

- s Thus, if the solution of Eq. 4.10
= 0
€ is denoted ¢ = 9(G /G ), then the
%, g e
Q
-Ec’ //{;;;22>\ corresponding & is given by
) -

A plot of & versus Gg/Gc is pre-

<@

(9]
C)| GQO

Fig. 4.10. Definition of o) (55-)= g - tan™t [cos @(
angle 8. c

c
sented in Fig. 4.11. The main qualitative feature of Fig., 4.11 is that

d increases monotonically with Gg/Gc' In other words, the éc = 0 contour
is a straight line through the origin which rotates from 8 = 0° to

5 = 450 as Gg/Gc goes from 0 to =,

Determination of the ﬁ = 0 Contour:

Substituting (3.6) and (3.4) into (4.7) gives
Gm 1 | Gc 1
1 - o— - - 1 — - - -
G' + Gg - (o 5 sin 20) + - (9 5 sin 29) =0 . (4.12)
Clearly this expression does not admit to quite so straightforward a

solution as Eq. 4.10. This is because, unlike the Ec = 0 contour, the
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ﬁ = 0 contour is a function of both
¢ and o.

Just as the locus ¢ = constant
is a straight line through the
origin, it is clear from Eq. 2.22

that the locus ¢

constant is

also a straight line through the

point (E = 0, E, R) with slope
(-cos ¢). Thus the relations de-
scribed by (2.22) and (2.23) divide
the E, Ec plane into regions as
shown in Fig. 4.12. In the region

where ¢ = O the E = O contour must

lie along one of the lines ¢ = con-
stant, but in the remesinder of the
phase plane it will be a function
of both ¢ and 9. That is, it is
necessary to choose a value of @
and solve Eq. 4.12 for ¢ as a
function of the parameters G, Gm,
and Gc; thus,

o = o(®;Gy, Gy» G) 5 (k.13)

where, again, G = Gg + G'.
As an aid in the determination
of the ﬁ = 0 contour the function

y== [x - % sin 2x] is plotted in

Fig. 4.13. This figure can be used
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Fig. 4.12., Ranges of o and ¢
in various regions of the
(E, Ec)-plane.

cos"l(R i

—)

If the angle 1 is defined as
shown in Fig. 4.14 it follows from

Eq. 2.22 and Fig. 4,14 that

1 = E - tan~T [cos al. (4.1%)

Note the similarity between Eq.
4,14 and Eq. 4.11.

The foregoing equations aid in
the determination and plotting of
the ﬁ = 0 contour., However, even
with these ailds this task is labori-
Therefore, Fig. L4.15 is pre-

ous.

sented in order that the qualitative

53

in connection with either Gﬁf or

th.
c

The angle ¢ is related to an
angle in the phase plane by Fig.
4,10 and Eq. 4.11. Following a
similar procedure the angle ¢ can
also be related to an angle in the
Recall from

phase plane, say 1.

Eq. 2.22 that

for E2 [R - E | ,
for E, <R and E < IR - Ecl, and (2.22)

for E_2Rand E< |[R-E | ,

1.0
) //
8 /
: /
N o6
z
” 5
_ln]
‘4
3 /
_|h'3 //
2 /
. //
0 1
0 5 1.0 % 20 2.5 3om
x RADIANS
Fig. k.13, Plot of X(x -  sin 2x)
versus X.
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effects of Gg variations can be
appreciated. This figure shows the

Gm 1 Gc 1 "
—{¢ - 5 sin 20) - —(@ - 5 sin 29)
surface above the (E, Ec)-plane for

some representative values of Gm

and GC. In particular,

-Ec
G = 2390 umhos A
and Fig. 4.14. Definition of
the angle 1.
Gc = 1920 umhos.

[G:— sz]SURFACE

g = 0 CONTOUR

Fig. 4.15. [Gv:lf - Ggf] surface over the (E, Ec) plane.
Gm = 2390 umho Gc = 1920 umho
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(These are the same values which are used in examples elsewhere in this
report.) As shown in the figures, the ﬁ = 0 contour is located on this
surface at the level where

Gm 1 c 1
— - — i - e— - - i = !
~ (o 5 sin 20) - (o 5 sin 29) = G' + Gg.

