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SUMMARY 

This paper, which is being presented in two parts, is concerned with the problem of a 
realistic and useful simulation of a living cell, the simple unicellular bacterium 
Escherichia coli, the program being written in Fortran IVfor an IBM 360167 computer. 
The object is to represent the cell in such a way as to simulate its growth in real 
environments of a living cell, as well as during changes from one chemical environ- 
ment to another. This simulation could also supply useful information for answering 
current questions in biology. 

In Part 2 of this paper the authors describe the method of evolving DNA and 
discuss cancer in relation to the computer simulation under consideration. Literature 
references cited in both parts of the paper, as well as the appendix to the work, are also 
presented. 

SOMMAIRE 

Cette etude s’occupe du probleme dune simulation realiste et utile dune cellule 
vivante: la bacterie simple et unicellulaire Escherichia coli, le programme &ant 
ecrit en Fortran IV pour un ordinateur IBM 360/G. Le but c’est de representer la 
cellule de telle fagon h simuler la croissance de celle-ci dans le milieu veritable dune 
celhde vivante ainsi que pendant les changements d’un milieu chimique a un autre. 
Cette simtdation pourrait aussi fournir des renseignements utiles en repondant h des 
questions courantes dans la biologie. 

* Part I appeared in Bio-Medical Computing, 2 No. 2, April, 1971. 
!.$qrted by the Department of Health, Education and Welfare, NIH, Bethesda, Maryland 

$ Present address: Dept of Statistics and Computer Science, Kansas State University, Manhattan, 
Kansas (USA). 

167 

Bio-Medical Computing (2) (1971)-@ Elsevier Publishing Company Ltd, England-Printed in Great Britain 



168 R. WEINBERG, M. BERKUS 

4. COMPUTER SIMULATION OF EVOLVING DNA 

The computer simulation of a living cell adapts phenotypically to three different 
chemical environments (section 2, Part 1). I will extend the simulation so that the cell 
can adapt genetically as well as at the phenotypic level. I will represent DNA as an 
array in the computer in which are stored the indexes and values of various rate 
constants in the equations representing the simulated cell. 

Four powerful genetic operators for evolution of populations are (1) crossover, 
(2) inversion, (3) mutation and (4) dominance. 

1 nontdtptive 
GeNeTIC PitocfuM\ 

4 GENETIC PMGgAMS 
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40 Strintr In 

Fig. 4.1. The Chrom Array. 
15 Entities Referenced by 1 String = 1 Individual 

Column Number = Position of Entity Reference on String 
= 2nd Dimension of Array 

1 I Column Number 5 15 

Row Number = 1st Dimension of Array. 1 I Row Number I 4 
Row Number :l = Index of Entity Referenced = Locus Referenced 

2 = Attribute of Entity Referenced = Value of Locus 
3 and 4 Describe Mutation Pattern for Entity Referenced in Row 1 

3 = Number Controlling Interval over Which Random Number is Generated for 
Mutation 

4 = Index of Probability Distribution over Increments of Mutation for Monte 
Carlo Method. 

INDIVIDUAL IN POPULATION = STRING IN POPULATION IS INDICATED BY 
THE THIRD DIMENSION OF THE ARRAY. THE CONTENTS OF THE ROWS AND 
COLUMNS CONTAIN INFORMATION ABOUT ATTRIBUTES AND GENETICS OF 
THE INDIVIDUAL INDEXED BY THE THIRD SUBSCRIPT. e.g., CHROM (1,4,2) = 3 
MEANS THAT THE THIRD ATTRIBUTE OF THE SECOND INDIVIDUAL IS INDEXED 
BY THE FOURTH COLUMN OF CHROM ARRAY INDICATED. 1 I INDIVIDUAL 
INDEXED 5 40. 

THE LAST FOUR STRINGS INDEXED CONTAIN INFORMATION ABOUT THE 
GENETIC PROGRAM SUPERVISING EVOLUTION. 41 5 GENETIC PROGRAM 5 44. 

Crossing over permits preferential multiplication of groups of subroutines 
which interact well, giving coadaptation. Without crossing over all subroutines 
are equally linked on the string referencing an individual as a collection of sub- 
routines, so that there is no such concept as ‘close together on the linkage map’. 
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Inversion is necessary to rearrange the genetic location of different subroutines, 
so that those that should be close together on the genetic map get a chance to 
approach each other during evolution. 

Mutation is necessary to explore a large genetic space, and also to regenerate 
attributes of functions lost through selection. 

Dominance is necessary to preserve attributes of functions which are at a 
temporary disadvantage, but may be useful at some later time in evolution. 

Duplication of individuals, as well as the genetic operators crossing over, 
inversion, and mutation will be simulated by operations on the contents of the 
arrays. The modified arrays will be used to calculate the modified rate constants 
by which the new populations of simulated cells grow. I will partially realise the 
function of dominance in my simulation by strongly directed mutation to restricted 
sets of mutant alleles, a mechanism not possible in real DNA, but one which 
realises one function of dominance, i.e. the conservation of genetic variability in a 
population. 

Since the simulation is of a haploid bacterial population, I will attempt to 
simulate in a reasonable amount of computer storage populations of haploid 
bacteria, which store variability without extensive use of dominance and diploidy. 
This is to make easier the realisation of genetic mechanisms used by real bacterial 
populations, rather than because diploidy is unreasonable. Indeed diploidy offers 
a natural and straightforward way to realise the power of genetic operators and to 
store genetic variability for evolutionary demands put on the population by chang- 
ing environments. Furthermore, diploidy permits storage in the form of valuable 
substrings of successful alleles, allowing many sampling advantages which will be 
diminished in my representation of a population by applying genetic operators to 
individuals who represent the means of probability density functions, defined by 
the formula for the density together with the mean and variance of the density. 
However, many haploid populations of bacteria exist in nature in environmental 
niches which are accessible to less successful dioloid competitors, e.g. protozoa, 
indicating that the haploid mechanisms are more successful than the diploid ones in 

certain circumstances. 
An excellent feature of a general scheme like Holland’s is its extreme flexibility. 

One can consider part of an organism as the string which forms an individual in the 
population, and the rest of the organism as part of the environment. Since the 
theoretical development is much easier for a stationary environment, 1 will consider 
all loci which are fixed during the whole evolution of the programs as the environ- 
ment, and will consider only unfixed loci as strings. Since I am free to set linkage 
parameters as I wish, I can increase linkage to account for those fixed loci which 
do not explicitly appear. Most of the genetic characteristics of the individuals 
such as mutation rate and crossover will be represented as separate strings of 
adaptive or non-adaptive genetic programs, each of which will supervise the evolu- 
tion of a population. 
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It is important to have adaptive genetic programs which can evolve, since selec- 
tive procedures may lead to unexpected consequences, such as death for long- 
legged chickens, and should be amenable to modification. (The biological example, 
death for long-legged chickens, refers to an experiment in which longer shanks 
were selected in populations of chickens (Wallace, 1968, p. 455).) The populations 
so selected always became extremely unfit. 

