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FINAL REPORT

WING-BODY INTERFERENCE

PART I. THEORETICAL INVESTIGATION

I. INTRODUCTION

This is the first of three parts of the final report for AF Contract
AF 33(038)-19T4T and contains the results of the theoretical work accomplished.
Part IT will contain the experimental results obtained with a model composed
of a cylindrical body with wings, while Part III will contain the experimental
results obtained from the body simulator plate and half-wing.

The general aim of this program is to study the effect of viscosity
on wing-body interference at supersonic speeds. The theoretical solution of
wing-body interference problems is impossible without the aid of certain sim-
plifying assumptions, the two most important of which are (1) an inviscid flow
and (2) a linearization of the differential equations of motion. The effect
which viscosity has on wing-body interference may then be found by comparing
the results of experiment with the results given by a theory which neglects
viscosity.

II. APPLICATION OF NIELSEN'S METHOD TO THE CASE QB é 0

1. Decomposition of Wing-Body Interference Problems

Any wing-body interference problem may be decomposed into a combina-
tion of simpler wing-body problems. This decomposition, which is presented in
References 2 and 3,1is illustrated diagramatically in Fig. 1. If the body is
at some angle of attack Qp and the wing is at some angle of attack &, then
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the problem may be decomposed into three separate problems: (a) body at zero
angle of attack and wing at angle of attack Qy; (b) body alone at angle of at-
tack aB; and (c) body at zero angle of attack and wing at angle of attack

-Qu, where Gy is the angle of attack induced in the wing plane due to the body
upwash field generated by the body alone at angle of attack ag.

Problem (a) is solved by Nielsen in References 2 and 3. Solutions
to problem (b) are relatively easy to obtain using the method of Reference L.
Furthermore, the method of Nielsen may be used to obtain the solution of
problem (c). Since in some of the configurations tested on this project the
body was at an angle of attack, it was necessary to solve problem (c).

2. Outline of Solution for Problem (c)

In order to solve problem (c) the following procedure is used: (1)
the body-alone potential is found; (2) a fictitious wing potential is found
which cancels the velocities induced in the wing plane by the body-alone po-
tential; and (3) an interference potential is found which cancels the veloc-
ities induced on the cylindrical body by the wing potential but which does
not induce any velocities in the wing plane. Physically the problem is that
the doublet flow about an infinite circular cylinder at angle of attack aR
with respect to the free-stream direction is suddenly arrested due to the
presence of a flat-plate wing with leading edge at x = O.

5+ Free-Stream Velocity Potential

The coordinate system used henceforth is shown in Fig. 2. The ve-
locity potential in a uniform stream inclined at an angle @B with respect to
the x-axils is

®; = Vo [xcosap+ 2z sinap] = Ve x+ Voo O 2 . (1)

L. Body-Alone Velocity Potential

Now in order to make the cylinder of unit radius whose axis coin-
cides with the x-axls a stream surface, it is necessary to add to &; the po-
tential ¢, for a doublet of strength V,0p:

Vo QB

Os = sin © . (2)

In the linearized theory the pressure coefficient is generally tak-
en to be a function only of the axial perturbation component. The axial com-
ponent of ¢; + &5 is




Coordinate System.

Fig. 2.
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g; (¢, + 02] = V, cos ag = Ve . (3)

Thus, if only the axial component of the perturbation velocity is used to de-
termine the pressure coefficient for the body alone at an angle of attack, the
pressure coefficient will be zero. However, this is not in agreement with the
actual pressure distribution for a body at an angle of attack, which must vary
with 8. If the second and higher powers of the axial and tangential components
of the perturbation velocities are included in computing the pressure coeffi-
cient, then the pressure distribution in © for the body alone at an angle of
attack will be that for a cylinder in a uniform stream of velocity VQp. Find-
ing the pressure distribution in this fashion is merely an application of the
local-sweepback principle.

This procedure 1s valid only because the body under consideration is
cylindrical; i.e., the contour does not vary with x. If the body contour varied
with x, it would be necessary to include first- and second-order terms accord-
ing to the formula of Reference 5. Physically, this means that while the lin-
earized form of the Bernoulli equation may be used in computing the pressure
coefficient for problems (a) and (c), since in those cases the chief contribu-
tion will be from u', the linearized form of the Bernoulli equation cannot be
used to compute the pressure coefficient for problem (b), since in this case
the first-order perturbation terms are zero, so that the second-order terms be-
come of paramount importance for computing the pressure coefficient on the body
alone.