The significant feature shown in Fig. 4.15 is that as Gg increases the
ﬁ = O contour shrinks back toward the origin. Coupling this piece of

information with the previously

0 E discussed behavior of the éc =0
AN
N\ Gy INCREASING i i
\\ “\\\g contour as a function of Gg’ it
\\ EQUILIBRIUM-POINT follows that the variation of the
N Locus
\\ equilibrium point location with
\ ]
\ DASHED SECTION
§‘4\4chmtssom:mnmm G is similar to that in Fig. 4.16.
\ POINT IS UNSTABLE g
\$;4\ Recalling the previous discussion
N\e/
E ¥ N in Subsection 4.3 of the stability
Fig. 4.16. Typical equilibrium of equilibrium point A, it can be
point locus for various
values of G . seen that point A must become

asymptotically stable-in-the-small

for Gg larger than some minimum level since f._ will become negative as

1E
the é = 0 contour recedes and d increasesl. In fact, it can be seen
from the figures of this section (and demonstrated analytically) that as

Gg increases, flE + sz decreases monotonically. Thus, an increase in
c

C—g causes the equilibrium to move toward stability.
Beyond the preceding statement there is very little of a
general nature which can be said even if attention is restricted, as it

has been in this subsection, to a particular pair of nonlinear charac-

lsee Eq. 4.4(a), p. 36.
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teristics for plate and grid current. On the other hand, there are two
interesting patterns of dependence upon Gg that have been often observed
both theoretically and experimentally which are readily explained in
terms of phase-plane concepts.

The first pattern divides Gg values into three ranges.
Starting at zero and slowly increasing Gg’ the associated phase-plane
configuration is (SLC-UE) until some critical value, Gg =G

g1’ is

reached. In this first range, 0 < Gg <G the phase plane remains

gl’
(SLC-UE) for all values of C-g but the finer details of the configuration
do vary. In particular, as Gg increases, the stable limit cycle tends

to decrease in size (cf., L, in Fig. 4.3, L2 in Fig. 4.7) due to both

1
the shrinkage of the E = O contour and the increase in éc in the linear
region (Fig. 4.12).

As can be seen from either simple circuit considerations or
a detailed application of the methods of Subsection 4.2, the increase in
G and decrease in limit cycle size is accompanied by a decrease infv
pulse repetition period (PRP) of the limit cycle model. As the PRP de-
creases, the time available for E to decay between pulses is reduced.
Thus the minimum value of E increases,and if the operation was originally
in a squegging mode it tends toward amplitude modulation., However, it
should be noted that the change from squegging to amplitude modulation
is not accompanied by any noticeable alteration in the phase plane. A
typical relation between PRP and Gg is sketched in Fig. 4.17.

When Gg increases past Gg the real part of the characteristic

1

roots (f.. + faE ) becomes negative and the equilibrium point becomes

1E

lThe term PRP is obviously derived from the true pulses noted in a
squegging mode. In an amplitude-modulated mode this is more accurately
described as the fundamental modulation frequency, however, the term
PRP will still be used here. g
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stable. In this second range, C—gl < Gg < Gge, the stable equilibrium

point is encircled by both an inner, unstable limit cycle and an outer,
stable limit cycle; thus, the

t (SLC-SE) configuration exists.

Within this second range variations

in Gg have two important effects

PRP

on fine detail., As Gg increases,

the stable limit cycle (and the

0 “:; PRP of any limit cycle mode) con-
g

tinuously decreases in size as it

Fig. 4.17. Typical variation in did in the first region. However,

PRP with G, for G, < G, ..
& & & the unstable limit cycle, which

formed around the equilibrium point when it became stable, is extremely

small for Gg near G_. and grows with Gg until it is almost coincident

gl
with the stable limit cycle for Gg near Gg2'

As Gg increases past ng the stable and unstable limit cycles
coalesce and disappear. In this third range, C-g > GgE’ the equilibrium
point remains stable and the

(PSIE) configuration exists. If

Gg is decreased, the above sequence

changes in the phase-plane con- —
MODE OF —|  LIMIT o ™ cw
: : . 0SCILLATION CYCLE I LmiT ovete e
figuration occur in reverse order. ———
CONFIGURATION — (SLC-UE) (sLC -SE) (PSLE)
However the sequence of oscillation 0 S, 5, Gy

mode is altered. This will be dis- Fig. 4.18. Phase-plane configu-
ration and possible oscillation
cussed below. A complete picture modes versus Gg--first pattern.

of this first pattern including
possible modes of oscillation in each of the three ranges is shown in

Fig. 4.18.
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An interesting consequence of the pattern portrayed in Fig.