There are two detectors of phenotypic limitations on genetic evolution of the 
simulated cells which are particularly easy to observe. One is a wide disparity 
between simulated chemical concentrations of cell metabolites and the concentra- 
tions necessary for balanced growth. The second straight-forward detector of 
phenotypic imbalance is the inability to modify the simulated enzymes to account 
for the growth rates required in the three simulated environments. The impossibility 
of manipulating the enzymes to produce required growth rates immediately shows 
up as the inability to produce a solution in the solve routine of the computer 
program (section 3, Part 1). The inability to maintain biochemical equilibria 
necessary for life shows up in a departure of the ratios of the concentrations of 
biochemicals to the necessary concentrations. These ratios should be 1 if metabolic 
equilibrium is maintained, and departures of the ratios from 1 indicate instability. 
For this reason, the utility function which directs the rate of reproduction of each 
individual in the population contains the sum of (ratio + 1 /ratio) in its denominator, 
so that the further the ratio departs from 1, the lower the value of the utility func- 
tion, and the less the rate of reproduction of the individual under consideration. 
Inability to solve the equations for allosteric modification of the enzyme pools adds 
a 10 to the denominator of the utility function, so that individuals which can not use 
allosteric modification correctly can still be ranked as a function of how far off 
their ratios are. 

Inducing sophisticated quantities by simple genetic operations on finite strings 
relates directly to Holland’s description of the complex populations of schemata 
and operators on schemata, both conservative and nonconservative which are 
present in simple finite populations of evolving strings, and which confer upon 
these simple finite populations of strings powerful evolutionary capabilities. The 
complexity of calculation of average excess induced by elimination of forty percent 
of the population at each reproductive cycle illustrates the ease with which one can 
realise something which takes a good deal of effort to describe in quantitative 
terms, and points up the advantages of studying evolving schemata in the space of a 
‘successfully’ evolving population of strings. 

It is important to distinguish between selection induced on schemata by genetic 
operations on three-dimensional arrays referencing heuristic programs, and the 
criteria used directly on the programs themselves. To illustrate this perhaps subtle, 
and certainly profound, distinction, I am going to illustrate the genetic operation 
of selection by eliminating sixty percent of the strings each reproductive cycle, and 
fill in the missing sixty percent with new strings produced from the old strings not 
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eliminated by the genetic operators crossing over, inversion and mutation. A string’s 
utility will be proportional to how well and how quickly the simulated cell which 
is the description of the string adjusts to changes in simulated environments. The 
environment for the evolving strings is all fixed loci represented by the equations 
simulating cell growth and adaptation, as well as the changing simulated environ- 
ment for the cell. To return to the number judging performance by the string 
description as opposed to a sophisticated measure such as average excess for that 
string, how well and how quickly the simulated cell adjusts to changes in its chemi- 
cal environment will be simply expressed as utility = l/(a sum of ratios of current 
chemical concentrations compared to the desired chemical concentrations + the 
computer time it took the genetic operators to modify the string during evolution + 
10 if the program was unable to correctly accomplish allosteric inhibition). Since 
the last three quantities are in the denominator of the formula for utility, the 
larger the deviation of the chemical ratios, the longer the time to evolve, and the 
greater the failure to solve for allosteric modification, the less the utility. Obviously 
computer time doesn’t even exist in the real cell, and to destroy sixty percent of the 
programs is a clumsy and unsubtle procedure. However, given this environment, 
each string does have some average excess induced on it, which would have to be 
calculated over the run of the program. It is important to perceive that this average 
excess exists, but does not appear as a number in the running genetic program which 
effects the evolution of programs in the computer. If one were simulating the theory 
of evolution rather than the evolution of an effective program to accomplish a 
task, one would certainly want to calculate the average excess of each program 
rather than defining it implicitly by the genetic procedure for producing new pro- 
grams from old ones. 

It will be recalled that the utility of the best individual produced under direction 
of an adaptive genetic program, as judged by that adaptive genetic program is 
recalculated by the nonadaptive genetic program. The nonadaptive genetic program 
gives the utility it calculates for the description of the best string in its population 
to the adaptive genetic program directing evolution of that population of strings. 
This utility is then used by the nonadaptive genetic program to direct the evolution 
of the adaptive genetic programs. Elimination of unnecessary genetic operations 
is both a practical advantage to the programmer, and an experimental fact in 
competitive natural populations. Therefore the time it took the adaptive genetic 
program to manipulate its population to produce the best string is added to the 
denominator of the SUM which is the utility given to that adaptive genetic pro- 
gram. Much of the information contained in rows 3 and 4 of the strings CHROM 
column can be approximated by ignoring the cumulative frequency distribution 
indexed in the fourth row, and simply using the uniform distribution. An adaptive 
genetic program which does this will gain in utility. For example FREQ(3) may 
be set to a uniform frequency distribution, and effectively ignored for the jth 
entity during mutation since the random-number generator itself sets up a uniform 
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distribution by choice of the correct interval in which the random numbers are 
generated. If the loss in evolutionary power does not overbalance this gain in 
utility by economising on computer time, some of the information in the third and 
fourth rows of the CHROM array may be dropped from the program eventually. 
It was included to indicate the ease with which a general and powerful evolutionary 
program may be written. Since the whole growth and phenotypic adaptation 
procedure takes less than 3 seconds of IBM 360/67 computer time, and may be 
shortened, the program is not as time consuming as it might appear to be at first 
glance. Storage of large blocks of the program on disks or in files until needed 
would also economise on computer costs. 

A brief consideration of the probability of replacement of a program in the 
population shows that the amount of utility judged to be associated with the pro- 
gram influences the probability that the program will be erased by its genetic 
supervisor. In order to be a member of the survival population, a newly generated 
program has to be in the best four in the population of running programs. The 
higher the value of one of the old surviving programs, the less likely it is to be 
supplanted by a newcomer in the next reproductive cycle. I do not want to discuss 
these calculations in detail, since my main point is to use Holland’s formal theory 
of adaptive systems to support the validity of writing extremely simple, albeit 
evolutionarily powerful heuristic programs. 