The component of the velocity normal to the eylinder of unit radius
is readily seen to be zero, since

Voo in ©
d [0, +0,] = V,0psine-— 2508 (L)
or re
Hence,
9 [o, 40, = 0 (5)

ér r=1

and the cylinder is a stream surface for the velocity potential &, + ¢o.

2. Body-Upwash Field

The tangential velocity component on the cylinder is

vo = ?5 [0, + 0,] oy = PVwoBCcOS O . (6)

5
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It might be pointed out here that the pressure coefficient for the body alone
at an angle of attack could be computed from this expression using the equa-
tion from Reference 5.

_ o2 _ve?
R @

The upwash velocity in the xy plane is given by

v = §;[¢1+¢21 - %a%mwg]eo = Teop(1+=o) . (8)
= =

This is the value of the upwash velocity in the plane 6 = O, which is inclined
at an angle Qg with respect to the free-stream direction. The plane of the
wing contains the free-stream velocity vector and therefore makes an angle Op
with the plane © = O.

Now if z is perpendicular to the plane 6 = O and if z' is the direc-
tion perpendicular to the wing plane, then

z' = oz - Opx . (9)

Hence the upwash velocity in the wing plane is

a_ . Y% 10
aZ' [CI)l + ®2] 220 72 ( )

6. Fictitious-Wing Potential

If the wing plane is to be a stream surface, it is necessary to find
the velocity potential for a wing which will just cancel the upwash velocity by
inducing an equal and opposite velocity -v,, = -(V0p)/y2 in the xy plane. Thus
the desired potential must be that for a wing whose angle of attack varies span-
wise as aB/yz. Since, as pointed out in Reference 2 the wing may be extended
through the body in any arbitrary manner, it will be extended through the body
at a constant angle of attack ap in order to avoid infinite upwash velocities
at y = 0.

Figure 3 is a drawing of the warped wing which will give the neces-
sary angle-of-attack variation. It will be noticed that the wing is divided
into three panels: panel I is at a constant angle of attack Gp, and panels II
and IIT are at an angle of attack ap/ y2.
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The velocity potential @, for panel I is obtained by integrating
sources of constant strength -V Qp over the surface of panel I. If x' and y'
are the coordinates of the source point, then

+1 x- 2 (y-y')2 1 1
¢1=L‘°ﬂ3‘3 ff NzZ+(y-y') dy'dx .

V(x - x')2 - 22 - (y - y')2

-10
Vo & - X 1
¢, = — B {ky - 1) cosh ! - (y + 1) cosh™?
Viy - 1)2 + 22
. X +x sin=t XL _ xsip2 ¥ FL - (12)
J(y +1)2 + z2 Nx2 - z2 Nx2 - g2

- z tan~? * vy - 1) + z tan~?! x oy + 1) }.
zNx2 - 22 - (y - 1)2 zNx2 - 22 - (y + l)2v

The velocity potential for panel IT is obtained by integrating sources
whose strength varies as -Ot'rBVm/y2 over panel II; thus,

yHx2.z2 XJJ;2+(y_yr)2

dy'dx’

V.
= - (1
P== f f (¥ P¥(x-x)2-22 - (y-y')2 )
1 0

The integral is easiest to evaluate if formula 161 of Reference 6 is first used
to perform the integration in x' and then, after an integration by parts togeth-
er with a decomposition into partial fractions, formulae 195, 229, and 230 are
used to perform the integrations in y'. The final result is

X Xy 1 W

Voo OB -1
¢2 = cosh ? +
1 z2 + (y - 1)2  y2 + z2Wy2 + 22 - x2

_y XE- 2B y(y-1)  y X

cosh-t

cos™ ! ———————— 1L
%2 _ 72 y2+ ze ;;ZZ + (y _ 1)2 > ( )
I z - Z tan~?! x (y - 1) .
2 y2+ z2 y2+ z2 z\x2 - 72 - (y - 1)2
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The velocity potential for panel III may be found immediately from
that for panel IT simply by replacing y by -y in /B

The total velocity potential for the entire warped wing is given by

-

v aB Yy
b3 = Pyt Pot Py = = [1——-———(y-1>}
. cosh™? X + 1+ —L 4 (y+ 1)]
Nz2 4 (y - 1)2 ye + z2
« cosh-1 X + xy 1
"/22 + (y + ]_)2 y2 + 72 \/yg + 72 - x2
| (25)
2 _ .2 _ _ 2 _ .2 _
Jeos-1 X228 - yly -1) o x% - 2% - y(y + 1)
‘Xz - Z2 VXZ - Z2
.., Y -1 . .1 Y+ 1 nZ z
-Xx gin! =4 + x sin - + |z -
\]X2 - 22 VX2 - Z2 y2 + 22 y2 + ZZ J
-1 + 1
. |tan~-1 x(y ) + tan~1 2y )
Z ’\/x2 - 22 - (y - ]_)2 Z ‘\lx2 - 72 - (y + 1)2

