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Abstract--Shallow shell theory is used to investigate the nonlinear response of a cylindrical panel undergoing 
plane motion in response to nearly symmetric impulsive pressure imparting an initial velocity distribution to the 
shell. A sufficient condition for stability is obtained by considering the critical or equilibrium configurations. 
For a cosine distribution the actual crtttcal value to produce immediate dynamic snapthrough is obtained. For 
most geometries the sufficiency condition is a very conservative estimate of the critical value. The critical value IS 
sensitive to small deviations from symmetry. The shell may also exhibit a delayed snap-through at significantly 
lower values of initial velocity. In both cases, however. the sufficiency condition remains a conservative estimate 
It is inferred from a qualitative topological argument that markedly different results can be expected for other 
distributions. 

INTRODUCTION 

THE problem of the dynamic snap-through of slightly curved elements subject to time de- 
pendent loads has generated an extensive literature. Of particular interest in the present 
paper is the case of impulsive loading. If the duration of the load is sufficiently short. its 
effect is to impart a velocity distribution to the structure. Thus we are concerned with free 
motion due to a prescribed initial velocity distribution. References pertinent to the stud) 
may be found in Hsu [l] and Mclvor and Popelar [2]. 

The physical essence of instability is that small changes in prescribed conditions result 
in markedly different responses. Typically, snap-through under impulsive loads has been 
defined as a very rapid or discontinuous change in an appropriate response parameter 
with respect to small changes in the magnitude of the initial velocity. The value of the velocity 
when such a discontinuity occurs is taken as the critical value. Although this approach is 
attractive in that it yields physically meaningful results, it generally requires extensive 
integration of the equations of motion for each particular problem. 

A more general approach has been presented by Hsu [l]. He has formulated a theory 
of dynamic stability of elastic bodies subject to prescribed initial conditions based on con- 
sideration of trajectories in a functional phase space. The critical or equilibrium con- 
figurations play a dominant role in the theory. He obtains a sufficient condition for stability 
which states that the point corresponding to the prescribed initial conditions must be 
located in the region of phase space surrounding the stable equilibrium configuration 
under consideration and within the energy surface passing through the “nearest” critical 
configuration. For the problem of impulsive loading of an initially undeformed body, this 
is equivalent to the statement that the total energy initially imparted to the body is less than 
the potential energy associated with the “nearest” critical configuration. The “nearest” 
configuration is the first critical point encountered by successive energy surfaces expanding 
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about the equilibrium state of interest. It is necessarily an unstable equilibrium conngura- 
tion. As an example of the theory. the exact sufficiency condition for a sinusoidal arch w3 
obtained. More recently in a series of papers [3-j], the theory has been used to extensiveI> 

investigate the behavior of shallow arches. 
For a given distribution of initial velocity, violation of the sufficiency condition dooh 

not in general imply dynamic snap-through. Thus, as most recently pointed out by Huang 
and Nachbar [6], it is still necessary to integrate the equations of motion to obtain II 

stability criterion for a particular problem. In general this is not only a more difficult 
problem. but also the integration must be repeated for every different distribution. Ii 1s 01 
interest, then. to compare results obtained from integrating the equations of motion with 
the sufficiency condition to ascertain under what conditions it will provide a reasonable 
estimate of the actual initial velocity to produce snap-through. 

The present paper employs shallow shell theory to investigate the nonlinear, plane 
motion of a simply supported cylindrical panel subject to nearly symmetric initial velocity 

distributions. Although formulated for a long cylindrical panel. in dimensionless form the 
equations are applicable to the circular arch. Following Hsu, the sulhcient condition for 

stability is obtained by determining the critical configurations of the shell. The results 
are qualitatively similar to those obtained by Hsu, but the use of shallow shell equations 
rather than curved beam equations leads to small quantitative differences. 

The actual nonlinear response for a cosine initial velocity distribution is obtained. The 
radial displacement is expanded in a series of linear vibrational mode shapes. Galerkin’j 

method reduces the governing equations to a system of ordinary differential equation5 
which are numerically integrated. The number of modes retained was determined by 
numerical convergence studies and was found to depend upon the shell geometry. The 
analysis is similar to that employed by McIvor and Popelar [2], but the two mode solution 
used there was found to be inaccurate for the entire range of geometries considered. 