Sophisticated molecular interactions effecting negative feedback of metabolic 
processes at both the DNA and cytoplasmic level, as well as position controls of 
DNA and cell division enable a real cell to survive well, and to explore only a 
particularly productive subset of possible physiological states. The molecular 
mechanisms underlying many of these sophisticated relationships are often simple 
and direct from a molecular point of view. For example, looking to see whether 
DNA is in the process of replicating, and not replicating the cell unless all DNA 
which has begun replication has completed replication simply involves a replication 
site occurring at a potential site of cell division. Only when replication of the 
circular DNA molecule is completed can the new cell wall be laid down. This type 
of sophisticated limitation of possible actions also occurs in genetic modification 
through inertia, in that a chromosome only undergoes small changes compared 
to all possible changes which may occur. Which changes survive is very closely 
dependent on the structural and functional relationships existing in the cell, and 
sophisticated evolutionary schemes may well embody this information. 

I will pick as unfixed variables from which to generate my population of strings 
(and schemata), 15 control parameters which the cell uses for phenotypic adaptation 
to changing environments (Fig. 3.4, Part 1). The five control constants correspond- 
ing to repression of enzyme production by DNA are R(l), . . ., R(5) (see appendix). 
The ten control constants corresponding to allosteric inhibition of enzyme activity 
after the enzyme has already been formed are PlV(l), . . ., PlV(5), P3V(l), . . ., 
P3 V(5). 



COMPUTERSIMULATION OF A LIVING CELL:PARTII 173 

DESCRIPTION OF STRING (I+J) FORMED BY SETTING ENTITIES 

INDEXED BY FIRST ROW OF STRING (I+J) TO ATTRIBUTE 

WHOSE VALUE IS IN CORRESPONDING COLUMN OF 2nd ROW OF 

STRING (I+J). 

h 
b I 

SIMULATED CELL ADAPTS 

TO ITS THREE SIMU- 

LATED ENVIRONMENTS. 

c 
UTILITY OF STRING (I+J) CALCULATED FROM ADAPTIVE ABILITY 

OF THE SIMULATED CELL WHICH IS ITS DESCRIPTION, ACCORDING 

TO UTILITY PROCEDURE OF ADAPTIVE GENETIC PROGRAM (II. 

FOUR STRINGS WITH HIGHEST UTILITY GENERATE SIX STRINGS BY 

CROSSOVER, AND DIRECTED MUTATION UNDER DIRECTION OF ADAPTIVE - 

GENETIC PROGRAM (I) TO REPLACE SIX LOW UTILITY STRINGS IN 

POPULATION OF TEN UNDER CONSIDERATION. 

GENETIC PROGRAM (I) DIRECTING EVOLUTION. THE ABSOLUE GENETIC 

PROGRAM CALCULATES ADAPTIVE GENETIC PROGRAM (I) UTILITY BY 

JUDJING ME UTILITY OF ITS BEST INDIVIDUAL STRING. 

Fig. 4.2. Evolution of strings. 
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1 will keep the simulated cell program and all variables in program common, and 
call in the simulated environments, adaptive genetic program, and the ten string 
population from disk storage. The program for the simulated cell will receive the 
values of its variables according to the information of a string representing one 
individual, the simulated cell program will be run, a utility will be calculated 
according to the adaptive genetic program, values of the variables will be filled in 
according to the next string in the population, until all of the strings in the ten 
string population have obtained a utility for that run. The adaptive genetic program 

EVOLUTION OF 

. 
BEST 2 ADAPTIVE GENETIC PROGRAMS FORM 2 NEW --- 
ADAPTIVE GENETIC PROGRAMS TO REPLACE THE 2 --- 
LOW UTILITY ADAPTIVE GENETIC PROGRAMS. NON- ---- 
ADAPTIVE GENETIC PROGRAM DIRECTS CROSSING --- 
OVER AND DIRECTED MUTATION OF THE 2 ADAPTIVE 

GENETIC PROGRAMS. -- 

THE BEST ADAPTIVE GENETIC PROGRAM INDUCES AN --- 
INVERSION INTO ITS POPULATION TO FORM THE 

POPULATION OF ADAPTIVE GENETIC PROGRAM (I + 2). ---_ 
THE BEST ADAPTIVE GENETIC PROGRAM DOES NOT --- 
INTRODUCE THE INVERSION INTO ITS OWN POPULA- 

TION. THE NEXT BEST ADAPTIVE GENETIC -- 
PROGRAM DOES THE SANE FOR ADAPTIVE GENETIC -- 
PROGRAM (I + 3). -_ 

I 

Fig. 4.3. Evolution of adaptive genetic programs. 
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will then operate on the ten string population to form a new population according 
to its genetic information and the utilities awarded to each string when its values 
were loaded into the simulated cell program and run. The adaptive genetic program 
and its ten string population will then be returned to disk storage, and the next 
adaptive genetic program and population will be brought into core (Figs. 3.2 and 
3.3, Part 1). Each adaptive genetic program will be awarded a utility dependent on 
information in a non-adaptive genetic program. The four adaptive genetic programs 
and the non-adaptive genetic program will then be loaded into core, and the two 
worst adaptive genetic programs will be replaced by programs generated from the 
two best adaptive genetic programs. I will introduce inversions in the populations of 
strings supervised by the two best adaptive genetic programs, and use these modified 
strings to form the new populations of the new adaptive genetic programs just 
formed. The inversions will only appear in the populations of the new adaptive 
genetic programs, and will be homozygous in these populations for ease of genetic 
operations on the populations (Figs. 4.2 and 4.3). 

Information concerning genetic manipulation of the evolving strings will be 
stored in the references to the adaptive genetic programs (Fig. 4.5). This information 
determines crossover, inversion, mutation and selection. The pattern of mutation, 
once the locus to mutate has been determined by the adaptive genetic program, will 
be referenced by the third and fourth rows of the array containing the string which 
will mutate. The non-adaptive genetic program directs evolution of the adaptive 

INDEX ENTITY IOTA = RANGE MUTATION PATTERN 

EN%TY 
EQUALS FOR ATTRIBUTE EQUALS 
LOCUS OF ENTITY 

INDEXED INCREMENT IN ATTRIBUTE 

Pl V(1) 

:: ;i:j 
Pl V(4) 
Pl V(5) 

P3 V(1) 

(-10-6, +106) 

91 >, 
,> 1, 
1, 1, 
>> 7’ 

>> ,, 

+Normal: mean Pl V(l)/10 = 
variance 

2 

: 
5 

+Normal: mean P3 V(l)/10 = 
variance 

11 

12 
13 
14 

15 

R(1) (0, 1) +Uniform: -1, l.R 2 0. If 
R < 0, set to 0. 

:{:j 
R(4) 
Utility of individual referenced by third dimension of array. Utility is 
calculated by the genetic program supervising evolution, so there are 
some empty spaces here. 