1; Interference Potential

If the velocity potential &5 is now added to the velocity potential
¢, + 95, the resulting flow will be parallel to the wing plane, but the addi-
tion of @3 will lead to a violation of the boundary conditions on the circular
cylinder. In other words, ¢35 will induce a velocity normal to the cylinder
which is given by
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Qgé . Vy OB |x Vx2 - 2(1 - cos ©) . x Vx2 - 2(1 + cos 9)

oT |r=1 x 1 - x2 1 - x2

x(cos 8 - 1)
sin @ ¥x2 - 2(1 - cos ©)

+ 7w sin 8 + 2 sin © |tan~1

o (16)

_ tan-1 x(cos 6 + 1) ], Xcos 0 (x2 - 2)
sin @ Nx2 - 2(1 + cos h)j (1 - x2)3/2

cos-1 x2- (1 -cos 0) cos—l x2- (1 +cos©) |

Nx2 - sin2 6 Nx2 - sin2 ©

The following discussion concerns the region in which the various
terms in the above equation give a contribution to J®s/dr p=1° The first and
sixth terms give a contribution only inside the Mach cone whose apex is the
point x = 0, y = +1, z = 0. Furthermore, even though both of these terms ap-
pear to be unbounded at x = 1, it can be shown that together they give a fi-
nite contribution at x = 1. Similarly, the second and seventh terms give a
contribution only inside the Mach cone whose apex is the point x = 0, y = -1,
7z = 0. The sum of these two terms gives a finite contribution at x = 1. The
third term contributes to a®3/3r|r=l everywhere behind the Mach plane from the
leading edge. The fourth term will give a constant contribution outside the
Mach cone with apex at x = 0, y = +1, z = O and for the values of y in the
range -1 £ y € +1. The contribution will be variable inside this Mach cone and
behind the Mach plane outside the range -1 £ y £ +1. The fifth term is similar
to the fourth term except that the Mach cone in which the contribution is vari-
able has its apex at the point x =0, y = -1, z = O.

8. TFourier Coefficients of J9a/qT |,y

Now, as mentioned previously, it is necessary to find an interfer-
ence potential &4 in order to satisfy the condition of no flow normal to the
cylindrical body. This &4 is exactly the potential which is given by the
Nielsen method. &4 will have the following properties:

10
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(1) it will induce no velocities normal to the wing plane, and

(2) it will just cancel the velocities normal to the cylinder
= 1 induced by the velocity potential ¢s.

In order to find the interference potential ¢, using the Nielsen
method, it is necessary to obtain the Fourier expansion of 3®3/&rlr=l in a
cosine series of even multiples of 8; i.e.,

o}

o) f
ﬁ_&! = 204 }Z fon cos 2n6 , (17)
r=1 2
n=1
where the fo are functions of x only,
. I
sin-1 x
fon = b cos 2n6 sin 6d6 + & _X
1l - x2

cos™t [(2-x2)/2]

] de
cos 2n@ Nx2 - 2(1 - cos Q)1
0]
8 sin=1 x
+ = cos 2n6 sin © tan~! _____§££9§_§_;_})________ r(18)
B! 51ne~/x2-21—cos6
0
. cos™1 [(2-x3)/2]
+ box(x2 -2 cos 2né
T (1-x2)32
0
2 _ -
cos © cos-1 X - (1 - cos ©) dae
x2 - sin® B J

The integral I, is easily evaluated by means of formula 360 in Ref-
erence 6. The integrals I,, I, and I, are more complicated, but may easily be
shown to be expressible in terms of complete elliptic integrals of the first,
second, and third kinds as long as x lies in the range O £ X = 2, For values
of x > 2, the elliptic integrals involved in the evaluation of I, I3, and I,
become incomplete.

By means of the substitution cos 8 = 1 -(x%2)/2 it is readily seen
that I, may be written in terms of complete elliptic integrals of the first and

11




—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

second kinds with modulus k = x/2 and with coefficients depending only on x.
Integrals I5 and I, are to be integrated by parts before making use of the
substitution cos 8 = (1 - x2w2)/2. When this is done, Iz and I, may be ex-
pressed in terms of complete elliptic integrals of the first, second, and
third kinds with modulus k = x/2 and with coefficients depending only on x.