In general the one or two degree of freedom systems employed by most previous 
investigators do not appear to be adequate for obtaining a quantitative criterion hy 

direct integration. 
It is found that for most geometries the sufficiency condition is a highly conservative 

estimate of the initial velocity required for immediate dynamic snap-through. It is shown. 

however, that the critical velocity is sensitive to small deviations from symmetry. The shell 
may also exhibit a delayed snap-through at significantly lower values. In both cases the 
sufficiency condition remains a conservative estimate. 

A qualitative topological argument is given to interpret the variety of responses obtamed. 
It is inferred from this argument that no general conclusions can be drawn from the result\ 
for the cosine distribution. Other symmetric distributions may give very different resultb. 
A stability criterion obtained by integrating the equations of motion is strongly dependent 
upon the actual loading distribution. Although in many cases the sufficiency condition 15 
unduly conservative, it does provide a bound valid for all distributions. 

FORMULATION 

The shell geometry is shown in Fig. I. We consider plane motion of the shell. Before 
deformation a midsurface point P has polar coordinates lu. U). The point in the deformed 
shell is located by the displacement vector 

d = iq?t + u-n / j ! 
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FIG. 1. Shell geometry 

where a is the radius of the cylinder and t and n are the unit tangent and normal vectors 
to the midsurface of the undeformed shell. Thus ; and $ are dimensionless radial and 
tangential displacement components. 

With the usual assumptions of thin shell theory, the tangential strain is 

& = ~~(~/U)~ 

where 

(2) 

&i = $‘-<+4[‘2 (3) 

R = -(;“+<, (4) 

and c” is the radial distance below the undeformed midsurface. The prime denotes differen- 
tiation with respect to 8. The quantities R and Il;;i are the midsurface strain and change in 
curvature respectively. In the nonlinear term in (3) we have neglected $ in comparison to 5’. 

Letting N denote the membrane force and M the bending moment per unit length of 
cylinder, the constitutive equations are 

N = 
Eh 

------ii7 
l-V2 

Eh3 
M=---- 

12( 1 - v2)a 
R 

where I? is the shell thickness, E is Young’s modulus and Y is Poisson’s ratio. 
We introduce dimensionless kinetic and strain energies as 

(5b) 

in which T and V are the kinetic and strain energies per unit length of cylinder and 

u2 = &h/a)’ (7) 
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The dot denotes differentiation with respect to a dimensioniess time ;. where 

t = C’I L1 iYA1 

t.2 = E;jJ(l - ,“) #XI?! 

in which t is real time and y is the mass density. 
The equations of motion are obtained through Hamilton’s principle. For free vibration 

they are 

~-zL(.~“+It;z)-.~-(~~;~)’ = I) (%I 

(i; - ,V’ = 0. (9b) 

The natural boundary conditions also follow from ~ami~ton’s principle. For the simple 

support conditions of interest here. they are 

i”c +/t, 5) = 0 t lOa) 

l/3 Lt/i r) = 0 I lob) 

.V( x & r) = 0. / I(k) 

SUFFICIENT CONDITION FOR STABXLITY 

Following [l], we first obtain a sumcienr condition for stability by determimng the 
criticat or equilibrium con~gurations. Setting the time derivatives to zero and using (4) 
and (9b), equation (9a) reduces to 

,““+(2__‘~:,2)i”+; = #,$ ill) 

It follows from (9b) that Z is a constant. integrating (3) and using (lob) then yields 

Equations (11) and (12) together with the boundary conditions I 1Oa) and ( 10~) determme 
the critical configurations. The trivial solution ([ = .v = 0) is the undeformed state. 
Depending upon the geometric parameters. there may be none, two. or more additional 
configurations. 