4,18 is that for certain values of Gg (i.e., G, <G < G_) two stable

gl g g2)
modes of oscillation exist., Moreover, the pulse-repetition period (PRP)
versus Gg exhibits a jump phenomenon. For example, starting at a small
Gg which corresponds to an (SCL-UE) configuration the oscillator exhibits
a limit cycle mode. As Gg is slowly increased and crosses the boundary
Ggl between the (SIC-UE) and (SLC-SE) configurations the oscillator
naturally remains in a limit cycle mode, although the CW mode associated
with the stable equilibrium point A is now also possible. As Gg is
further increased and crosses into the (PSIE) configuration region at
ng the 1limit cycle ceases to exist, and the oscillator takes up a CW
mode. If now Gg is slowly decreased and recrosses the boundary between
the (PSIE) and (SIC-SE) configurations, the oscillator remeins in the
CW mode. As Gg is further decreased and crosses into the (SLC-UE) con-
figuration region, the equilibrium point becomes unstable and a squegging

mode is taken up. A sketch of the

resulting PRP versus Gg behavior is 4

shown in Fig. 4,19, The figure

\

shows the hysteresis in PRP which

PRP

/

is characteristic of this first

—_—

O ———

o

(SLC-SE) 1 (PSLE)

pattern. The three sample phase- {SLC - UE)

oV

|
é% g
plane configurations shown in Figs.

Fig. 4.19. Typical variation
4.2, 4.3, and 4.7 are from a system  in PRP with G_--first pattern.

(PRP of zero®corresponds to
exhibiting this first pattern. CW mode )
The second pattern divides Gg values into only two ranges.

In this case the results are somewhat similar to the first pattern if it

were found that Ggl = ng = Gg123 thus, the (SIC-SE) configuration and
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the hysteresis would not occur. In the first range, Gg < GglE’ the
(SLC-UE) configuration exists and only a limit cycle mode of oscillation
may occur. As Gg is increased, inside this range, the limit cycle again
grows smaller. However, in this pattern the stable limit cycle shrinks
continuously until it is an extremely small curve surrounding the still
unstable equilibrium point. As in the first pattern, the limit cycle
shrinkage is accompanied by an increase in PRP and an increase in the
minimum value of E between pulses. Thus, if the limit cycle mode was
initially a squegging mode, the in-

crease in Gg causes it to become

an amplitude-modulated mode.

MODE OF LIMIT
OSCILLATION CYCLE

— C.w.

In the second range G_ becomes
CONFIGURATION —» (SLC - UE) (PSLE) g

° %, S greater than G

v

g12° As Gg increases
Fig. 4.20. Phase-plane con- through G 10 the limit cycle coalesces
figuration and possible oscillation &
mode versus Gg--second pattern. with the unstable equilibrium point

leaving only a stable equilibrium

point and a (PSLE) configuration for all Gg > G The foregoing is

gla,
portrayed in Fig. 4.20. It is clear that since there is now no bistable
configuration there will be no PRP
hysteresis. The PRP versus Gg
curve for the second pattern is

shown in Fig. 4.21. In this pattern

it is seen that there is also no

PRP jump. Since the stable limit \\\\\

(SLC-UE) (PSLE)
G

PRP

v

cycle decreases smoothly to the o

(2]

92 9

equilibrium point the PRP decreases
Fig. 4.21. Typical variation in

smoothly to zero. Thus the oscil- PRP with G --second pattern.
(PRP of zero corresponds to
lation mode becomes amplitude modu- CW mode )
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lated and the percent modulation of the waveform decreases with increasing

Gg, becoming zero at Gg If the Gg is decreased the process is found

12°
to be completely reversible.
Examples of the (E, Ec)-plane patterns for this second pattern
obtained experimentally are shown in Section 5. A sequence of analytically
determined (E, Ec)-plane configurations such as Figs. 4.2, 4.3, and 4.7

for the first pattern are not given for the second. This sequence could,

of course, be constructed by the same technique used previously.

5. EXPERIMENTAL RESULTS

5.1 Introduction

The foregoing sections have described the selection and analysis
of a mathematical model for a grid leak biased oscillator. Since a
mathematical model is useful only insofar as its solutions correspond to
experimentally obtained results, a comparison must now be made between
theoretically and experimentally obtained results. The experimental re-
sults will be compared with the theoretical results of Section 4 where
specific grid and plate characteristics similar to those of an actual

oscillator were assumed.

