
COMPUTER SIMULATION OF A LIVING CELL: PART II*

R. WEINBERGt and M. BERKUS~

Department of Computer and Communication Sciences, University of Michigan (USA)

(Received: 10 June, 1970)

SUMMARY

This paper, which is being presented in two parts, is concerned with the problem of a
realistic and useful simulation of a living cell, the simple unicellular bacterium
Escherichia coli, the program being written in Fortran IVfor an IBM 360167 computer.
The object is to represent the cell in such a way as to simulate its growth in real
environments of a living cell, as well as during changes from one chemical environ-
ment to another. This simulation could also supply useful information for answering
current questions in biology.

In Part 2 of this paper the authors describe the method of evolving DNA and
discuss cancer in relation to the computer simulation under consideration. Literature
references cited in both parts of the paper, as well as the appendix to the work, are also
presented.

SOMMAIRE

Cette etude s’occupe du probleme dune simulation realiste et utile dune cellule
vivante: la bacterie simple et unicellulaire Escherichia coli, le programme &ant
ecrit en Fortran IV pour un ordinateur IBM 360/G. Le but c’est de representer la
cellule de telle fagon h simuler la croissance de celle-ci dans le milieu veritable dune
celhde vivante ainsi que pendant les changements d’un milieu chimique a un autre.
Cette simtdation pourrait aussi fournir des renseignements utiles en repondant h des
questions courantes dans la biologie.

* Part I appeared in Bio-Medical Computing, 2 No. 2, April, 1971.
!.$qrted by the Department of Health, Education and Welfare, NIH, Bethesda, Maryland

$ Present address: Dept of Statistics and Computer Science, Kansas State University, Manhattan,
Kansas (USA).

167

Bio-Medical Computing (2) (1971)-@ Elsevier Publishing Company Ltd, England-Printed in Great Britain

168 R. WEINBERG, M. BERKUS

4. COMPUTER SIMULATION OF EVOLVING DNA

The computer simulation of a living cell adapts phenotypically to three different
chemical environments (section 2, Part 1). I will extend the simulation so that the cell
can adapt genetically as well as at the phenotypic level. I will represent DNA as an
array in the computer in which are stored the indexes and values of various rate
constants in the equations representing the simulated cell.

Four powerful genetic operators for evolution of populations are (1) crossover,
(2) inversion, (3) mutation and (4) dominance.

1 nontdtptive
GeNeTIC PitocfuM\

4 GENETIC PMGgAMS

supervising -.

40 Strintr In

Fig. 4.1. The Chrom Array.
15 Entities Referenced by 1 String = 1 Individual

Column Number = Position of Entity Reference on String
= 2nd Dimension of Array

1 I Column Number 5 15

Row Number = 1st Dimension of Array. 1 I Row Number I 4
Row Number :l = Index of Entity Referenced = Locus Referenced

2 = Attribute of Entity Referenced = Value of Locus
3 and 4 Describe Mutation Pattern for Entity Referenced in Row 1

3 = Number Controlling Interval over Which Random Number is Generated for
Mutation

4 = Index of Probability Distribution over Increments of Mutation for Monte
Carlo Method.

INDIVIDUAL IN POPULATION = STRING IN POPULATION IS INDICATED BY
THE THIRD DIMENSION OF THE ARRAY. THE CONTENTS OF THE ROWS AND
COLUMNS CONTAIN INFORMATION ABOUT ATTRIBUTES AND GENETICS OF
THE INDIVIDUAL INDEXED BY THE THIRD SUBSCRIPT. e.g., CHROM (1,4,2) = 3
MEANS THAT THE THIRD ATTRIBUTE OF THE SECOND INDIVIDUAL IS INDEXED
BY THE FOURTH COLUMN OF CHROM ARRAY INDICATED. 1 I INDIVIDUAL
INDEXED 5 40.

THE LAST FOUR STRINGS INDEXED CONTAIN INFORMATION ABOUT THE
GENETIC PROGRAM SUPERVISING EVOLUTION. 41 5 GENETIC PROGRAM 5 44.

Crossing over permits preferential multiplication of groups of subroutines
which interact well, giving coadaptation. Without crossing over all subroutines
are equally linked on the string referencing an individual as a collection of sub-
routines, so that there is no such concept as ‘close together on the linkage map’.

COMPUTER SIMULATION OF A LIVING CELL: PART II 169

Inversion is necessary to rearrange the genetic location of different subroutines,
so that those that should be close together on the genetic map get a chance to
approach each other during evolution.

Mutation is necessary to explore a large genetic space, and also to regenerate
attributes of functions lost through selection.

Dominance is necessary to preserve attributes of functions which are at a
temporary disadvantage, but may be useful at some later time in evolution.

Duplication of individuals, as well as the genetic operators crossing over,
inversion, and mutation will be simulated by operations on the contents of the
arrays. The modified arrays will be used to calculate the modified rate constants
by which the new populations of simulated cells grow. I will partially realise the
function of dominance in my simulation by strongly directed mutation to restricted
sets of mutant alleles, a mechanism not possible in real DNA, but one which
realises one function of dominance, i.e. the conservation of genetic variability in a
population.

Since the simulation is of a haploid bacterial population, I will attempt to
simulate in a reasonable amount of computer storage populations of haploid
bacteria, which store variability without extensive use of dominance and diploidy.
This is to make easier the realisation of genetic mechanisms used by real bacterial
populations, rather than because diploidy is unreasonable. Indeed diploidy offers
a natural and straightforward way to realise the power of genetic operators and to
store genetic variability for evolutionary demands put on the population by chang-
ing environments. Furthermore, diploidy permits storage in the form of valuable
substrings of successful alleles, allowing many sampling advantages which will be
diminished in my representation of a population by applying genetic operators to
individuals who represent the means of probability density functions, defined by
the formula for the density together with the mean and variance of the density.
However, many haploid populations of bacteria exist in nature in environmental
niches which are accessible to less successful dioloid competitors, e.g. protozoa,
indicating that the haploid mechanisms are more successful than the diploid ones in

certain circumstances.
An excellent feature of a general scheme like Holland’s is its extreme flexibility.

One can consider part of an organism as the string which forms an individual in the
population, and the rest of the organism as part of the environment. Since the
theoretical development is much easier for a stationary environment, 1 will consider
all loci which are fixed during the whole evolution of the programs as the environ-
ment, and will consider only unfixed loci as strings. Since I am free to set linkage
parameters as I wish, I can increase linkage to account for those fixed loci which
do not explicitly appear. Most of the genetic characteristics of the individuals
such as mutation rate and crossover will be represented as separate strings of
adaptive or non-adaptive genetic programs, each of which will supervise the evolu-
tion of a population.