The solution is elementary but algebraically somewhat lengthy. It is given in &tad in 
Ref. [7]. The exact solution contains a number of terms that are negligible when computing 
numerical results. The validity of an approximate solution obtained by neglecting such 
terms is verified in Ref. [7j. For brevity, only the approximate form of the solution is given 
here. It is 



On the dynamic snap-through of a shallow cylindrical shell 589 

where q is the eigenvalue and b a constant associated with a specific configuration. The 
eigenvalue q is related to the membrane strain through the relation 

? r\l= - /I2q2/? (15) 
where 

i2 = /i’ia = ( 48)(H,!h). \ (16) 

There are two distinct cases. For symmetric configurations 

b=O 

and q is a root of the characteristic equation 

-sin 2q+2q[l -cos’qg(q)] = 0 

where 

g(q) = $q2 -4(q,i.)4. 

There may also exist nonsymmetric configurations for which 

(17) 

(18a) 

(18b) 

q = nr (19a) 
n=l’ 

b’ = $(nn)’ - 1 - 4(nn,‘i.)’ 
) _, . 

(19b) 

Clearly nonsymmetric configurations exist only when the right hand side of (19b) is 
positive. Setting b’ equal to zero and solving for 1, for a specific value of n equal to N, we 
obtain 

It can be shown that 

f 
/_N = [6N4z4/(N2n2 -$)I’. (20) 

b2 > 0 for1 <n IN ifi. > X, 

b2 < 0 forn r N ifi < &. 

Thus we conclude that exactly N pairs? of nonsymmetric configurations exist for 

j:N <E. < j:N+1. 

No nonsymmetric configurations exist for i less than x1 (21 = 2.891). 
To investigate the existence of symmetric configurations; we must numerically examine 

the roots of (18a) as a function of 2. For sufficiently small values of I., no roots exist. As I. 
increases special values, denoted as TN, are found above which two additional roots exist. 
Thus exactly N pairs of symmetric configurations exist for 

The values of A, alternate with IN such that 

The values of ZH obtained from the numerical study of (18a) together with the values of 
& obtained from (20) are shown in Fig. 2. 

t The pair arises. of course. from taking the square root to obtain h. One member of the pair is the mirror 
image of the other reflected m the ray 0 = 0. 
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FIG. 2 Energy of critical configurations vs. geometric parameter L 
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GEOMETRICAL PARAMETER A 

To obtain a sufficient condition for stability. we examine the energy state associated 
with each critical configuration. It is convenient to introduce a second dimensionless form 

of the potential energy as 
p = F’fi& (31) 

where V is given by (6b). We introduce (4) (14) and (15) into (6b) and simplify the result by 
using (18) for the symmetric configurations or (19) for the nonsymmetric configurations. In 
both cases we obtain 

V = 1 +$q’-(q/i)4-tan y/q. (‘21 

Plots of Pvs. I are shown in Fig. 2. The distribution of critical configurations as a function 
of A is evident in the figure. 

We can now state a suf?icient condition for stability under impulsive loads. As shown 
by Hsu [l] an initially undeformed elastic body subject to an initial velocity distribution is 
dynamically stable if the energy imparted to the body is less than the potential energy associ- 
ated with the “nearest” unstable critical configuration. In the present problem the non- 
trivial configuration with the lowest energy is a stable symmetric configuration. Thus the 
energy associated with the “nearest” unstable critical configuration cannot be less than the 
second lowest energy curve. We denote this energy level as PC. It is plotted in Fig. 3 to a more 
convenient scale. For /i less than 2, there are no critical configurations, and the shell cannot 
snap-through. For the narrow range of i between XI and i,, the sufficiency condition is 
associated with a symmetric configuration; whereas for i greater than 2, , it is associated 
with a nonsymmetric configuration. 
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FIG. 3. Sufficiency condition 

The sufficiency condition obtained by Hsu for a sinusoidal arch using curved beam 
equations is also shown in Fig. 3. The two results are qualitatively the same. but exhibit 
small quantitative differences. 

NONLINEAR RESPONSE TO IMPULSIVE PRESSURE 

To investigate the actual response to impulsive pressure, we seek solutions of the 
nonlinear equations of motion. Introducing (4) into (9a) yields 

; + aZ({“” + 2;” + [) - w - (rni’)’ = 0. (23) 

Reissner [8] has shown that tangential inertia may be neglected in the linear response of 
shallow shells. Assuming that this holds for the somewhat larger motions considered here, 
it follows from (9b) that R is spatially constant. Thus m may still be represented by the inte- 
gral expression (15). i.e. 