5.2 The Experimental Oscillator and Characteristics

Figure 5.1 shows the circuit of an oscillator which was em-
ployed in the experiments which are reported here. The parameters of
this circuit were chosen so that they conform with the parameters assumed
in the examples presented in Section 4., The true grid and plate current

curves for the tube used are plotted in Fig. 5.2 for Eb = 200 volts and
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and Es = 80 volts. From these

W?”f | curves it is clear that the piece-
246008 300pf=< szL L, wise linear approximations for
== l%$0$%=mov the grid and plate characteristic
6 uh mentioned in Section 1 are
Qg = 51 at 2.5 mc reasonable. In fact, the gpproxi—
Lp = 45,6 ph mate characteristics fit the
Q = T6 at 2.5 mc actual characteristics quite well
M = 5.1 ph when the constants of the approxi-

mate characteristics are chosen
Fig. 5.1. Experimental oscil-

lator circuit and parameters. s0 thatl
Gc = 1920 pmhos,
&y = 4970 umhos, and
R = "1.5 VOltSo 40
g &
i &
Then from definitions following 5 @ﬁ"
—TYPE 6AU6 g- 30 q\;‘\ f —
E, = 200V
Fig. 2.2 L
G =2 g = 2390 umho e
O 8.
g
n/ c\)@?\?"{_
&
6
5.3 Experimental Procedure for ./////: //,//
3 - - -4 - - - | 3 4 5 6
Display of Operating Path | ’ GzRIDIVOL:‘AGE (V;LTS)

Fig. 5.2. Actual character-
The experimental setup shown isterics of tube used in experi-

mental oscillator.
in Fig. 5.3 was used to observe

some of the (E, Ec)-plane operating paths (equivalently: solution paths)

for the experimental oscillator. Those operating paths which could be

lNote that these are the values chosen for Gm, Gc’ and R in the examples
of Section k4,
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observed with the aid of this setup correspond to stable equilibrium
points and limit cycles in the model. In comparing these experimentally
determined operating paths with those analytically predicted solutions
in Section 3 it is found that there is good agreement between theory and

experiment,

| O CRO
! FILTER o ®-
R / o My
IL
K
Gq

» FILTER

|
g ¢ T3 :
|

OSCILLATOR UNDER STUDY

Fig. 5.3. Experimental system for display of oscillator
operating path.

The operation of the experimental setup in Fig. 5.3 is quite
simple. Voltages proportional to E and Ec are obtained from the oscil-
lator and used to control the oscilloscope spot deflection. The only
circuitry is the filter necessary to separate the RF from the Ec voltage
and the detector and filter necessary to obtain the RF envelope voltage
E. For the former a Hewlett-Packard AC-21A scope probe connected directly
to the vertical amplifier of the HP-130A oscilloscope proved satisfactory.
For the envelope detector a 1N69 diode, a 330 k resistor, and a similar
probe were used. The vertical deflection of the spot is then proportional
to instantaneous values of Ec, and its horizontal position is proportional

to the instantaneous value of E., Clearly, the resulting picture on the
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oscilloscope face is just the phase plane with the operating path of a
stable mode traced out upon it. Some representative operating paths

will be shown in the next section.

5.4 Operation of the Experimental Oscillator

With the screen voltage, Es, set to 80 volts the values of

Gc and Gm mentioned gbove are obtained and the fixed parameters of the
experimental oscillator correspond directly with the fixed parameters
assumed in Section 4. Under these conditions, the operation of the
experimental oscillator was observed for various values of Gg. At the
outset of this experiment Gg was adjusted so that it was large enough

to swamp out all oscillation. It

was then slowly reduced ﬁntil

oscillation began. As expected

from the considerations of

Section 4 this was a CW mode of

oscillation of small amplitude,

E, and small associated grid bias,
QEC. As Gg was further reduced the

amplitude, E, increased and the

grid bias, Ec, became a larger

Fig. 5.k. Variation of CW negative value. A CW mode was
operating point for
62.5 umho < G, < w, (Operating maintained until G reached
point moves uUp and to left as &
Gg increases. ) 62.5 umhos. At this point the CW

mode suddenly disgppeared and an
amplitude-modulated mode appeared. Figure 5.4 is an oscillograph which

shows the experimentally observed variation of the operating point (i.e.,
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the equilibrium point A) as‘Gg was slowly reduced from the value at
which oscillation started to the 62.5 umhos, at which the stable CW mode
ceased to exist. The character of this curve is just as expected from
Section 4 and should be compared with Fig. L.1lk,

At Gg = 143 umhos the circuit parameters of the experimental
oscillator were the same as those employed for Fig. 4.2. Oscillographs

of the observed waveform and operating point are shown in Fig. 5.5. A

AN

EC

OPERATING PATH WAVEFORM
HORIZONTAL - | V./CM. HORIZONTAL=- 0.4 p SEC./CM.
VERTICAL - 1V./CM. VERTICAL-— 5V./CM.