170 R. WEINBERG, M. BBRKUS

It is important to have adaptive genetic programs which can evolve, since selec-
tive procedures may lead to unexpected consequences, such as death for long-
legged chickens, and should be amenable to modification. (The biological example,
death for long-legged chickens, refers to an experiment in which longer shanks
were selected in populations of chickens (Wallace, 1968, p. 455).) The populations
so selected always became extremely unfit.

There are two detectors of phenotypic limitations on genetic evolution of the
simulated cells which are particularly easy to observe. One is a wide disparity
between simulated chemical concentrations of cell metabolites and the concentra-
tions necessary for balanced growth. The second straight-forward detector of
phenotypic imbalance is the inability to modify the simulated enzymes to account
for the growth rates required in the three simulated environments. The impossibility
of manipulating the enzymes to produce required growth rates immediately shows
up as the inability to produce a solution in the solve routine of the computer
program (section 3, Part 1). The inability to maintain biochemical equilibria
necessary for life shows up in a departure of the ratios of the concentrations of
biochemicals to the necessary concentrations. These ratios should be 1 if metabolic
equilibrium is maintained, and departures of the ratios from 1 indicate instability.
For this reason, the utility function which directs the rate of reproduction of each
individual in the population contains the sum of (ratio + 1 /ratio) in its denominator,
so that the further the ratio departs from 1, the lower the value of the utility func-
tion, and the less the rate of reproduction of the individual under consideration.
Inability to solve the equations for allosteric modification of the enzyme pools adds
a 10 to the denominator of the utility function, so that individuals which can not use
allosteric modification correctly can still be ranked as a function of how far off
their ratios are.

Inducing sophisticated quantities by simple genetic operations on finite strings
relates directly to Holland’s description of the complex populations of schemata
and operators on schemata, both conservative and nonconservative which are
present in simple finite populations of evolving strings, and which confer upon
these simple finite populations of strings powerful evolutionary capabilities. The
complexity of calculation of average excess induced by elimination of forty percent
of the population at each reproductive cycle illustrates the ease with which one can
realise something which takes a good deal of effort to describe in quantitative
terms, and points up the advantages of studying evolving schemata in the space of a
‘successfully’ evolving population of strings.

It is important to distinguish between selection induced on schemata by genetic
operations on three-dimensional arrays referencing heuristic programs, and the
criteria used directly on the programs themselves. To illustrate this perhaps subtle,
and certainly profound, distinction, I am going to illustrate the genetic operation
of selection by eliminating sixty percent of the strings each reproductive cycle, and
fill in the missing sixty percent with new strings produced from the old strings not

COMPUTER SIMULATION OF A LIVING CELL: PART II 171

eliminated by the genetic operators crossing over, inversion and mutation. A string’s
utility will be proportional to how well and how quickly the simulated cell which
is the description of the string adjusts to changes in simulated environments. The
environment for the evolving strings is all fixed loci represented by the equations
simulating cell growth and adaptation, as well as the changing simulated environ-
ment for the cell. To return to the number judging performance by the string
description as opposed to a sophisticated measure such as average excess for that
string, how well and how quickly the simulated cell adjusts to changes in its chemi-
cal environment will be simply expressed as utility = l/(a sum of ratios of current
chemical concentrations compared to the desired chemical concentrations + the
computer time it took the genetic operators to modify the string during evolution +
10 if the program was unable to correctly accomplish allosteric inhibition). Since
the last three quantities are in the denominator of the formula for utility, the
larger the deviation of the chemical ratios, the longer the time to evolve, and the
greater the failure to solve for allosteric modification, the less the utility. Obviously
computer time doesn’t even exist in the real cell, and to destroy sixty percent of the
programs is a clumsy and unsubtle procedure. However, given this environment,
each string does have some average excess induced on it, which would have to be
calculated over the run of the program. It is important to perceive that this average
excess exists, but does not appear as a number in the running genetic program which
effects the evolution of programs in the computer. If one were simulating the theory
of evolution rather than the evolution of an effective program to accomplish a
task, one would certainly want to calculate the average excess of each program
rather than defining it implicitly by the genetic procedure for producing new pro-
grams from old ones.

It will be recalled that the utility of the best individual produced under direction
of an adaptive genetic program, as judged by that adaptive genetic program is
recalculated by the nonadaptive genetic program. The nonadaptive genetic program
gives the utility it calculates for the description of the best string in its population
to the adaptive genetic program directing evolution of that population of strings.
This utility is then used by the nonadaptive genetic program to direct the evolution
of the adaptive genetic programs. Elimination of unnecessary genetic operations
is both a practical advantage to the programmer, and an experimental fact in
competitive natural populations. Therefore the time it took the adaptive genetic
program to manipulate its population to produce the best string is added to the
denominator of the SUM which is the utility given to that adaptive genetic pro-
gram. Much of the information contained in rows 3 and 4 of the strings CHROM
column can be approximated by ignoring the cumulative frequency distribution
indexed in the fourth row, and simply using the uniform distribution. An adaptive
genetic program which does this will gain in utility. For example FREQ(3) may
be set to a uniform frequency distribution, and effectively ignored for the jth
entity during mutation since the random-number generator itself sets up a uniform

172 R. WEINBERG, M. BERKUS

distribution by choice of the correct interval in which the random numbers are
generated. If the loss in evolutionary power does not overbalance this gain in
utility by economising on computer time, some of the information in the third and
fourth rows of the CHROM array may be dropped from the program eventually.
It was included to indicate the ease with which a general and powerful evolutionary
program may be written. Since the whole growth and phenotypic adaptation
procedure takes less than 3 seconds of IBM 360/67 computer time, and may be
shortened, the program is not as time consuming as it might appear to be at first
glance. Storage of large blocks of the program on disks or in files until needed
would also economise on computer costs.

A brief consideration of the probability of replacement of a program in the
population shows that the amount of utility judged to be associated with the pro-
gram influences the probability that the program will be erased by its genetic
supervisor. In order to be a member of the survival population, a newly generated
program has to be in the best four in the population of running programs. The
higher the value of one of the old surviving programs, the less likely it is to be
supplanted by a newcomer in the next reproductive cycle. I do not want to discuss
these calculations in detail, since my main point is to use Holland’s formal theory
of adaptive systems to support the validity of writing extremely simple, albeit
evolutionarily powerful heuristic programs.