Fig. 4.4. Description of Strings References when Third Dimension of CHROM Array Ranges 
from 1 to 40. 
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RANDOM NUMBER INTERVAL 
INDEX 

EN?:TY 
ENTITY ATTRIBUTE AND CUMULATIVE FREQUENCY 

RANGE DISTRIBUTION USED TO 
EFFECT GENETIC OPERATION 

OF INDEXED ENTITY 

1 crossover (l,l4) Random (l,N(l)), Freq. (1) 
2 inversion (l,l4) Random (l,N(2)), Freq. (2) 

length = 2*Random (1,5) 

3 mutation (1715) Random (1 ,N(3)), Freq. (3) 
4 coefficients for (W) Random (l,N(4)), Freq. (4) 

:, 
utility polynomial etc. 
for string being 

7 operated on. 

; 
10 
11 

:: 
14 

15 Utility of this adaptive genetic program, calculated by non-adaptive genetic program. 

Fig. 4.5. Adaptive Genetic Programs. Adaptive genetic programs: N(Z) and FREQ(Z) are deter- 
mined by a non-adaptive GENETIC PROGRAM, which also operates on the adaptive genetic 
programs as evolving strings. The nonadaptive GENETIC PROGRAM determines utility by a 
polynomial which evaluates the best individual the adaptive genetic program offers it from its 
population. The attribute of the adaptive genetic program references the column in the string(s) 

upon which the adaptive genetic program is currently operating. 

RANDOM NUMBER INTERVAL 
INDEX AND CUMULATIVE FREQUENCY 

EN;;TY 
ENTITY ATTRIBUTE DISTRIBUTION USED TO 

RANGE EFFECT GENETIC OPERATION 
ON CURRENT ADAPTIVE 

GENETIC PROGRAM 

1 crossover (1714) Random(lJ4) 

2 inversion (l,l4) Random (1,14) length 2* 
Random (1.5) or less. 

3 mutation (lJ5) Random (1,15) for 
entity attribute/2 
for magnitude. 

4 coefficients for (t&l) all coefficients = 1. 

2 
utility polynomial 
for best individual 

; 
produced by adaptive 
genetic program 

9 being operated on 
10 

:: 
13 
14 

15 

Fig. 4.6. Non-adaptive Genetic Program Directing the Evolution of Adaptive Genetic Programs 
as they Operate on Populations of Strings. 
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genetic programs in much the same way that the adaptive genetic programs direct 
the evolution of the strings of individuals (Fig. 4.3). 

The actual mechanics of programming are straightforward. The description of 
the (I + J)th string is easily obtained by a DO loop which loads the attribute 
of the entity into the entity for ENTITY( 1) through ENTITY( 14). The program for 
the simulated cell then has the proper values for its variables so that it can make 
a simulated run and receive a utility rating. The indexes for the respective entities, 
together with the attribute associated with the entity are stored in the CHROM 
array with a value of the third dimension of the array equal to I + J. The program 
statement is 

DO 1, K = 1,14,1 
1 ENTITY(CHROM(l,K,I + J) = CHROM(2,K,Z + J) 

Crossing over is very easy to program since all individuals which form crossover 
pairs have the same linkage map. Inversions do occur, but when an inversion is 
produced, it is used to generate a population which evolves as a group. The unequal 
probabilities of crossing over for different regions of the linkage map are realised 
by associating a cumulative frequency distribution with the crossover operator 
indexed in the genetic program (adaptive or non-adaptive). This probability is an 
attempt to simulate the inequalities in probability of crossing over for different 
regions of real chromosomes induced by the presence of inversion heterozygotes 
during real crossing over, since such heterozygotes are not simulated because of 
the complications introduced into the programming procedure for crossing over. 
Inversions are simulated, however, since they are a powerful permutation operator 
allowing the evolving populations to experiment with various linkage maps. 

An example of crossing over will be programmed for the individuals with the 
highest and next highest utilities in the population of ADAPTIVE GENETIC 
PROGRAM (1). These strings will be ordered so that they occupy the first two 
positions in the population of ADAPTIVE GENETIC PROGRAM (1) i.e., 
CHROM (Z,J,l) refers to the Zth row, and Jth column of the individual with 
highest utility in the population supervised by ADAPTIVE GENETIC PROGRAM 
(1). CHROM (I,J,2) refers to the string with second highest utility in an analogous 
manner. To obtain the crossing-over parameter, a random number is generated in 
the range 1 to N, where N is stored in the location CHROM(41,2), i.e. N is the 
attribute of the 41st entry. The crossover will then occur at the right of the column 
in the CHROM vector designated by the random number if the random number 
is less than the number of columns in the CHROM vector; otherwise no crossover 
will take place. The larger the value of N, the less the probability of a crossover. 
To generate a probability curve other than uniform for crossing over, a cumulative 
probability distribution could be used, and one could pick the point on the chromo- 
some whose cumulative distribution function is less than but closest to a random 
number which was generated between 0 and 1 (Mize and Cox, 1968). The 
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same Monte Carlo technique can be used to obtain probability distributions for 
mutational increments for any desired probability distribution. 

To program a crossover between individuals CHROM (Z,J,l) and CHROM 
(Z,J,2), the following sequence of instructions can be used, where Z and J are 
variable, and denote individual strings, the crossover takes place at position X, 
and the crossover products are loaded into strings CHROM (Z,J,5) and CHROM 
(AJ,6). 

K= 1 
DO 1 Z = 1,4,1 
DO 1 J = 1,X,1 
CHROM (Z,J,K + 4) = CHROM (Z,J,K) 

1 CHROM (Z,J,K + 5) = CHROM (Z,J,K + 1) 
DO 2 Z = 1,4,1 
DO 2 J = X,15,1 
CHROM (Z,J,K + 5) = CHROM (Z,J,K) 

2 CHROM (Z,J,K + 4) = CHROM (Z,J,K + 1) 

KEY 
K is the base for denoting the individual. 
Z denotes the row of the CHROM array. 
J denotes the column of the CHROM array. 
the following six lines effect crossing over. 

Since the best four strings are saved after a round of phenotypic adaptation and 
evaluation by the ADAPTIVE GENETIC PROGRAM (l), the recombinant will 
be loaded into CHROM (Z,J,5), thus destroying the fifth individual in ranking 
with respect to utility. If both products of the crossover are saved, the second 
recombinant will be loaded into CHROM (Z,J,6). 