Fig. 5.5. Experimentally observed waveform and
operating path for Gg = 143 umhos.

comparison of the experimentally observed and the theoretically pre-

dicted location of the operating point follows.

Predicted Observed
Ec -3.7 volts =3.7 volts
E 5.3 volts 5.8 volts

Since the attempts to locate other stable modes of oscillation by

varying the initial conditions were not successful, it is reasonable to
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assume that the phase-plane configuration associated with the experi-
mental oscillator was (PSLE) as predicted in Fig. 4.2,

As Gg was decreased below 62.5 umhos the fundamental frequency
of the modulation on the amplitude-modulated mode decreased; that is,
the PRP increased. As Gg continued to decrease, the amplitude-modulated
mode was transformed into a squegging mode. This transformation was
marked by the appearance of PRP "jitter," one manifestation of the

stochastic character of the squegging mode.

et

OPERATING PATH WAVEFORM
HORIZONTAL - IV./ CM. HORIZONTAL - 20 p SEC.
VERTICAL- IV. /7 CM. VERTICAL- 5V, / CM.

Fig. 5.6. Experimentally observed waveform and
operating path for Gg = 20 umhos.

At Gg = 20 pmhos the experimental circuit parameters were
the same as those assumed for Fig. 4.3. The oscillographs in Fig. 5.6
show the experimentally observed waveform and opérating path. The grid
waveform of Fig. 5.6 should be compared with the predicted grid voltage
waveform shown in Fig. 4.5(a). An overall comparison between the experi-
mentally observed and the theoretically predicted results is given in

the following tabulation.
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Predicted Observed

PRP 87 usec 85 usec
Pulse Lengthl T usec T usec
Max E 8 volts 9 volts
Min E_ -6.4 volts -6 volts

Those numbers which are not directly observeble in Fig. 4.3 (e.g., PRP)
were calculated by means of the technique discussed in Subsection 4.2
(also see Fig. 4.5). Attempts to locate other stable modes of operation
were again unsuccessful, and it seems reasonable to conclude that the
squegging mode was the only stable mode of oscillation. Therefore, the
phase-plane configuration of the experimental oscillator was (SLC-UE), as
predicted by Fig. 4.3.

As Gg was slowly decreased below 20 umhos there was no signi-
ficant change in operation other than an increase in PRP. The minimum
value of Gg, limited by leakage conductance of the circuit components

;
remove roauces a norma squeggling-moae waveiorm wil a ver
(G d), prod 1, i d f ith y

g
long PRP. This is again just as expected from Section L,

Gg was then slowly increased from Gg << 20 umhos. For values
of Gg less than 62.5 umhos the modes of oscillation for increasing Gg
were found to be exactly the same as those observed when decreasing Gg.
However, at Gg = 62,5 umhos there was no sudden Jump from the amplitude-
modulated mode to the CW mode. Instead, the amplitude-modulated mode
was maintained, and its PRP decreased as Gg continued to slowly increase.

In this case, Gg reached 106 pmhos before the amplitude-modulated mode

was transformed into a CW mode.

lArbltrarlly defined as the time during which the e, pulse envelope ex-
tends above e, =0; i.e., E> IE B
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When Gg was increasing, the lowest PRP occurred for Gg
slightly below 106 umhos and was observed to be 20 psec. However, for
Gg decreasing, the lowest PRP occurred at 62.5 umhos and was observed to
be 35 usec. A sketch which shows this hysteresis-like dependence of
PRP upon Gg is presented in Fig.
5.7 A zero PRP in this figure
corresponds to a CW mode of oscil-
lation. Figure 5.7 should be
compared with Fig. 4.19, and it
should be noted that for
62.5 umhos < Gg < 106 umhos two

stable modes of oscillation are

[
O 10 20 30 4 5 60 70 80 90 100 10 120 130 140

Gg = pmho possible. It is clear that for
Fig. 5.7. PRP versus G_for the above oscillator with E = 80