Sophisticated molecular interactions effecting negative feedback of metabolic
processes at both the DNA and cytoplasmic level, as well as position controls of
DNA and cell division enable a real cell to survive well, and to explore only a
particularly productive subset of possible physiological states. The molecular
mechanisms underlying many of these sophisticated relationships are often simple
and direct from a molecular point of view. For example, looking to see whether
DNA is in the process of replicating, and not replicating the cell unless all DNA
which has begun replication has completed replication simply involves a replication
site occurring at a potential site of cell division. Only when replication of the
circular DNA molecule is completed can the new cell wall be laid down. This type
of sophisticated limitation of possible actions also occurs in genetic modification
through inertia, in that a chromosome only undergoes small changes compared
to all possible changes which may occur. Which changes survive is very closely
dependent on the structural and functional relationships existing in the cell, and
sophisticated evolutionary schemes may well embody this information.

I will pick as unfixed variables from which to generate my population of strings
(and schemata), 15 control parameters which the cell uses for phenotypic adaptation
to changing environments (Fig. 3.4, Part 1). The five control constants correspond-
ing to repression of enzyme production by DNA are R(l), . . ., R(5) (see appendix).
The ten control constants corresponding to allosteric inhibition of enzyme activity
after the enzyme has already been formed are PlV(l), . . ., PlV(5), P3V(l), . . .,
P3 V(5).

COMPUTERSIMULATION OF A LIVING CELL:PARTII 173

DESCRIPTION OF STRING (I+J) FORMED BY SETTING ENTITIES

INDEXED BY FIRST ROW OF STRING (I+J) TO ATTRIBUTE

WHOSE VALUE IS IN CORRESPONDING COLUMN OF 2nd ROW OF

STRING (I+J).

h
b I

SIMULATED CELL ADAPTS

TO ITS THREE SIMU-

LATED ENVIRONMENTS.

c
UTILITY OF STRING (I+J) CALCULATED FROM ADAPTIVE ABILITY

OF THE SIMULATED CELL WHICH IS ITS DESCRIPTION, ACCORDING

TO UTILITY PROCEDURE OF ADAPTIVE GENETIC PROGRAM (II.

FOUR STRINGS WITH HIGHEST UTILITY GENERATE SIX STRINGS BY

CROSSOVER, AND DIRECTED MUTATION UNDER DIRECTION OF ADAPTIVE -

GENETIC PROGRAM (I) TO REPLACE SIX LOW UTILITY STRINGS IN

POPULATION OF TEN UNDER CONSIDERATION.

GENETIC PROGRAM (I) DIRECTING EVOLUTION. THE ABSOLUE GENETIC

PROGRAM CALCULATES ADAPTIVE GENETIC PROGRAM (I) UTILITY BY

JUDJING ME UTILITY OF ITS BEST INDIVIDUAL STRING.

Fig. 4.2. Evolution of strings.

174 R. WEINBERG, M. BERKUS

1 will keep the simulated cell program and all variables in program common, and
call in the simulated environments, adaptive genetic program, and the ten string
population from disk storage. The program for the simulated cell will receive the
values of its variables according to the information of a string representing one
individual, the simulated cell program will be run, a utility will be calculated
according to the adaptive genetic program, values of the variables will be filled in
according to the next string in the population, until all of the strings in the ten
string population have obtained a utility for that run. The adaptive genetic program

EVOLUTION OF

.
BEST 2 ADAPTIVE GENETIC PROGRAMS FORM 2 NEW ---
ADAPTIVE GENETIC PROGRAMS TO REPLACE THE 2 ---
LOW UTILITY ADAPTIVE GENETIC PROGRAMS. NON- ----
ADAPTIVE GENETIC PROGRAM DIRECTS CROSSING ---
OVER AND DIRECTED MUTATION OF THE 2 ADAPTIVE

GENETIC PROGRAMS. --

THE BEST ADAPTIVE GENETIC PROGRAM INDUCES AN ---
INVERSION INTO ITS POPULATION TO FORM THE

POPULATION OF ADAPTIVE GENETIC PROGRAM (I + 2). ---_
THE BEST ADAPTIVE GENETIC PROGRAM DOES NOT ---
INTRODUCE THE INVERSION INTO ITS OWN POPULA-

TION. THE NEXT BEST ADAPTIVE GENETIC --
PROGRAM DOES THE SANE FOR ADAPTIVE GENETIC --
PROGRAM (I + 3). -_

I

Fig. 4.3. Evolution of adaptive genetic programs.

COMPUTER SIMULATION OF A LIVING CELL: PART II 175

will then operate on the ten string population to form a new population according
to its genetic information and the utilities awarded to each string when its values
were loaded into the simulated cell program and run. The adaptive genetic program
and its ten string population will then be returned to disk storage, and the next
adaptive genetic program and population will be brought into core (Figs. 3.2 and
3.3, Part 1). Each adaptive genetic program will be awarded a utility dependent on
information in a non-adaptive genetic program. The four adaptive genetic programs
and the non-adaptive genetic program will then be loaded into core, and the two
worst adaptive genetic programs will be replaced by programs generated from the
two best adaptive genetic programs. I will introduce inversions in the populations of
strings supervised by the two best adaptive genetic programs, and use these modified
strings to form the new populations of the new adaptive genetic programs just
formed. The inversions will only appear in the populations of the new adaptive
genetic programs, and will be homozygous in these populations for ease of genetic
operations on the populations (Figs. 4.2 and 4.3).

Information concerning genetic manipulation of the evolving strings will be
stored in the references to the adaptive genetic programs (Fig. 4.5). This information
determines crossover, inversion, mutation and selection. The pattern of mutation,
once the locus to mutate has been determined by the adaptive genetic program, will
be referenced by the third and fourth rows of the array containing the string which
will mutate. The non-adaptive genetic program directs evolution of the adaptive

INDEX ENTITY IOTA = RANGE MUTATION PATTERN

EN%TY
EQUALS FOR ATTRIBUTE EQUALS
LOCUS OF ENTITY

INDEXED INCREMENT IN ATTRIBUTE

Pl V(1)

:: ;i:j
Pl V(4)
Pl V(5)

P3 V(1)

(-10-6, +106)

91 >,
,> 1,
1, 1,
>> 7’

>> ,,

+Normal: mean Pl V(l)/10 =
variance

2

:
5

+Normal: mean P3 V(l)/10 =
variance

11

12
13
14

15

R(1) (0, 1) +Uniform: -1, l.R 2 0. If
R < 0, set to 0.

:{:j
R(4)
Utility of individual referenced by third dimension of array. Utility is
calculated by the genetic program supervising evolution, so there are
some empty spaces here.

Fig. 4.4. Description of Strings References when Third Dimension of CHROM Array Ranges
from 1 to 40.