The first four Fourier coefficients have been computed as functions
of x for intervals of x = 0.2 over the range 0 £ x £ 2 with the aid of the
tables in References 7 and 8. These values of the f., are plotted as func-
tions of x in Fig. L.

9. Computation of Cp,

After the Fourier coefficients f, of 3®3/ar|r=l have been found,
the Fourier coefficients of the pressure coefficient CP42n due to the inter-
ference potential ¢, may be obtained from

2foy (x) cos 2n6 2 cos 2n@

Cpay, (12 8) = v, S,
X (20)
: ffzﬂ(g)wen(x-gwg.
0

Equation (20) is the interference pressure coefflcient as given in Reference
2. The convolution integral which appears in this equation was evaluated nu-
merically using the values of Won tabulated in Reference 2. The integration
was performed using Simpson's Rule with an interval between successive points
of x = 0.2. Care must be exercised in performing this integration due to the
discontinuities in the derivatives of the fon(x) at x = 1.0. This difficulty
was avoided by performing the integration in two parts for all values of x >
1. Several values of the convolution integral were checked by plotting the
integrand as a function of x and integrating the resulting curve with a plan-
imeter. The values obtained in this manner were in good agreement with those
obtained using Simpson's Rule.

After the values of Cp42n’ which are plotted as functions of x in
Fig. 5, are known, the value of Cp for any value of O £0£90and 0 £ x £
2 may be obtained as the sum of the Fourier series,

N
Cp, = Z Cp,,, COS 28 . (21)

=0

12
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Since only the first four terms in the Fourier series for C_, are retained, the
value given by the series will not be exact. The approximation of this series
to the true value of Cp4 will be good for large values of x, but for values of
x in the range O € x 2 1 the approximation is not very good. The cause of this
inaccurate representation of Cp4 for small values of x is a direct consequence
of the inability of a Fourler series of only a few terms to represent accurate-
ly a function with a jump discontinuity in the immediate vicinity of the dis-
continuity.

10.  Computation of Cp

The pressure coefficient Cp4 is the pressure coefficient on the body
due to the interference potential ®,. In order to find the total pressure co-
efficient Cp on the body due to the presence of the wing attached to the body
at an angle of attack, it is necessary to include the effect of CPs’ which is
the pressure coefficient induced on the body by the fictitious-wing potential
b3, and the effect of sz, the pressure coefficient on the body alone at an
angle of attack.

If the pressure coefficients Cy_, Cps’ and Cp4 were computed from
the usual linearized formula, i.e., Cp==2Kg®/ax)/V@L then the total pressure
coefficient would be the sum of Cp,, Cpg, and Cp,. However, if Cp, is ob-
tained from the linearized formula, then Cp2 = 0, as pointed out in Section
II, L above. Therefore, it is essential in computing Cp2 for the body alone
that second-order terms in the perturbation velocities be retained.

As a result the total value of Cp has been computed as

Cp = Cp,, ahead of leading-edge Mach helix
(22)

Cp Cps + Cpy, behind leading-edge Mach helix.

Thus second-order terms are used in the computation of Cp ahead of the Mach
helix from the juncture of the wing leading edge and the body, since in this
region the first-order terms in the perturbation velocities are zero. Behind
the Mach helix from the wing leading edge Jjuncture, only first-order terms
are used in the computation of Cp, since in this region the contribution of
the first-order terms outweighs the contribution of the second-order terms.

E}. Computation 9£ CPE

As seen above, it will be necessary to obtain a CPs based on the ve-
locity potential ¢3 before the total Cp may be found. Cp, may be found readily

1h
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from the derivative of 95 with respect to x when evaluated at r = 1, which
is

-
003 _ Vo OB ﬁJx2 - 2(1 - cos ©) . Nx2 - 2(1 + cos 9)
0@ |r=1 T { x2 - 1 x2 -1
2 . -
+ __Ccos @ cos-1 % (L -cos®8) _cos® cos-1 [ (23)
(1 - x2)3/2 Nx2 - sin2 © (1 - x2)3/2
x2- (1+cos ©) _ 4-1c086 - 1 . ;-1 cos@+1
Nx2 - sin? @ Nx2 - sin® @ Nx2 - sin® 6
J