E = 80 volts.
8 volts the G . and G . of Fig.

gl ge
4,18 correspond to 62.5 umhos and 106 umhos, respectively. In this
region Gg = 71 umhos corresponds to the situation depicted by Fig. L4.7.
The experimentally observed waveforms and operating paths are shown in
Fig. 5.8. Here, as expected from Fig. 4.7, the two stable modes are an
amplitude~modulated mode plus a CW mode. No other stable modes were
found through variation of initial conditions and thus the occurrence
of the (SLC-SE) configuration is confirmed. A comparison of experi-
mentally observed and theoretically predicted results is given in the
following table. The grid waveform in Fig. 5.8 should be compared with
the theoretically determined waveform in Fig. 4.8(a). It should be noted

that there are two stable operating paths observed (one is a point) but

both do not occur simultaneously.
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X

OPERATING PATHS WAVEFORMS
HORIZONTAL- IV./ CM. VERTICAL~5V./ CM ON (a) AND (b)
VERTICAL- IV.7/ CM, a) OPERATION ON OUTER PATH

HORIZONTAL - 5 uSEC/ CM
b) OPERATION AT SINGULAR POINT.
HORIZONTAL - 0.4 uSEC./CM.

Fig. 5.8. Experimentally observed waveforms and
operating paths for Gg = T1 umhos.

Predicted Observed

CW Mode

E 5.4 volts 6 volts

E, -4,k volts -4 volts
Squegging Mode

PRP 30 usec 29 usec

Pulse Length 7.5 usec 8 usec

Max E 7.5 volts 8 volts

Max Ec -5.5 volts -5 volts

As Gg is now increased beyond 106 umhos the behavior occurring
when Gg was decreased through this region is repeated in reverse order;

i.e., the CW oscillation continues, and the values of E and Ec decrease
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-E, (¢) G, = 139 o

Fig. 5.9, Experimentally observed operating paths
and waveforms. Eg = 170 volts.

Scales in these oscillographs are:

Operating Paths Waveforms
Horizontal - 3 v/cm Horizontal - 50 psec/cm
Vertical - 3 v/em Vertical - 10 v/cm



as shown in Fig. 5.k4.
The second pattern mentioned in Section U4 was observed with
somewhat different circuit parameter values. As ES was increased Ggl

end G . approached each other in value until, when Es = 170 volts,

ge
Ggl = Gg2 = Ggla = 141 pmho. At this value of Es the multimode behavior
was completely eliminated; i.e., only one stable mode of oscillation
existed for each value of Gg. The change in waveform with Gg was then

a smooth decrease in PRP and percent modulation as Gg increased, leading
to a CW mode as the percent modulation approached zero. Fig. 5.9 shows
waveforms and operating paths for several values of Gg for the oscil-
lator shown in Fig. 5.1 with Es = 170 volts.,

Patterns other than those mentioned above have also been
observed with the same oscillator. In some cases, it was found that
more than one stable squegging or amplitude mode could be made to exist.
None of the observed behaviors is inconsistent with the phase-plane

analysis used here, and presumably appropriate phase planes could be

constructed in all cases.

6. CONCLUSIONS

The early sections of this report describe a mathematical
model for a class of oscillators. This class has been chosen so that it
includes the common self-biased or grid-leak biased oscillators. However,
the class has been left fairly general by allowing rather arbitrary
choice of the two nonlinearities involved. The nonlinear differential
equations describing this class of oscillators were then approximated by
a new, more tractable, system of nonlinear differential equations. This

latter system comprised the mathematical model for the class of oscil-
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lators considered.

For a specific case corresponding to a certain subclass of
self-biased oscillators, the model was subjected to detailed study using
both analytical and phase-plane techniques., Besides the expected CW
oscillation the model was found to predict several other modes of oscil-
lation similar to those frequently observed in laboratory oscillators
but not predicted by the commonly employed van der Pol mathematical
modei. Thus the new model is considered to be a more general description
of oscillators than is provided by van der Pol's equation. From the
phase-plane analysis of the model, it was possible to observe the relation-
ships among the several modes of oscillation and their dependence on
circuit parameters. The phase-plane analysis also permitted the pre-
diction of somewhat unexpected phenomene which were later observed
experimentally (e.g., bistable operation).