176 R. WEINBERG, M. BERKUS

RANDOM NUMBER INTERVAL
INDEX

EN?:TY
ENTITY ATTRIBUTE AND CUMULATIVE FREQUENCY

RANGE DISTRIBUTION USED TO
EFFECT GENETIC OPERATION

OF INDEXED ENTITY

1 crossover (l,l4) Random (l,N(l)), Freq. (1)
2 inversion (l,l4) Random (l,N(2)), Freq. (2)

length = 2*Random (1,5)

3 mutation (1715) Random (1 ,N(3)), Freq. (3)
4 coefficients for (W) Random (l,N(4)), Freq. (4)

:,
utility polynomial etc.
for string being

7 operated on.

;
10
11

::
14

15 Utility of this adaptive genetic program, calculated by non-adaptive genetic program.

Fig. 4.5. Adaptive Genetic Programs. Adaptive genetic programs: N(Z) and FREQ(Z) are deter-
mined by a non-adaptive GENETIC PROGRAM, which also operates on the adaptive genetic
programs as evolving strings. The nonadaptive GENETIC PROGRAM determines utility by a
polynomial which evaluates the best individual the adaptive genetic program offers it from its
population. The attribute of the adaptive genetic program references the column in the string(s)

upon which the adaptive genetic program is currently operating.

RANDOM NUMBER INTERVAL
INDEX AND CUMULATIVE FREQUENCY

EN;;TY
ENTITY ATTRIBUTE DISTRIBUTION USED TO

RANGE EFFECT GENETIC OPERATION
ON CURRENT ADAPTIVE

GENETIC PROGRAM

1 crossover (1714) Random(lJ4)

2 inversion (l,l4) Random (1,14) length 2*
Random (1.5) or less.

3 mutation (lJ5) Random (1,15) for
entity attribute/2
for magnitude.

4 coefficients for (t&l) all coefficients = 1.

2
utility polynomial
for best individual

;
produced by adaptive
genetic program

9 being operated on
10

::
13
14

15

Fig. 4.6. Non-adaptive Genetic Program Directing the Evolution of Adaptive Genetic Programs
as they Operate on Populations of Strings.

COMPUTER SIMULATION OF A LIVING CELL: PART II 177

genetic programs in much the same way that the adaptive genetic programs direct
the evolution of the strings of individuals (Fig. 4.3).

The actual mechanics of programming are straightforward. The description of
the (I + J)th string is easily obtained by a DO loop which loads the attribute
of the entity into the entity for ENTITY(1) through ENTITY(14). The program for
the simulated cell then has the proper values for its variables so that it can make
a simulated run and receive a utility rating. The indexes for the respective entities,
together with the attribute associated with the entity are stored in the CHROM
array with a value of the third dimension of the array equal to I + J. The program
statement is

DO 1, K = 1,14,1
1 ENTITY(CHROM(l,K,I + J) = CHROM(2,K,Z + J)

Crossing over is very easy to program since all individuals which form crossover
pairs have the same linkage map. Inversions do occur, but when an inversion is
produced, it is used to generate a population which evolves as a group. The unequal
probabilities of crossing over for different regions of the linkage map are realised
by associating a cumulative frequency distribution with the crossover operator
indexed in the genetic program (adaptive or non-adaptive). This probability is an
attempt to simulate the inequalities in probability of crossing over for different
regions of real chromosomes induced by the presence of inversion heterozygotes
during real crossing over, since such heterozygotes are not simulated because of
the complications introduced into the programming procedure for crossing over.
Inversions are simulated, however, since they are a powerful permutation operator
allowing the evolving populations to experiment with various linkage maps.

An example of crossing over will be programmed for the individuals with the
highest and next highest utilities in the population of ADAPTIVE GENETIC
PROGRAM (1). These strings will be ordered so that they occupy the first two
positions in the population of ADAPTIVE GENETIC PROGRAM (1) i.e.,
CHROM (Z,J,l) refers to the Zth row, and Jth column of the individual with
highest utility in the population supervised by ADAPTIVE GENETIC PROGRAM
(1). CHROM (I,J,2) refers to the string with second highest utility in an analogous
manner. To obtain the crossing-over parameter, a random number is generated in
the range 1 to N, where N is stored in the location CHROM(41,2), i.e. N is the
attribute of the 41st entry. The crossover will then occur at the right of the column
in the CHROM vector designated by the random number if the random number
is less than the number of columns in the CHROM vector; otherwise no crossover
will take place. The larger the value of N, the less the probability of a crossover.
To generate a probability curve other than uniform for crossing over, a cumulative
probability distribution could be used, and one could pick the point on the chromo-
some whose cumulative distribution function is less than but closest to a random
number which was generated between 0 and 1 (Mize and Cox, 1968). The

178 R. WEINBERG, M. BERKUS

same Monte Carlo technique can be used to obtain probability distributions for
mutational increments for any desired probability distribution.

To program a crossover between individuals CHROM (Z,J,l) and CHROM
(Z,J,2), the following sequence of instructions can be used, where Z and J are
variable, and denote individual strings, the crossover takes place at position X,
and the crossover products are loaded into strings CHROM (Z,J,5) and CHROM
(AJ,6).

K= 1
DO 1 Z = 1,4,1
DO 1 J = 1,X,1
CHROM (Z,J,K + 4) = CHROM (Z,J,K)

1 CHROM (Z,J,K + 5) = CHROM (Z,J,K + 1)
DO 2 Z = 1,4,1
DO 2 J = X,15,1
CHROM (Z,J,K + 5) = CHROM (Z,J,K)

2 CHROM (Z,J,K + 4) = CHROM (Z,J,K + 1)

KEY
K is the base for denoting the individual.
Z denotes the row of the CHROM array.
J denotes the column of the CHROM array.
the following six lines effect crossing over.

Since the best four strings are saved after a round of phenotypic adaptation and
evaluation by the ADAPTIVE GENETIC PROGRAM (l), the recombinant will
be loaded into CHROM (Z,J,5), thus destroying the fifth individual in ranking
with respect to utility. If both products of the crossover are saved, the second
recombinant will be loaded into CHROM (Z,J,6).

The column for crossover will be obtained by Monte Carlo techniques, using
the random-number interval and cumulative frequency distribution located in the
column of the adaptive genetic program which indexes the crossover entity. (1
happens to index crossing over, so the third and fourth rows of the column con-
taining a 1 in its first row will contain, respectively, the random number interval
and cumulative distribution used to generate the point of crossover point.) For a
simplified example of Monte Carlo techniques let the random number be generated
over (1,14). Let x be the column to the left of the crossover point. Let F(x) be the
cumulative distribution for the probability of a crossover occurring to the right of
x. The crossover point x = F-l(u) (Mize and Cox, 1968, p. 74). The crossover does
not occur if a random number is generated outside of the range of F- ‘(x), allowing
mutation to increase or decrease the probability of crossing over for the whole
chromosome by changing the length of the interval over which the random number
is generated if it is wider than the range of F-‘(x). If this is not useful, it can be
discarded by the genetic program, and a random-number interval (1,14) used.