1 
-N(r) = -f (r-$;“, dl- 

-1 

We represent the radial displacement by the series 

(25) 

where the factor /I* has been introduced for convenience.The quantities T, are time varying 
coefficients and Z, are the set of linear mode shapes. The complete set consists of a set of 
symmetric and a set of asymmetric modes. When necessary to distinguish between them, 
we will denote the symmetric modes by 2, and the asymmetric modes by 2,. The mode 
shapes have been determined previously in Ref. [7] and are listed in the Appendix for 
convenience. 
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An infinite set of ordinary differential equations in the coefficients are now obtained 
through Gaierkin’s method. This set is 

~~+fl~T,+)~~(n,t;ij+Zni&mj+_4.Eij~&E,k~)?I:~i = 0. f36) 
1 i k 

When a subscript m is associated with a symmetric mode. we have 

& = iz, (27ai 

%I = (2.AmU;LQn4) cos C, (77b) 

where &,,. A,, II, and c, are given in the Appendix. When m is associated with an asym- 
metric mode, we have 

(7Xa) 

(2Yb) 

where ji, is given in the Appendix. The symmetric array cij is 

*I dZ. dZ. 
Eij = ---! --! dr. _, dr dI- (29) 

After introducing the mode shapes, the integrals in (29) are elementary and may be expressed 
in closed form. The results are omitted here for brevity. 

For impulsive pressure imparting an initial radial velocity distribution, the initial con- 
ditions in dimensionless form are 

;(e, 0) = 0 130a) 

&o) = 3ftr) (30b) 

where f’(r) is a distribution function with value unity at r equal to zero, i.e. at the center of 
the span. The actual velocity is cl. Introducing the representation (25) into (30) multiplying 
both sides by Z,, and using the orthogonality condition (AIO) yields 

T,(O) = 0 

QO) = ; [I .frl-?Z,dr 
r-1 

where I: is the velocity parameter 

2: = !.*7?;C/P (32) 

The total energy per unit length along the cyfinder imparted to the shell is in dimensionless 
form 

E = 2 = 1 i4c2 f 
)?a~ 2 314 s +‘ 

f‘? r-1 dl-. (331 

The problem is now reduced to integrating (26) subject to the initial conditions (31). 
For a given distribution we will consider dynamic snap-through as a discontinuity in the 
response with respect to a change in R. As shown by Hsu [li. such a discontinuity cannot 
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occur for any distribution if E is less than PC, For a fixed distribution however, a dis- 
continuity will not necessarily occur if this condition is violated. To determine the energy 
level associated with snap-through necessitates inte~ation of the equations of motion. 

We have considerable freedom in choosing a response parameter. A discontinuity in the 
motion with respect to initial conditions will be reflected in a number of measures. Because 
of its previous use in numerical studies of dynamic snap-through, we adopt here the 
response parameter 

(34) 

It represents the ratio of the average radial displacement to the average rise of the shell. 

NUMERICAL RESULTS 

For most of the numerical work we restrict our attention to nearly symmetric distribu- 
tions of the form 

nl- w f(r) = cos -+k--- 
2 

2 r(1 -r*) (35) 

in which k is small compared to unity and represents the maximum value of an asymmetric 
deviation from the cosine distribution. 

The nonlinear response was obtained by numerically integrating equation (26) on a 
digital computer using the Runge-Kuta method. At each time step the response parameter 
(34) was computed. As a check on the numerical accuracy, the total energy was monitored 
at each time step. It never varied from its initial value E by more than O-2 per cent and the 
variation was usually considerably smaller. 