Having found a mathematical model it is desirable to have
experimental verification of its validity. This is especially true
where approximations of the Kryloff and Bogoliuboff types have been
employed. Therefore, the experimental results of Section 5 are pre-
sented to corroborate the theoretical analysis by showing a qualitative
and quantitative correspondence between theoretical and actual behavior
of the oscillator. After comparing the predicted grid waveforms and
operating paths with their experimental counterparts it seems quite
reasonable to conclude that the model is valid, at least for the range
of parameters considered in Section 5.

It is quite apparent that the complexity of the model limits
its general utility, and that it is probably more useful in problems

involving the minutiae of oscillator behavior or design (e.g., design
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of oscillators with several stable states or specific waveforms). How-
ever, it has also been found valuable in gaining a thorough understanding
of certain basic types of oscillators. The ability to consider rather
arbitrary nonlinearities suggests that these advantages may be extended
to the study of other devices where controlled oscillation is of interest,

such as superregenerative detectors.
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APPENDIX

In Section 4 of this report it was assumed that the equilibrium
point A of Eq. 4.2 has an index of +1. The validity of this assumption,
under certain reasonable restrictions, will now be shown. However, before
proceeding, it is necessary to define the index and relate it to certain
aspects of the phase-plane geometry. These aspects of the phase-plane
geometry will then be employed to derive restrictions on the mathematical
model which are sufficient to insure the +1 index.

Consider a system, S, of two first-order differential equations.

E

fl(E, Ec)
; (A.1)
c

fQ(E, Ec) .
It will be assumed that both fl and f2 are continous functions of E and
Ec in the region E 2 0O, Ec £ 0. At each point in the (E, Ec) phase-plane

where fl and f2 are not both zero the system, S, determines a unique

direction
o = tan™t (8 ) (A.2)
- fl(E,"EC) I
r x 7
-5 <6< 5 when fl >0

PPl when f. < 0

2 2 1
where: < .

6 = 5 when fl =0, f2 >0

e = 2£ when f, =0, f. <O

) 1 ]

Any simple closed curve, C, in the phase plane not passing
through an equilibrium point of S (i.e., a point where £, =1, = 0) has

an index, Nc, given byl

No= o~ fﬁ o 6 (A.3)

lKaplan, Op. cit.



The index Nc is obviously an integer since C is assumed closed. Note
that the integral (A.3) is merely the rotation of the vector field as-
sociated with S accumulated along the curve C. A counterclockwise
traversal of C 1s taken as positive.

The following facts are easily verified by simple geometric

arguments. Complete proofs are available in the literaturel’g.

a. If C encloses no equilibrium points of S,then Nc = 0.

b. If C encloses a Node, Focus, or Center (the Node or Focus
may be stable or unstable), then N, =+L.

¢. If C encloses a Saddle, then Nc = -1.

d. If C is a simple closed curve enclosing only one equili-
brium point the value of NC depends only on the type of
equilibrium point enclosed and is independent of the size
or shape of C.

In view of statement d. above, the index, IA, of the equilibrium point
A is defined as being equal to Nc when C encloses A and no other equfli-
brium point. That is,
IA =N, | when C encloses A and only A.
The equilibrium point A in the (E, EC) plane occurs at the
intersection of the ﬁ = 0 and éc =0 contours.5 In the vicinity of this
intersection the contours divide the plane into four regions. A typical

intersection is shown in Fig. A.l.

Yeplan, Op. cit.
2Minorsky, Op. cit.
3An equilibrium point can, by definition, occur only at a point of

coincidence of the E = 0 and E, = O contours. Any coincidence other
than a crossing is structurally unstable and not of interest here.
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In any one of the four regions E and Ec will have constant sign and the
vector field angle, 6, will be restricted to a certain range. For
instance, throughout one of the

regions ﬁ > 0 and ﬁc < 0yend thus

vYm

31/2 < 6 < 0. Let the regions be
denoted as

>0
c

>0
c

=i

Region 1: where E> 0,

=i

Region 2: where E< o,

.

Region 3%: where E < O, ﬁc <0

Region L: where E > 0, éc <0

L
c
Assuming a coordinate system with
Fig. A.1l., Regions in the
E as the abcissa and Ec as the vicinity of the equilibrium
point A.

ordinate the angle 6 must lie in
quadrant 1 in Region 1, quadrant 2 in Region 2, etc.l

The question of the index of the equilibrium point A in Fig.
A.l is now reduced to one of determining the order of the regions en-
countered as the path C is traversed in a clockwise direction. An
encounter order 1234 will make IA = +1, Since the integration may start
at any point on C the orders 2341, 3412, and 4123 will also give I, =+
On the other hand, an encounter order 4321, %21k, 2143, or 1432 will
make I, = -1. Orders such as 1324, 1423, etc., are not possible, since
the é = 0 and ﬁc = 0 contours are assumed to cross at point A.