COMPUTER SIMULATION OF A LIVING CELL: PART II 179

Not only inversions, but also chemical differences on different parts of real
chromosomes alter biological crossover frequency. There are complex interactions
between different parts along the length of chromosomes undergoing crossing over.
The assumption of constant crossover frequency per unit string length is a close
approximation to the relation between linkage and percent recombination for real
chromosomes. The linkage map of the real chromosome approximates a linear func-
tion of percent recombination for map distances less than forty percent. Constant
probability of crossover per unit length is therefore a reasonable first approxi-
mation for Holland’s theoretical development. However, the probability distribu-
tions I use to simulate the action of inversion heterozygotes will also take care of
much of the genetic control exercised by real cells on different rates of crossover
for different regions of their chromosomes. Since the probability distribution used
is under genetic selection, and the probability distributions stored in the computer
may be mixed for Monte Carlo simulations (Mize and Cox, 1968, Chapter 6),
this simple expedient realises many complex genetic functions, and therefore
generating probability distributions for crossover actuation seems a practical
utilisation of computer facilities in effecting simulated evolution. Experimental
observations upon relationships between linkage, percent recombination and
cytological observations are available in the literature (Strickberger, 1968).

Inversions are somewhat artificially simulated for programming simplicity. The
best adaptive genetic program as judged by the non-adaptive genetic program,
selects the sites of inversion using the random-number interval and frequency
distribution in its column which indexes the inversion entity (column with a 2 in
row 1). It then inverts this segment of the strings of its population for loading into
the population of the third best adaptive genetic program. Similarly the second
best adaptive genetic program introduces an inversion into its population for
loading into the population of the worst adaptive genetic program. The inversions
are not introduced into the populations of the two best genetic programs. However,
the two worst adaptive genetic programs are replaced by genetic combinations of
the two best genetic programs, so there is some possibility for good genetic proce-
dures to evolve and interact with improved linkage maps effected by inversion.
By appropriate choice of random-number interval and cumulative density, one
can easily manipulate the probability of obtaining any particular number. This is
particularly useful in directed mutation, where the increment in an attribute
becomes easy to control, implicitly defining the recessives stored by a string as its
high-probability mutants. The whole population of potential mutants changes
when an attribute changes, partially simulating a change in dominance. This
correspondence is so indirect, however, that I would consider it an experimental
part of the program. Since the random-number interval and frequency distribution
referenced are also subject to mutation and selection along with the rest of the
string, the population may evolve an efficient simulation of natural dominance since
dominance is useful.

180 R. WEINBERG, M. BERKUS

The locus to undergo mutation is obtained by the genetic program, and the
mutational increment is then obtained by using the random-number interval stored
under the locus (locus = entity) undergoing mutation. Mutation in the adaptive
genetic programs is analogously effected by the non-adaptive genetic program. The
non-adaptive genetic program only mutates under direct manipulation by the
programmer. An example of the kinds of values used in directed mutation follows.
The entity to mutate is k(5), which has a current value of 5. The mutational incre-
ment is set at n * 5 by the information stored along with the index of the entity
in the CHROM array. The value for n is obtained by calling on the random-number
generator, and generating a number between - 20 and + 20 as directed by the den-
sity distribution specified along with the index of the entity. The mutational incre-
ment thus ranges from -20 * 5 to +20 . 5, in intervals of 5. The next value of k(5)
will be one of the numbers in the range -20 - 5 + 5 to +20 . 5 + 5, obtained by
adding the value of the mutational increment (- 20 * 5 to + 20 * 5) to the current
value for k(5) which is 5. This procedure differs from natural mutation where most
mutants are random alterations, and therefore useless, so that saving recessive
alleles through protection by dominance in diploids becomes necessary. Directed
mutation saves time and storage in a computer simulation since much unnecessary
mutation is ruled out, recessive alleles do not have to be stored, and complex
calculations for dominant alleles in the canonical realisation of the string are
eliminated. The directed mutation procedure can be quite simple as outlined above
for the entity k(5).

My motivation for only one representation of any particular string in the program
is that I would like to preserve maximum variability with minimal computation
and storage, since variability is equal to the rate in change of fitness of the popula-
tion by Fisher’s Fundamental Theorem. The value of the utility of an individual,
rather than a number of copies of that individual, determines the contribution of
that individual to the next generation. There might also be a population of the
best unused string from each population to be saved but not used except for recom-
bination, as well as the directed mutation scheme, which permits nonrandom
mutation to alleles likely to be useful, in order to permit realisation of dominance
without lengthy computation. This may lead to lack of fixation of fit individuals,
but will enable the evolving strings to try out more combinations. Since old strings
are preserved each generation both as members of the next generation (40% of
the old population is saved intact) and as potential population members through
directed mutation which is rigged to produce useful alleles, the population is
unlikely to ‘forget’ a good set of parameters once they are obtained.

The action of the operon in the simulated cell is particularly interesting, since
the same repression technique can be applied to replication of portions of DNA
by examining concentration of quantities in the program produced under the
direction of one of the loci in the string. If the evolving string references simple
subroutines, the genetic program may generate duplicates of the locus which needs

COMPUTER SIMULATION OF A LIVING CELL: PART II 181

modification when the threshold for the quantity reaches a danger level (either
too high or too low), or pick alternate subroutines from a list to add to the string,
or call the operator for man machine interaction in production of a new subroutine
to add to the string, the new subroutine being designed to supplement the offending
subroutine already present which was not doing its job.

In a program as complex as the simulated cell, the duplication operator would
be a signal for man machine interaction, with the man modifying the subroutine
not predicting correctly, or adding a new subroutine to extend one already present.
The predictors, however, are easy to define for the simulated cell, since each para-
meter is closely associated with a simulated activity. Pi(k) and P3(k) would need
modification when the catalytic activity of enzyme EK(k) increased in spite of the
fact that too much PRDC(k) was already present. R(k) should be examined if
MRNA(k) increased when PRDC(k) was already too high, or if MRNA(k) decreased
when PRDC(k) was too low, for either of these actions would indicate that R(k)
is not doing the job it is predicted that it will do.