The column for crossover will be obtained by Monte Carlo techniques, using 
the random-number interval and cumulative frequency distribution located in the 
column of the adaptive genetic program which indexes the crossover entity. (1 
happens to index crossing over, so the third and fourth rows of the column con- 
taining a 1 in its first row will contain, respectively, the random number interval 
and cumulative distribution used to generate the point of crossover point.) For a 
simplified example of Monte Carlo techniques let the random number be generated 
over (1,14). Let x be the column to the left of the crossover point. Let F(x) be the 
cumulative distribution for the probability of a crossover occurring to the right of 
x. The crossover point x = F-l(u) (Mize and Cox, 1968, p. 74). The crossover does 
not occur if a random number is generated outside of the range of F- ‘(x), allowing 
mutation to increase or decrease the probability of crossing over for the whole 
chromosome by changing the length of the interval over which the random number 
is generated if it is wider than the range of F-‘(x). If this is not useful, it can be 
discarded by the genetic program, and a random-number interval (1,14) used. 
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Not only inversions, but also chemical differences on different parts of real 
chromosomes alter biological crossover frequency. There are complex interactions 
between different parts along the length of chromosomes undergoing crossing over. 
The assumption of constant crossover frequency per unit string length is a close 
approximation to the relation between linkage and percent recombination for real 
chromosomes. The linkage map of the real chromosome approximates a linear func- 
tion of percent recombination for map distances less than forty percent. Constant 
probability of crossover per unit length is therefore a reasonable first approxi- 
mation for Holland’s theoretical development. However, the probability distribu- 
tions I use to simulate the action of inversion heterozygotes will also take care of 
much of the genetic control exercised by real cells on different rates of crossover 
for different regions of their chromosomes. Since the probability distribution used 
is under genetic selection, and the probability distributions stored in the computer 
may be mixed for Monte Carlo simulations (Mize and Cox, 1968, Chapter 6), 
this simple expedient realises many complex genetic functions, and therefore 
generating probability distributions for crossover actuation seems a practical 
utilisation of computer facilities in effecting simulated evolution. Experimental 
observations upon relationships between linkage, percent recombination and 
cytological observations are available in the literature (Strickberger, 1968). 

Inversions are somewhat artificially simulated for programming simplicity. The 
best adaptive genetic program as judged by the non-adaptive genetic program, 
selects the sites of inversion using the random-number interval and frequency 
distribution in its column which indexes the inversion entity (column with a 2 in 
row 1). It then inverts this segment of the strings of its population for loading into 
the population of the third best adaptive genetic program. Similarly the second 
best adaptive genetic program introduces an inversion into its population for 
loading into the population of the worst adaptive genetic program. The inversions 
are not introduced into the populations of the two best genetic programs. However, 
the two worst adaptive genetic programs are replaced by genetic combinations of 
the two best genetic programs, so there is some possibility for good genetic proce- 
dures to evolve and interact with improved linkage maps effected by inversion. 
By appropriate choice of random-number interval and cumulative density, one 
can easily manipulate the probability of obtaining any particular number. This is 
particularly useful in directed mutation, where the increment in an attribute 
becomes easy to control, implicitly defining the recessives stored by a string as its 
high-probability mutants. The whole population of potential mutants changes 
when an attribute changes, partially simulating a change in dominance. This 
correspondence is so indirect, however, that I would consider it an experimental 
part of the program. Since the random-number interval and frequency distribution 
referenced are also subject to mutation and selection along with the rest of the 
string, the population may evolve an efficient simulation of natural dominance since 
dominance is useful. 
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The locus to undergo mutation is obtained by the genetic program, and the 
mutational increment is then obtained by using the random-number interval stored 
under the locus (locus = entity) undergoing mutation. Mutation in the adaptive 
genetic programs is analogously effected by the non-adaptive genetic program. The 
non-adaptive genetic program only mutates under direct manipulation by the 
programmer. An example of the kinds of values used in directed mutation follows. 
The entity to mutate is k(5), which has a current value of 5. The mutational incre- 
ment is set at n * 5 by the information stored along with the index of the entity 
in the CHROM array. The value for n is obtained by calling on the random-number 
generator, and generating a number between - 20 and + 20 as directed by the den- 
sity distribution specified along with the index of the entity. The mutational incre- 
ment thus ranges from -20 * 5 to +20 . 5, in intervals of 5. The next value of k(5) 
will be one of the numbers in the range -20 - 5 + 5 to +20 . 5 + 5, obtained by 
adding the value of the mutational increment ( - 20 * 5 to + 20 * 5) to the current 
value for k(5) which is 5. This procedure differs from natural mutation where most 
mutants are random alterations, and therefore useless, so that saving recessive 
alleles through protection by dominance in diploids becomes necessary. Directed 
mutation saves time and storage in a computer simulation since much unnecessary 
mutation is ruled out, recessive alleles do not have to be stored, and complex 
calculations for dominant alleles in the canonical realisation of the string are 
eliminated. The directed mutation procedure can be quite simple as outlined above 
for the entity k(5). 

My motivation for only one representation of any particular string in the program 
is that I would like to preserve maximum variability with minimal computation 
and storage, since variability is equal to the rate in change of fitness of the popula- 
tion by Fisher’s Fundamental Theorem. The value of the utility of an individual, 
rather than a number of copies of that individual, determines the contribution of 
that individual to the next generation. There might also be a population of the 
best unused string from each population to be saved but not used except for recom- 
bination, as well as the directed mutation scheme, which permits nonrandom 
mutation to alleles likely to be useful, in order to permit realisation of dominance 
without lengthy computation. This may lead to lack of fixation of fit individuals, 
but will enable the evolving strings to try out more combinations. Since old strings 
are preserved each generation both as members of the next generation (40% of 
the old population is saved intact) and as potential population members through 
directed mutation which is rigged to produce useful alleles, the population is 
unlikely to ‘forget’ a good set of parameters once they are obtained. 

The action of the operon in the simulated cell is particularly interesting, since 
the same repression technique can be applied to replication of portions of DNA 
by examining concentration of quantities in the program produced under the 
direction of one of the loci in the string. If the evolving string references simple 
subroutines, the genetic program may generate duplicates of the locus which needs 
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modification when the threshold for the quantity reaches a danger level (either 
too high or too low), or pick alternate subroutines from a list to add to the string, 
or call the operator for man machine interaction in production of a new subroutine 
to add to the string, the new subroutine being designed to supplement the offending 
subroutine already present which was not doing its job. 

In a program as complex as the simulated cell, the duplication operator would 
be a signal for man machine interaction, with the man modifying the subroutine 
not predicting correctly, or adding a new subroutine to extend one already present. 
The predictors, however, are easy to define for the simulated cell, since each para- 
meter is closely associated with a simulated activity. Pi(k) and P3(k) would need 
modification when the catalytic activity of enzyme EK(k) increased in spite of the 
fact that too much PRDC(k) was already present. R(k) should be examined if 
MRNA(k) increased when PRDC(k) was already too high, or if MRNA(k) decreased 
when PRDC(k) was too low, for either of these actions would indicate that R(k) 
is not doing the job it is predicted that it will do. 

In a program with simpler subroutines, like Cavicchio’s pattern-recognition 
program, the signal for duplication of a locus might well enable the genetic program 
directing evolution to modify an old locus to produce the needed function. 