The first and third terms contribute to g@s/gx | _, only inside the
Mach cone with apex at x = 0, y = +1, and x = O, while the second and fourth
terms contribute only inside the Mach cone with apex at x = 0, y = -1, and
z = 0. The fifth and sixth terms give a variable contribution inside their
respective Mach cones and a constant contribution outside their Mach cones.
Once 9®3/3xlr=l is known, it 1s a simple matter to obtain Cy, as long as only
first-order terms are retained in the expression for the pressure coefficient,
since then

d%a

ax r=1
CPS = -2 —V-——-— . (2&)

12. Curves of Cp due to Interference of Wing on the Body

The various values of Cp and CP4 have been combined according to
Equation (22) and are plotted in Fig. 6. These curves have been nondimension-
alized so that it 1s possible to find Cp on a cylindrical body at any angle of
attack due to the presence of a flat-plate wing at zero angle of attack for
any value of the free-stream Mach number for which the linearized approxima-
tions are valid. This nondimensionalization is accomplished by plotting BCP/QB
versus x/B, where B =4~M,2 - 1 for various values of @.

The more practical problem of a flat-plate wing and a cylindrical
body inclined at the same angle of attack with respect to the free stream may,
of course, be solved by combining the solution presented here with the solu-
tion presented in Reference 2 as indicated at the beginning of this section.
However, it is important to remember that this solution is applicable only

forward of the Mach helix originating at the juncture of the body and the wing
trailing edge.

15
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13. Corrections Applied to the Theoretical Cp Curves

As mentioned previously, the approximation of the pressure coeffi-
cient near a Jjump discontinuity by a Fourier series of only four terms will
give a rather crude result. If the value of the Jump and its position were
known, 1t is probable that a considerably improved approximation to the actual
value of the pressure coefficient curves could be obtained near the Jjump dis-
continulty.

As a consequence, the following procedure was used to obtain the
value of the jumps in the pressure coefficient curves for the present prob-
lem. The axial position at which the jump discontinuity must occur is known
to be on the Mach helix originating at the intersection of the wing leading
edge and the cylindrical body. At intervals of x = 0.2 for x in the range O
£ x £ 1.4 the values of © lying on this helix were computed. These values of
6 were then substituted into the Fourier-series representation of CP to obtain
the value of Cp at the jump. Then, according to Reference 9, this value of Cp
is approximately one-half of the actual jump in Cp. If, therefore, the values
of 2Cp, where Cp 1s the value obtained from the Fourier series, are plotted
versus x, then the resulting curve should approximate the variation in the
Jump discontinuity along the Mach helix. Actually, in both cases this curve
was found to be linear within the accuracy of the method. From this curve
the value of the Jjump discontinuity for any desired meridional angle may be
found if use is made of the equation defining the Mach helix, 6 = x.

Once the value of the curve at the jump is known as well as the four-
term Fouriler-series representation of the curve, a smooth curve may be faired
through these data. This faired curve should give a fairly good approximation
to the actual value of the pressure coefficient curve.

ITI. CONCLUSIONS

The solution presented here may be used in combination with the so-
lution of References 2 and 3 to obtain the pressure distribution on a cylin-
drical body due to the presence of a flat surface wing for any combination of
body and wing angles of attack. Thils solution, of course, is valid only for-
ward of the +trailing edge of the wing.

17



UNIVERSITY OF MICHIGAN

HEEBREARIR R —

39015036956525

1. Phinney, R. E., "Wing-Body Interference," Progress Report No. k. Univ.
of Mich. Eng. Res. Inst. Project M937, April, 1952.

2. Nielsen, J. N., "Supersonic Wing-Body Interference." Ph.D. Thesis, Cali-
fornia Institute of Technology, 1951.

Nielsen, J. N., and Pitts, W. C., "Wing-Body Interference at Supersonic
Speeds with an Application to Combinations with Rectangular Wings,"
NACAXTN26TT7, April, 1952.

Al

L. Tsien, H. S., "Supersonic Flow over an Inclined Body of Revolution,"
Journal of the Aeronautical Sciences, 5, No. 12 (1938).

5. Dye, F. E., "A Comparison of Pressures Predicted by Exact and Approxi-
mate Theories with Some Experimental Results on an Ogival-Nosed Body at a
Mach Number of 2.00," Cornell Report CAL/CF-1723, December, 1951.

6. Pierce, B. O., A Short Table of Integrals, Ginn and Company, 1929.

7. Milne-Thomson, L. M., Jacobian Elliptic Function Tables, Dover Publica-
tions, Inc., 1950.

8. Spenceley, G. W., and Spenceley, R. M., Smithsonian Elliptic Functions
Tables, Smithsonian Institution, November 1, 19LT.

9, Carslaw, H. S. Fourier Series and Integrals, Dover Publications, Inc.,

1930.

18