In a program with simpler subroutines, like Cavicchio’s pattern-recognition
program, the signal for duplication of a locus might well enable the genetic program
directing evolution to modify an old locus to produce the needed function.

A lumping operator on strings would be related to schemata (Holland). A gene
could be merged with another gene by the lumping operator which would convert
the references to two parameters to a reference to one parameter. The lumped
genes are closely related to successful schemata, since their survival indicates that
the genes which constitute them are successful in combination with each other.
By allowing directed mutation within the lumped group of genes, one may reap
the reward of hidden recessives becoming dominant without sacrificing the advan-
tage of a coadapted set of genes remaining linked through evolution.

Since the parameters indexed by the chromosome arrays are not limited to
biochemical rate constants, the realisation of Holland’s reproductive scheme as a
computer simulation may be used to do a genetic search of many different spaces,
thereby realising heuristic programs. Examples are the kinds of subroutines useful
in pattern recognition (Cavicchio, 1968) or production of English sentences using
a generative grammar (Bono, 1968). Both of these tasks have been written in pre-
liminary form as populations of computer programs which evolve over time as a
function of how well they do the specific task assigned to them. Heuristic pro-
gramming may have interesting applications in obtaining programs to accomplish
many ill-defined algorithms for tasks with a well-defined goal and reward scheme.

5. CANCER IN RELATION TO THE COMPUTER SIMULATION OF A LIVING CELL

Curing cancer is an example of the type of extension of the simulation of a living
cell which I would like to eventually make (Heinmetz, 1966). Modifications of the

182 R. WEINBERG, M. BERKUS

computer simulation might help to screen for cancer curing environments. Cancer
is caused by uncontrolled growth of cells in the body. Normally many human cells
stop growing in adults, or grow slowly. A human liver cell, for example, is inhibited
from growing and dividing by contact inhibition, that is by contact with other liver
cells. In a cancerous cell, this inhibition is ineffective. The cancer cells grow without
proper controls, crowding out other cells. Another type of control of normal cells
is determined by the tissue in which they may grow. Normal liver cells will not
grow at all in the lungs, while cancer cells derived from liver may grow in the lungs
and crowd out lung cells. Invasiveness and uncontrolIed growth of cancer cells
makes them difficult to remove by surgery, and may kill the man afllicted. Under-
standing the types of changes in cellular control mechanisms giving rise to uncon-
trolled growth may help in curing cancer by suggesting rational approaches to the
prevention of changes leading to cancer, and to plans of attack against cancer
cells.

Two types of changes in cellular control mechanisms may lead to uncontrolled,
cancer-like growth: (1) a mutation in the cell’s genes may alter the cell’s control
genes; (2) virus genes may enter the cell’s chrosome, and subsequently alter the
cellular control systems (Davis et al., 1968). Simulation of cancer caused by
mutation and by hidden viruses may enable one to simulate the effect of various
environments on normal and cancer cells, and thereby help to find chemical environ-
ments which are likely candidates to test as cancer cures. The rapidity with which
one can simulate the effect of different environments may enable one to ‘test’ in
far greater amount and detail than one could investigate in actual experiments where
limitations of time, space and experimental organisms are strong constraints. The
control of DNA replication in bacteria and in humans is intimately related to the
cell membrane, suggesting that extension of the microbial model of DNA replica-
tion to human cells may prove feasible (Clark, 1968; Comings and Kakefuda,
1968).

ACKNOWLEDGEMENTS

Dr J. A. Jacquez and the Biomedical Data Processing group provided me with a
milieu in which I could begin studies at The University of Michigan. Dr John H.
Holland encouraged me to enter the strange new field of computer and communica-
tion sciences from genetics, and taught at a level of excellence which permitted
me to remain a student for the requisite initiation period. Dr Bernard P. Zeigler,
E. Stewart Bainbridge, and Daniel J. Cavicchio tutored me with patience and skill
through many perilous passages. Ronald Brender, Thomas Schunior and John Foy
gave willingly of their computing knowledge. Dr Robert B. Helling and Dr Prasanta
Datta kept me abreast of key happenings in biochemistry and genetics. Dr Arthur
W. Burks understood my academic problems at all times, and inspired me by his

COMPUTER SIMULATION OF A LIVING CELL: PART II 183

leadership of the Logic of Computers Group and the Department of Computer
and Communication Sciences at The University of Michigan. Dr H. H. Swain and
Richard Laing catalysed my work with theireditorial comments and creative writing.
Mr Thomas Dawson administered the affairs of the Logic of Computers Group,
and the Department of Computer and Communication Sciences with morale
boosting zeal. Miss Linda Beattie typed and drew with skill and dedication. I have
erred at points in spite of all of these accomplished and generous helpers because
I am human.

REFERENCES

ATKINSON, D. E., Regulation of enzyme activity, Annual Rev. Biochem., 35 (1966) pp. 85-123.
BONO, P. R., A heuristic program which produces generative grammars, Ann Arbor, Mich.:

Erect for Course in Simulation of Biological Systems, CCS 680, The University of Michigan,

CAVIC&, D. J., Jnr., 4 heuristic prqgram which recognises patterns, Ann. Arbor, Mich.:
y;;ect for Course in Slmulatlon of Biological Systems, CCS 680, The University of Michigan,

COMINGS,’ D. E. and KAKEFUDA, T., Initiation of deoxyribonucleic acid replication at the nuclear
membrane in human cells, J. Mol. Biol., 33 (1968) pp. 225-30.

CLARK, J. D., Regulation of deoxyribonucleic acid replication and cell division in Escherichia coli
B/r, J. Bacterial., 96 (1968) pp. 121424.

DAVIS, B. D., DLJLBECCO, R., EDEN, H. N., GINSBERG, H. S. and WOOD, W. B., Microbiology,
Harper & Row, New York, 1968.

FISHER, R. A., The Genetical Theory of Natural Selection, Dover, New York, 1958.
GALE, D., A geometric duality theorem with economic applications, Review of Economic Studies,

32 (1967) pp. 19-24.
GARFINKEL, D., A simulation study of mammalian phosphofructokinase, J. Biol. Chem., 241

(1966) pp. 286-94.
GRIFFITH, J. S., Mathematics of cellular control processes, J. Theoret. Biol., 20 (1968) pp. 202-16.
HEINMETS, F., Analog computer analysis of a model-system for the induced enzyme synthesis,

J. Theoret. Biol., 6 (1964) pp. 60-75.
HEINMETS, F., Analysis of Normal and Abnormal Cell Growth, Plenum Press, New York, 1966.
HILDEBRAND, F. B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1956.
HOLLAND, J. H., Hierarchical Descriptions, Universal Spaces and Adaptive Systems, University

of Michigan Technical Report 08226-4-T, Ann Arbor, Michigan, 1968a.
HOLLAND, J. H., Theory of Adaptive Systems, Course in Department of Computer and Com-

mumcation Sciences, The University of Michigan, 1968b.
HOLLAND, J. H., Hierarchical descriptions, universal spaces and adaptive systems, in Collection

of Papers on Cellular Automata (ed. A. W. BURKS), Urbana: University of Illinois Press,
1969a.