A lumping operator on strings would be related to schemata (Holland). A gene 
could be merged with another gene by the lumping operator which would convert 
the references to two parameters to a reference to one parameter. The lumped 
genes are closely related to successful schemata, since their survival indicates that 
the genes which constitute them are successful in combination with each other. 
By allowing directed mutation within the lumped group of genes, one may reap 
the reward of hidden recessives becoming dominant without sacrificing the advan- 
tage of a coadapted set of genes remaining linked through evolution. 

Since the parameters indexed by the chromosome arrays are not limited to 
biochemical rate constants, the realisation of Holland’s reproductive scheme as a 
computer simulation may be used to do a genetic search of many different spaces, 
thereby realising heuristic programs. Examples are the kinds of subroutines useful 
in pattern recognition (Cavicchio, 1968) or production of English sentences using 
a generative grammar (Bono, 1968). Both of these tasks have been written in pre- 
liminary form as populations of computer programs which evolve over time as a 
function of how well they do the specific task assigned to them. Heuristic pro- 
gramming may have interesting applications in obtaining programs to accomplish 
many ill-defined algorithms for tasks with a well-defined goal and reward scheme. 

5. CANCER IN RELATION TO THE COMPUTER SIMULATION OF A LIVING CELL 

Curing cancer is an example of the type of extension of the simulation of a living 
cell which I would like to eventually make (Heinmetz, 1966). Modifications of the 
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computer simulation might help to screen for cancer curing environments. Cancer 
is caused by uncontrolled growth of cells in the body. Normally many human cells 
stop growing in adults, or grow slowly. A human liver cell, for example, is inhibited 
from growing and dividing by contact inhibition, that is by contact with other liver 
cells. In a cancerous cell, this inhibition is ineffective. The cancer cells grow without 
proper controls, crowding out other cells. Another type of control of normal cells 
is determined by the tissue in which they may grow. Normal liver cells will not 
grow at all in the lungs, while cancer cells derived from liver may grow in the lungs 
and crowd out lung cells. Invasiveness and uncontrolIed growth of cancer cells 
makes them difficult to remove by surgery, and may kill the man afllicted. Under- 
standing the types of changes in cellular control mechanisms giving rise to uncon- 
trolled growth may help in curing cancer by suggesting rational approaches to the 
prevention of changes leading to cancer, and to plans of attack against cancer 
cells. 

Two types of changes in cellular control mechanisms may lead to uncontrolled, 
cancer-like growth: (1) a mutation in the cell’s genes may alter the cell’s control 
genes; (2) virus genes may enter the cell’s chrosome, and subsequently alter the 
cellular control systems (Davis et al., 1968). Simulation of cancer caused by 
mutation and by hidden viruses may enable one to simulate the effect of various 
environments on normal and cancer cells, and thereby help to find chemical environ- 
ments which are likely candidates to test as cancer cures. The rapidity with which 
one can simulate the effect of different environments may enable one to ‘test’ in 
far greater amount and detail than one could investigate in actual experiments where 
limitations of time, space and experimental organisms are strong constraints. The 
control of DNA replication in bacteria and in humans is intimately related to the 
cell membrane, suggesting that extension of the microbial model of DNA replica- 
tion to human cells may prove feasible (Clark, 1968; Comings and Kakefuda, 
1968). 

ACKNOWLEDGEMENTS 

Dr J. A. Jacquez and the Biomedical Data Processing group provided me with a 
milieu in which I could begin studies at The University of Michigan. Dr John H. 
Holland encouraged me to enter the strange new field of computer and communica- 
tion sciences from genetics, and taught at a level of excellence which permitted 
me to remain a student for the requisite initiation period. Dr Bernard P. Zeigler, 
E. Stewart Bainbridge, and Daniel J. Cavicchio tutored me with patience and skill 
through many perilous passages. Ronald Brender, Thomas Schunior and John Foy 
gave willingly of their computing knowledge. Dr Robert B. Helling and Dr Prasanta 
Datta kept me abreast of key happenings in biochemistry and genetics. Dr Arthur 
W. Burks understood my academic problems at all times, and inspired me by his 



COMPUTER SIMULATION OF A LIVING CELL: PART II 183 

leadership of the Logic of Computers Group and the Department of Computer 
and Communication Sciences at The University of Michigan. Dr H. H. Swain and 
Richard Laing catalysed my work with theireditorial comments and creative writing. 
Mr Thomas Dawson administered the affairs of the Logic of Computers Group, 
and the Department of Computer and Communication Sciences with morale 
boosting zeal. Miss Linda Beattie typed and drew with skill and dedication. I have 
erred at points in spite of all of these accomplished and generous helpers because 
I am human. 

REFERENCES 

ATKINSON, D. E., Regulation of enzyme activity, Annual Rev. Biochem., 35 (1966) pp. 85-123. 
BONO, P. R., A heuristic program which produces generative grammars, Ann Arbor, Mich.: 

Erect for Course in Simulation of Biological Systems, CCS 680, The University of Michigan, 

CAVIC&, D. J., Jnr., 4 heuristic prqgram which recognises patterns, Ann. Arbor, Mich.: 
y;;ect for Course in Slmulatlon of Biological Systems, CCS 680, The University of Michigan, 

COMINGS,’ D. E. and KAKEFUDA, T., Initiation of deoxyribonucleic acid replication at the nuclear 
membrane in human cells, J. Mol. Biol., 33 (1968) pp. 225-30. 

CLARK, J. D., Regulation of deoxyribonucleic acid replication and cell division in Escherichia coli 
B/r, J. Bacterial., 96 (1968) pp. 121424. 

DAVIS, B. D., DLJLBECCO, R., EDEN, H. N., GINSBERG, H. S. and WOOD, W. B., Microbiology, 
Harper & Row, New York, 1968. 

FISHER, R. A., The Genetical Theory of Natural Selection, Dover, New York, 1958. 
GALE, D., A geometric duality theorem with economic applications, Review of Economic Studies, 

32 (1967) pp. 19-24. 
GARFINKEL, D., A simulation study of mammalian phosphofructokinase, J. Biol. Chem., 241 

(1966) pp. 286-94. 
GRIFFITH, J. S., Mathematics of cellular control processes, J. Theoret. Biol., 20 (1968) pp. 202-16. 
HEINMETS, F., Analog computer analysis of a model-system for the induced enzyme synthesis, 

J. Theoret. Biol., 6 (1964) pp. 60-75. 
HEINMETS, F., Analysis of Normal and Abnormal Cell Growth, Plenum Press, New York, 1966. 
HILDEBRAND, F. B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1956. 
HOLLAND, J. H., Hierarchical Descriptions, Universal Spaces and Adaptive Systems, University 

of Michigan Technical Report 08226-4-T, Ann Arbor, Michigan, 1968a. 
HOLLAND, J. H., Theory of Adaptive Systems, Course in Department of Computer and Com- 

mumcation Sciences, The University of Michigan, 1968b. 
HOLLAND, J. H., Hierarchical descriptions, universal spaces and adaptive systems, in Collection 

of Papers on Cellular Automata (ed. A. W. BURKS), Urbana: University of Illinois Press, 
1969a. 