The time step size and the number of modes retained were empirically determined by 
examining the numerical convergence of the solution. It was found that a time step of one- 
twentieth of the half period corresponding to the highest linear mode shape retained is 
sufficiently small. The number of modes retained was such that retaining an additional 
mode changed the maximum value of 6 occurring in the first half cycle by less than one 
per cent. The impulse parameter E was chosen such that 6 exceeded unity for this determina- 
tion. The results showed that the number of modes required increases with increasing i;, 
two modes being inadequate for all geometries considered. The indicated convergence was 
obtained using four modes for I < 3, five for i. 5 5. six for i. < 7 and eight for i, < 10. 

We first consider symmetric snap-through by setting li equal to zero in (35). For a given 
value of R the maximum value of 6 which was attained during the first half cycle of motion 
was computed for various values of the velocity parameter E. The results are shown in Fig. 4. 
For sufficiently small values of i., 6,,, varies continuously with E. For values of E. greater 
than 2.8,. however, there is a particular value of c: at which the response shows a distinct 
jump, indicating dynamic snap-through. In Fig. 5 the energy level associated with the 
critical values of e is shown as a function of 1. Also shown is the stability sufficiency condition 
previously determined. As/i increases it is an increasingly conservative estimate of the energy 
level required to produce immediate symmetric snap-through. 

To further investigate the behavior of the nonlinear response, a number of computations 
were made at energy levels below that required for immediate dynamic snap-through. The 
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FIG. 4. Response parameter 6,,, vs. velocrty parameter i:. 

integration was carried out to t equal to 100. which for the values of i considered is about 
10-15 periods of the linear solution associated with the fundamental mode shape. The 
results are shown in Figs. 6-10. For comparison the constant values of S computed for the 
first two symmetric and the first nonsymmetric critical configurations are shown in the 
figures. 

The solid curves in Fig. 6 are the responses for i equal to six and e values of 1.1 and 1.2. 
The critical value of E for immediate snap-through is about 1.6. For both cases the first 
maximum ofb is considerably less than unity. For E equal to 1.1 this remains true for all of 
the relative maximums of 6 for the time period examined. For the slightly higher value of 
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FIG. 6. Response curves for i = 6 
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FIG. 7. Response curves for i = 4 and i. = 7. 
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FIG. 8. Response curves for i. = 5. 
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DIMENSIONLESS TIME r 

FIG. 9. Response curves for A = -I 

1.2, however, the result is much different. After two oscillations with 6 less than umty, the 
shell snaps through. This phenomenon of delayed snap-through was observed in a number 
of cases, but the detailed behavior varied considerably with ;1. In Fig. 7 delayed snap- 
through was obtained for 2 equal to seven at E equal to 1.0. The jump occurred after several 
oscillations. In contrast for 1 equal to four the jump first occurred on the second oscillation. 

The energy levels of the responses exhibiting delayed snap-through are shown as points 
in Fig. 5. It is difficult to obtain a critical energy curve for delayed snap-through. Extensive 
numerical computation is required. Moreover there is no a priori condition for determining 
the time interval that should be examined. Nevertheless the three points in Fig. 5 suggest 
that a critical curve could be obtained. This curve would not, however, distinguish between 
the elapsed times required for snap-through to occur. If the elapsed time is too large, of 
course. the phenomenon loses its physical significance in the presence of damping. 

One other point needs to be considered in connection with delayed snap-through. 
Examination of (26), (31) and (34) shows that 6 as a function of E does not explicitly depend 
upon the semi-opening angle p. The only influence of /3 is through the quantities n, and c,, 
which arise from integration of the linear mode shapes. The results here have been obtained 
for fi equal to 0.05. As shown in the Appendix, however, the mode shapes are very insensitive 
to ,& and the values of n, and i:ij for other values of /3 in the range of interest would differ 
by the order of 1 per cent. It seems reasonable, then, that the critical values for snap-through 

-0.0 1 I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 
DIMENSIONLESS TIME t- 

FIG, 10. Response curves for i = J for dtfierent dlstrlbutlom 
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would be independent of fi. This is in fact true for immediate snap-through. But the dashed 
curve in Fig. 6 shows one response for p equal to 0.01 which deviates from the response for 
p equal to 0.05 for times exceeding 50. One possible explanation is the nonlinear coupling 
which permits energy transfer to modes which are not initially excited. The rate of growth of 
these modes depend. of course. upon the coefficients in the system of equations. Small 
changes in the growth rate would eventually manifest themselves after sufficient elapsed 
time. The extensive numerical computation required prohibited a detailed investigation of 
the effect of fl on the long term motion. It is not expected that such an investigation would 
make any qualitative change. but the above remarks suggest that the quantitative values 
for the occurrence of delayed snap-through might be affected. 