HOLLAND, J. H., Adaptive plans optimal for payoff by environments, in Proceedings of the Second
Hawaii Conference on Svstem Sciences. 1969b.

KIMURA, M., Chinges of me& fitness in ranhom mating populations when epistasis and linkage are
present, Genetics, 51 (1965) pp. 349-63.

KOCH, A. L., Metabolic control through reflexive enzyme action, J. Theoret. Biol., 15 (1967)
nn 751n3
rr. ._ __-.

LARK, K. G., Regulation of chromosome replication and segregation in bacteria, Bacterial. Rev.,
30 (1966) pp. 3-32.

MIZE, J. H. and Cox, J. G., Essentials of Simulation, Englewood Cliffs, N.J.: Prentice-Hall, 1968.
MURRAY, A. W. and ATKINSON, M. R., Adenosine 5’ phosphorothioate. A nucleotide analog that

is a substrate, competitive inhibitor, or regulator of some enzymes that interact with adenosine
5’-phosphate, Biochemistry, 7 (1968) pp. 4023-9.

STAH;~~W. R., A computer mode1 of cellular self-reproduction, J. Theoret. Biol., 14 (1967) pp. 187-
-__.

STRICKBERGER, M. W., Genetics, Macmillan, New York, 1968.

184 R. WEINBERG, M. BERKUS

SUGI~A, M. and FUKUDA, N., Functional analysis of chemical systems in vivo using a logical
circuit equivalent, J. Theoret. Biol., 5 (1963) pp. 412-25.

TSANEV, R. and SENDOV, B., A model of the regulatory mechanism of cellular multiplication,
J. Theoret. Biol., 12 (1966) pp. 32741.

WALLACE, B., Topics in Population Genetics, W. W. Norton, New York, 1968.
WEINBERG, R., Analytic and logical equations in a computer simulation of cell metabolism and

replication, Sixth Annual Symposium on Biomathematics and Computer Science in the Life
Sciences, The University of Texas, pp. 102-3, 1968a.

WEINBERG, R., Computer simulation of a living cell, Bacteriological Proceedings, (1968b) G114.
WEINBERG, R., Computer simulation of self-reproduction by a living cell, ffenetics, 60 (1968~) p. 235.
WEINBERG, R. and BERKUS, M., Computer simulation of evolving DNA, Biometrics, 25 (1969)

p. 447.
YEISLEY, W. G. and POLLARD, E. C., An analog computer study of differential equations concerned

with bacterial cell synthesis, J. Theoret. Biol., 7 (1964) pp. 485-501.

APPENDIX

Variables in program: A = array
0 = floating point
1 = integer

ADJST
ADPO

I%
ATP

ATPSB
BROTH

%?MO
CNTRL

COUNT
CRAZY
C(I)

:%P

DAP02
DATP

DDNAl
DDNA2
DDNA3

DDNA

:;y;;
DEK(3)
DEK(4)

DEK(5)
DEK(6)
DEK(7)

2

A

A

0 arrays used in solve function to obtam rate constants used
0 in allosteric inhibition
0 amino acid concentration at time zero
0 ATP molecules used to make 1 amino acid molecule
0 amino acid concentration

0 adjustment factor for concentrations from volume increase
0 ADP concentration at time zero
0 ADP concentration
0 ATP concentration at time zero
0 ATP concentration

0 array to store ATP concentrations in different environments
1 equals 1 if cell growing in broth
1 equals 1 if cell growing in casamino acid
0 number of chromosomes at time zero
1 equals 1 if cell using metabolic controls to adjust growth rate

0 number of growth cycles made
1 used as a logical variable
0 enzyme rate constants
0 change in amino acid concentration
0 change in ADP concentration

0 change in ATP concentration from literature
0 change in ATP concentration calculated from rate constants in one time

step
0 change in amount of chromosome 1 in one time increment
0 change in amount of chromosome 2 in one time increment
0 change in amount of chromosome 3 in one time increment

0 change in total DNA in one time increment
0 change in enzvmes for nucleotide uroduction in one time increment
0 change in enzymes for amino acid-production in one time increment
0 change in enzymes for glycolysis production in one time increment
0 change in enzymes for wall production in one time increment

0 change in enzymes for ADP, ATP synthesis in one time increment
0 change in enzymes for DNA synthesis in one time increment
0 change in enzymes for protein production in one time increment

COMPUTER SIMULATION OF A LIVING CELL: PART II 185

Appendix (Cont.)

DEK(8)
DEK(9)
;~;(lO)

DNA0
DNA1
DNAlZ
DNAlT

change in enzymes for MRNA synthesis in one time increment
change in enzymes for ribosome synthesis in one time increment
change in enzymes for TRNA production in one time increment
change in initiator concentration in one time increment

0 DNA at time zero
0 chromosome 1 ‘concentration’, i.e., amount/volume of cell
0 chromosome 1 at zero time
0 total chromosome 1

DNA2
DNA2T
DNA2Z
DNA3
DNA3T

0 chromosome 2 ‘concentration’
0 total chromosome 2
0 chromosome 2 at zero time
0 chromosome 3 ‘concentration’
0 total chromosome 3

DNA3Z 0 chromosome 3 at zero time
DNAP 0 ATP used per DNA molecule synthesized
DNA ODNA
DNASB A 0 array to save concentrations of DNA in different environments
DNUC 0 change in nucleotide concentration

DBLE
DPRTN
DRIB
DMRNA
DRNA

0 time for cell to go through one reproductive cycle
0 change in protein in one time increment
0 change in ribosome in one time increment
0 change in MRNA in one time increment
0 change in total RNA in one time increment

DRNK(i) A 0 change in MRNA for enzyme EK(i) in one time increment.
i ranges from 1 to 10.