HOLLAND, J. H., Adaptive plans optimal for payoff by environments, in Proceedings of the Second 
Hawaii Conference on Svstem Sciences. 1969b. 

KIMURA, M., Chinges of me& fitness in ranhom mating populations when epistasis and linkage are 
present, Genetics, 51 (1965) pp. 349-63. 

KOCH, A. L., Metabolic control through reflexive enzyme action, J. Theoret. Biol., 15 (1967) 
nn 751n3 
rr. ._ __-. 

LARK, K. G., Regulation of chromosome replication and segregation in bacteria, Bacterial. Rev., 
30 (1966) pp. 3-32. 

MIZE, J. H. and Cox, J. G., Essentials of Simulation, Englewood Cliffs, N.J.: Prentice-Hall, 1968. 
MURRAY, A. W. and ATKINSON, M. R., Adenosine 5’ phosphorothioate. A nucleotide analog that 

is a substrate, competitive inhibitor, or regulator of some enzymes that interact with adenosine 
5’-phosphate, Biochemistry, 7 (1968) pp. 4023-9. 

STAH;~~W. R., A computer mode1 of cellular self-reproduction, J. Theoret. Biol., 14 (1967) pp. 187- 
-__. 

STRICKBERGER, M. W., Genetics, Macmillan, New York, 1968. 



184 R. WEINBERG, M. BERKUS 

SUGI~A, M. and FUKUDA, N., Functional analysis of chemical systems in vivo using a logical 
circuit equivalent, J. Theoret. Biol., 5 (1963) pp. 412-25. 

TSANEV, R. and SENDOV, B., A model of the regulatory mechanism of cellular multiplication, 
J. Theoret. Biol., 12 (1966) pp. 32741. 

WALLACE, B., Topics in Population Genetics, W. W. Norton, New York, 1968. 
WEINBERG, R., Analytic and logical equations in a computer simulation of cell metabolism and 

replication, Sixth Annual Symposium on Biomathematics and Computer Science in the Life 
Sciences, The University of Texas, pp. 102-3, 1968a. 

WEINBERG, R., Computer simulation of a living cell, Bacteriological Proceedings, (1968b) G114. 
WEINBERG, R., Computer simulation of self-reproduction by a living cell, ffenetics, 60 (1968~) p. 235. 
WEINBERG, R. and BERKUS, M., Computer simulation of evolving DNA, Biometrics, 25 (1969) 

p. 447. 
YEISLEY, W. G. and POLLARD, E. C., An analog computer study of differential equations concerned 

with bacterial cell synthesis, J. Theoret. Biol., 7 (1964) pp. 485-501. 

APPENDIX 

Variables in program: A = array 
0 = floating point 
1 = integer 

ADJST 
ADPO 

I% 
ATP 

ATPSB 
BROTH 

%?MO 
CNTRL 

COUNT 
CRAZY 
C(I) 

:%P 

DAP02 
DATP 

DDNAl 
DDNA2 
DDNA3 

DDNA 

:;y;; 
DEK(3) 
DEK(4) 

DEK(5) 
DEK(6) 
DEK(7) 

2 

A 

A 

0 arrays used in solve function to obtam rate constants used 
0 in allosteric inhibition 
0 amino acid concentration at time zero 
0 ATP molecules used to make 1 amino acid molecule 
0 amino acid concentration 

0 adjustment factor for concentrations from volume increase 
0 ADP concentration at time zero 
0 ADP concentration 
0 ATP concentration at time zero 
0 ATP concentration 

0 array to store ATP concentrations in different environments 
1 equals 1 if cell growing in broth 
1 equals 1 if cell growing in casamino acid 
0 number of chromosomes at time zero 
1 equals 1 if cell using metabolic controls to adjust growth rate 

0 number of growth cycles made 
1 used as a logical variable 
0 enzyme rate constants 
0 change in amino acid concentration 
0 change in ADP concentration 

0 change in ATP concentration from literature 
0 change in ATP concentration calculated from rate constants in one time 

step 
0 change in amount of chromosome 1 in one time increment 
0 change in amount of chromosome 2 in one time increment 
0 change in amount of chromosome 3 in one time increment 

0 change in total DNA in one time increment 
0 change in enzvmes for nucleotide uroduction in one time increment 
0 change in enzymes for amino acid-production in one time increment 
0 change in enzymes for glycolysis production in one time increment 
0 change in enzymes for wall production in one time increment 

0 change in enzymes for ADP, ATP synthesis in one time increment 
0 change in enzymes for DNA synthesis in one time increment 
0 change in enzymes for protein production in one time increment 
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DEK(8) 
DEK(9) 
;~;(lO) 

DNA0 
DNA1 
DNAlZ 
DNAlT 

change in enzymes for MRNA synthesis in one time increment 
change in enzymes for ribosome synthesis in one time increment 
change in enzymes for TRNA production in one time increment 
change in initiator concentration in one time increment 

0 DNA at time zero 
0 chromosome 1 ‘concentration’, i.e., amount/volume of cell 
0 chromosome 1 at zero time 
0 total chromosome 1 

DNA2 
DNA2T 
DNA2Z 
DNA3 
DNA3T 

0 chromosome 2 ‘concentration’ 
0 total chromosome 2 
0 chromosome 2 at zero time 
0 chromosome 3 ‘concentration’ 
0 total chromosome 3 

DNA3Z 0 chromosome 3 at zero time 
DNAP 0 ATP used per DNA molecule synthesized 
DNA ODNA 
DNASB A 0 array to save concentrations of DNA in different environments 
DNUC 0 change in nucleotide concentration 

DBLE 
DPRTN 
DRIB 
DMRNA 
DRNA 

0 time for cell to go through one reproductive cycle 
0 change in protein in one time increment 
0 change in ribosome in one time increment 
0 change in MRNA in one time increment 
0 change in total RNA in one time increment 

DRNK(i) A 0 change in MRNA for enzyme EK(i) in one time increment. 
i ranges from 1 to 10. 