From the above statements it is clear that IA will depend

only on the arrangements of the regions in a neighborhood of A, and the

existence of any arrangement of the proper order is sufficient to insure

lHere quadrants are defined in the usual sense; e.g., quadrant 1 is
0<6 < n/2, etc., with 6 = O along the positive E axis.
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that the equilibrium point has a +1 index. Thus, the index is independent
of either the angle between the contours or the rotational orientation of
the contours. In fact, as long as region 2 follows region 1 in counter-
clockwise rotation, the assuﬁptions that the contours cross at the equi-
librium point guarantees that the other regions will follow in order 3,

4 and the index will be +1. From the definitions of the regions 1 and 2

it may be stated that if the point where counterclockwise traversal on

curve C crosses the E = O contour from E > 0 to E < 0 is in a region where

éc is positive, then the desired counterclockwise region order 1234 will

be obtained.

It is now necessary to relate the above result to conditions on
the system of differential equations, S, and its associated phase-plane
configuration., The following conditions on S will be shown sufficient to
insure that the equilibrium point A has a +1 index.

a) There are at most two equilibrium points. The first, desig-
nated point A, must exist, may be located anywhere in the
half-plane E > O, and must be simple. The second, if it
exists, must be located on the Ec-axis. Its location is
designated point B,

b) In the half-plane E > 0, and E = O and ﬁc = 0 contours are
simplel curves and do not terminate. The contours may have
several branches but each branch maey become nonsimple or
terminate only on the Ec-axis.

¢) E = 0 along the chaxis.

d) The branch of the é = 0 contour passing through the point A

intersects the Ec-axis at only one point, which is desig-

lA curve is said to be simple if a small circle about any point of the

curve intersects it at two and only two points.
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nated point R. Furthermore, no other branch of the é =0
contour intersects this axis at R.

e) Throughout some sufficiently small neighborhood of R a
point moving in the positive Ec direction along a line
parallel to the Ec-axis crosses the ﬁ = O contour once
and only once and crosses from ﬁ <0toE> 0.

f) B>R and éc is positive along the portion of the Ec-axis
where Ec < B. When there is only one equilibrium point,
éc > 0 along the entire Ec-axis.

The above conditions are illus-
trated in Fig. A.2, Assuming

these conditions, consider the
branch of the é = 0 contour passing ot
through the equilibrium point A.
Condition d) requires that this

B¢

branch intersect the Ec—axis at

some point R. Moreover, this
branch cannot be closed on R since &g
the ﬁc = 0 contour would then be

required to cross a closed curve at

only one point [note that the

éc = 0 contour cannot terminate at

Fig. A.2, Phase-plane
R since condition e) requires relations leading to IA = +1,

S > R]. Therefore, there is a
unique path from R into the region E > O along the branch of the E=0
contour passing through point A, and condition e) shows that in moving

out (from R) along this branch the region where ﬁ > 0 will always be to

7



the left, Now consider a small circle, C, drawn about the equilibrium
point A as shown in Fig. A.2. This circle intersects the E = 0 contour

at only two points and at one of these points counterclockwise traversal

of C crosses the contour from é >0 to ﬁ < 0. This point will be called
P. Since a counterclockwise traversal of the circle C must cross the

é = 0 contour from left to right at P, the point P must lie on the contour
between R and A, If it can now be shown that éc > 0 at P, an index of

+1 for point A will be assured. To show this, note that the Ec = 0 con-
tour divides the half-plane E > O into two or more regions. From condi-
tion f) it is seen that point R must lie in a region where éc > 0. Since
the éc = 0 contour cannot cross the E = O contour between points R and A,

the point P must also lie in a region where ﬁc > 0, and I, must be +1.

A

The above proof can easily be extended to the case where R > B
by changing the location of the ﬁ > 0 region. The point P will then
fall beyond point A, and the rest follows in a simple fashion.

Although the above conditions on the system S are sufficient to
insure that the equilibrium point A has an index of +1, they are not
necessary and have been chosen mainly for ease of application. Thus
these conditions may, in some cases, be too restrictive, and where they

are not met, the earlier conditions on the regions surrounding the equi-

librium point or the sign of i:c at point P might still be employed.
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