;:Ml
DUM2
DUM3

0 length of one time increment, = differential
0 dummy variable in solve function
0 dummy variable in solve function
0 dummy variable in solve function

DVOL
DWALL
DPRDK
PRD

DPRD

0 change in cell volume in one time increment
0 change in cell membrane and cell wall in one time increment

A 0 array of change in product concentration in one time increment
A 0 the stored array of the previous four product values, for predictor

corrector
A 0 array of the four previous D(product) values for the predictor corrector

PPRD
CPRD
EK(1)
EKZ(1)
EK(2)
EKZ(2)

A 0 current array of the predictor values of products
A 0 current array of corrector values of products

0 concentration of enzymes for nucleotide production
0 concentration of enzymes for nucleotide production at zero time
0 concentration of enzymes for amino acid production
0 concentration of enzymes for amino acid production at zero time 1.. 1.. where 3 inatcares gtycotysis

4 indicates cell wall production
5 indicates ADP, ATP production
6 indicates DNA production
7 indicates protein production
8 indicates MRNA nroduction
9 indicates ribosome production

10 indicates TRNA production

FACTR
GLUCO
GLUC

::11

0 factor by which chromosomes multiply in one reproductive cycle
0 glucose concentration at zero time
0 glucose concentration
1 integer variable in RPLACE routine
0 site for replication of chromosome 11, = 1 if it is present

INllZ
IN1
INlZ
IN21
IN2lZ

IN2
INZZ
IN31
IN31Z
IN3

IN3Z

:r”
INZ
K(1)

K(7)
K(8)
K(9)

E[$

KDRNK
KSK(i)
KSKZ(i)
KBB(i)

KB

KIN
Ek!$i)

K(i)
LN2

L

ERN*O
MRNAP
MRNA

MULT

&O

::F

p’:v

::v
PRDCO

R. WEINBURG, M. BERKUS

0 site for replication of chromosome 11 at zero time
0 site for replication of chromosome 1, = 1 if it is present
0 site for replication of chromosome 1 at zero time
0 site for replication of chromosome 21
0 site for replication of chromosome 21 at zero time

0 site for replication of chromosome 2
0 site for replication of chromosome 2 at zero time
0 site for replication of chromosome 31
0 site for replication of chromosome 31 at zero time
0 site for replication of chromosome 3

0 site for replication of chromosome 3 at zero time
0 concentration of initiator in cytoplasm
1 an integer variable
0 initiator concentration at zero time
0 preliminary rate constant for nucleotide production

0 preliminary rate constant for amino acid production
0 preliminary rate constant for glycolysis
0 preliminary rate constant for cell wall production
0 preliminary rate constant for ADP production
0 preliminary rate constant for DNA production

0 preliminary rate constant for protein production
0 preliminary rate constant for MRNA production
0 preliminary rate constant for ribosome production
0 preliminary rate constant for TRNA production
0 preliminary rate constant for volume increase as a function of wall

0 rate constant for MRNA decay
0 rate constant for MRNA EK(i)
0 rate constant for MRNA for EKZ(i)
0 rate constant for allosterically inhibited enzyme EK(i) with two

molecules of product attached to the enzyme
0 array of rate constants of allosterically inhibited enzymes with one

-molecule of product attached to the enzyme
0 preliminary rate constant for initiator production
0 rate constant for production of EK(i)
0 rate constant for uninhibited enzyme EK(i)
0 array to store preliminary rate constants, used for each environment
0 natural logarithm of 2

1 integer variable for calling on solve function
1 integer variable for printing loop
0 MRNA concentration at time zero
0 ATP per MRNA molecule produced
0 MRNA concentration

0 number of genes producing initiator
0 number of cell in nouulation (doubles when cell divides)
0 molecules of nucleotide at zero time
0 molecules of ATP to make one nucleotide
0 concentration of nucleotide

0 rate constant
0 array of equilibrium rate constants for enzymes
0 equilibrium rate constant for two molecule allosteric inhibition
0 array of equilibrium rate constants for two molecule allosteric inhibition
0 array equivalenced to products at zero time

COMPUTER SIMULATION OF A LIVING CELL: PART II 187

Appendix (Cont.)

PRDCK
PRDC
PRDC(1)

:E:I:i

PRDC(9)
PRDC(lO)
PRDC(ll)
PRDC(14)
PRTNO

PRTNP
PRTN
RAA
RADP
RATP

k~A1
RDNAZ
RDNA
REK(i)

RIB0
RIBP
RIB
RNA0
RNA

TRNAO
TRNAP
TRNA
RNK(i)
RNKZ(i)

RNUC
RON
RPRTN
RRIB
RMRNA

RRNA
RTRNA
RRNK(i)
R
RVOL

RWALL
SUM

;oLo
VOLN

VOL
WALL0

0 array equivalenced to products
0 array for storing concentrations of products in different environments
0 NUC
OAA
0 ATP

0 WALL
0 ADP
0 DNA
0 PRTN
0 MRNA

0 RIB
0 TRNA
0 GLUC
0 VOL
0 protein concentration at zero time

0 ATP molecules used per protein molecule formed
0 protein concentration
0 ratio of amino acid concentration to a base level
0 ratio of ADP concentration to a base level
0 ratio of ATP concentration to a base level
0 array of repression constants for MRNA repression
0 ratio of chromosome 1 concentration to a base level
0 ratio of chromosome 2 concentration to a base level
0 ratio of DNA concentration to a base level
0 ratio of EK(i) concentration to a base level, i = 1, . . JO

0 ribosome concentration at time zero
0 ATP used per ribosome made
0 ribosome concentration
0 RNA concentration at time zero
0 RNA concentration

0 transfer RNA concentration at time zero
0 ATP per transfer RNA molecule made
0 transfer RNA concentration
0 concentration of MRNA for enzyme EK(i), i = l,.. . .,lO
0 concentration at zero time of MRNA for EKZ(i), 1 = 1, . .,lO

0 ratio of nucleotide concentration to a base level
1 used as a logical variable turning repression on
0 ratio of protein concentration to a base level
0 ratio of ribosome concentration to a base level
0 ratio of MRNA concentration to a base level

ratio of RNA concentration to a base level
ratio of TRNA concentration to a base level
ratio of RNK(i) concentration to a base level, i = 1, . . .,lO

0 array for repression constants
0 ratio of new volume to old volume at end of one time increment

0 ratio of pool for wall to a base level in terms of concentration
0 array used in solve function
0 generation time in seconds
0 volume of cell at time zero
0 volume at end of one time increment

0 volume
0 concentration of pool for wall production at time zero

188 R. WEINBURG, M. BERKUS

Appendix (Cont.)

WALLP 0 ATP molecules used per molecule of cell wall produced
WALL 0 concentration of pool for wall production
X 0 variable used in repression routine

XK(i,j) A 0 value of K(i) in environment (j)
XEK(i,j) A 0 value of EK(k) in environment (j)
XK8(i,j) A 0 value of KIK(i) in environment (j)