;:Ml 
DUM2 
DUM3 

0 length of one time increment, = differential 
0 dummy variable in solve function 
0 dummy variable in solve function 
0 dummy variable in solve function 

DVOL 
DWALL 
DPRDK 
PRD 

DPRD 

0 change in cell volume in one time increment 
0 change in cell membrane and cell wall in one time increment 

A 0 array of change in product concentration in one time increment 
A 0 the stored array of the previous four product values, for predictor 

corrector 
A 0 array of the four previous D(product) values for the predictor corrector 

PPRD 
CPRD 
EK(1) 
EKZ(1) 
EK(2) 
EKZ(2) 

A 0 current array of the predictor values of products 
A 0 current array of corrector values of products 

0 concentration of enzymes for nucleotide production 
0 concentration of enzymes for nucleotide production at zero time 
0 concentration of enzymes for amino acid production 
0 concentration of enzymes for amino acid production at zero time 1.. 1.. where 3 inatcares gtycotysis 

4 indicates cell wall production 
5 indicates ADP, ATP production 
6 indicates DNA production 
7 indicates protein production 
8 indicates MRNA nroduction 
9 indicates ribosome production 

10 indicates TRNA production 

FACTR 
GLUCO 
GLUC 

::11 

0 factor by which chromosomes multiply in one reproductive cycle 
0 glucose concentration at zero time 
0 glucose concentration 
1 integer variable in RPLACE routine 
0 site for replication of chromosome 11, = 1 if it is present 



INllZ 
IN1 
INlZ 
IN21 
IN2lZ 

IN2 
INZZ 
IN31 
IN31Z 
IN3 

IN3Z 

:r” 
INZ 
K(1) 

K(7) 
K(8) 
K(9) 

E[$ 

KDRNK 
KSK(i) 
KSKZ(i) 
KBB(i) 

KB 

KIN 
Ek!$i) 

K(i) 
LN2 

L 

ERN*O 
MRNAP 
MRNA 

MULT 

&O 

::F 

p’:v 

::v 
PRDCO 
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0 site for replication of chromosome 11 at zero time 
0 site for replication of chromosome 1, = 1 if it is present 
0 site for replication of chromosome 1 at zero time 
0 site for replication of chromosome 21 
0 site for replication of chromosome 21 at zero time 

0 site for replication of chromosome 2 
0 site for replication of chromosome 2 at zero time 
0 site for replication of chromosome 31 
0 site for replication of chromosome 31 at zero time 
0 site for replication of chromosome 3 

0 site for replication of chromosome 3 at zero time 
0 concentration of initiator in cytoplasm 
1 an integer variable 
0 initiator concentration at zero time 
0 preliminary rate constant for nucleotide production 

0 preliminary rate constant for amino acid production 
0 preliminary rate constant for glycolysis 
0 preliminary rate constant for cell wall production 
0 preliminary rate constant for ADP production 
0 preliminary rate constant for DNA production 

0 preliminary rate constant for protein production 
0 preliminary rate constant for MRNA production 
0 preliminary rate constant for ribosome production 
0 preliminary rate constant for TRNA production 
0 preliminary rate constant for volume increase as a function of wall 

0 rate constant for MRNA decay 
0 rate constant for MRNA EK(i) 
0 rate constant for MRNA for EKZ(i) 
0 rate constant for allosterically inhibited enzyme EK(i) with two 

molecules of product attached to the enzyme 
0 array of rate constants of allosterically inhibited enzymes with one 

-molecule of product attached to the enzyme 
0 preliminary rate constant for initiator production 
0 rate constant for production of EK(i) 
0 rate constant for uninhibited enzyme EK(i) 
0 array to store preliminary rate constants, used for each environment 
0 natural logarithm of 2 

1 integer variable for calling on solve function 
1 integer variable for printing loop 
0 MRNA concentration at time zero 
0 ATP per MRNA molecule produced 
0 MRNA concentration 

0 number of genes producing initiator 
0 number of cell in nouulation (doubles when cell divides) 
0 molecules of nucleotide at zero time 
0 molecules of ATP to make one nucleotide 
0 concentration of nucleotide 

0 rate constant 
0 array of equilibrium rate constants for enzymes 
0 equilibrium rate constant for two molecule allosteric inhibition 
0 array of equilibrium rate constants for two molecule allosteric inhibition 
0 array equivalenced to products at zero time 
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PRDCK 
PRDC 
PRDC(1) 

:E:I:i 

PRDC(9) 
PRDC(lO) 
PRDC(ll) 
PRDC(14) 
PRTNO 

PRTNP 
PRTN 
RAA 
RADP 
RATP 

k~A1 
RDNAZ 
RDNA 
REK(i) 

RIB0 
RIBP 
RIB 
RNA0 
RNA 

TRNAO 
TRNAP 
TRNA 
RNK(i) 
RNKZ(i) 

RNUC 
RON 
RPRTN 
RRIB 
RMRNA 

RRNA 
RTRNA 
RRNK(i) 
R 
RVOL 

RWALL 
SUM 

;oLo 
VOLN 

VOL 
WALL0 

0 array equivalenced to products 
0 array for storing concentrations of products in different environments 
0 NUC 
OAA 
0 ATP 

0 WALL 
0 ADP 
0 DNA 
0 PRTN 
0 MRNA 

0 RIB 
0 TRNA 
0 GLUC 
0 VOL 
0 protein concentration at zero time 

0 ATP molecules used per protein molecule formed 
0 protein concentration 
0 ratio of amino acid concentration to a base level 
0 ratio of ADP concentration to a base level 
0 ratio of ATP concentration to a base level 
0 array of repression constants for MRNA repression 
0 ratio of chromosome 1 concentration to a base level 
0 ratio of chromosome 2 concentration to a base level 
0 ratio of DNA concentration to a base level 
0 ratio of EK(i) concentration to a base level, i = 1, . . JO 

0 ribosome concentration at time zero 
0 ATP used per ribosome made 
0 ribosome concentration 
0 RNA concentration at time zero 
0 RNA concentration 

0 transfer RNA concentration at time zero 
0 ATP per transfer RNA molecule made 
0 transfer RNA concentration 
0 concentration of MRNA for enzyme EK(i), i = l,.. . .,lO 
0 concentration at zero time of MRNA for EKZ(i), 1 = 1, . .,lO 

0 ratio of nucleotide concentration to a base level 
1 used as a logical variable turning repression on 
0 ratio of protein concentration to a base level 
0 ratio of ribosome concentration to a base level 
0 ratio of MRNA concentration to a base level 

ratio of RNA concentration to a base level 
ratio of TRNA concentration to a base level 
ratio of RNK(i) concentration to a base level, i = 1, . . .,lO 

0 array for repression constants 
0 ratio of new volume to old volume at end of one time increment 

0 ratio of pool for wall to a base level in terms of concentration 
0 array used in solve function 
0 generation time in seconds 
0 volume of cell at time zero 
0 volume at end of one time increment 

0 volume 
0 concentration of pool for wall production at time zero 
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WALLP 0 ATP molecules used per molecule of cell wall produced 
WALL 0 concentration of pool for wall production 
X 0 variable used in repression routine 

XK(i,j) A 0 value of K(i) in environment (j) 
XEK(i,j) A 0 value of EK(k) in environment (j) 
XK8(i,j) A 0 value of KIK(i) in environment (j) 