To investigate rhe effect of small deviations from symmetry, a few computations were 
made using the distribution (35) with k equal to 0.1. In general the presence of an asymmetric 
component enhances the possibility of snap-through. Response curves for i equal to five are 
shown in Fig. 8 for three values of E. all of which are below the critical value for immediate 
symmetric snap-through. For the two cases with k equal to zero, snap-through has not 
occurred. But with an asymmetric component, immediate snap-through occurs at an 
intermediate value of E. Figure 9 demonstrates a similar influence on delayed snap-through. 
The reduction in initial energy required to cause snap-through when k is equal to 0.1 is 
shown for these two cases in Fig. 5. 

Finally Fig. 10 shows the response for two symmetric distributions in the form of a 
triangular shape and the shape of the lowest symmetric mode. The initial energy for the 
cases shown is the same as for the response to the cosine distribution for i equal to 4 shown 
in Fig. 7. For this energy level the response to the cosine distribution exhibits delayed snap- 
through, whereas in Fig. 10 immediate snap-through has clearly occurred. A detailed in- 
vestigation of these distributions has not be;n made, but this example indicates that the 
critical energy level is sensitive to the shape of the symmetric distribution as well as to the 
presence of asymmetric components. 

DISCUSSION 

The critical configurations have an important role in determining the type of motion 
that the shell may exhibit. We have used the critical configurations for determining a general 
sufficiency condition. When specific examples are considered, the numerical results have 
shown that a wide variety of dynamic behavior may be exhibited. For sufficiently high 
impulsive loading the shel! will undergo immediate snapthrough. It may also exhibit 
delayed snap-through after varying periods of elapsed time at significantly lower levels of 
loading. In addition the occurrence of snap-through is sensitive to changes in shape of the 
symmetric distribution as well as small deviations from symmetry. 

Of course the energy levels associated with the various types of snap-through all exceed 
the sufficiency condition. In fact the latter is quite conservative for a substantial range of the 
shallowness parameter 2.. Moreover the stability criterion obtained for a specific case may 
bear little resemblance to the sufficiency condition. 

The following heuristic argument is an attempt to give a general interpretation to these 
results. As a motion is traced out in functional configuration space, a corresponding surface 
path is traced out on the potential energy surface. The general features of this surface are 
determined by the critical configurations In a generalized sense. stable equilibrium 
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configurations are the low points of valleys in the surface. Unstable configurations ~111 
occur at the high point ofa hill or as a pass or saddle point in the ridges separating different 
valleys. 

In the present problem only one critical configuration is stable in addition to the unde- 
formed state. This is the symmetric configuration with the lowest energy level and represents 
a stable snapped-through state. All remaining configurations are unstable and necessarily 
lie on the ridge system separating the two valleys around the stabie undeformed and 
snapped-through configuration points. 

For impulsive loading ofan undeformed shell, all surface paths originate from the bottom 
of the valley around the undeformed configuration point. These paths can only lead out of 
this valley through passes or over ridges. If the tangent to the surface p:.“h has just the right 
direction at the origin (i.e. the right distribution of initial velocity), the path may exit the 
valley directly through a pass with the energy level of the critical configuration which is 
located at the pass. On the other hand, if the direction of the tangent is held constant (i.e. the 
distribution of the initial velocity is prescribed), the surface path during the early stage of 
motion may not come near any critical point. Thus immediate snap-through can occur 
only if the initial kinetic energy is sufficient for the surface path to reach the top of a ridge. 

If the modes were uncoupled, a response with energy insufficient for immediate exit 
would be an oscillatory motion tracing out the same surface path. For our problem. how- 
ever, the nonlinear coupling may result in the parametric excitation of modes which are 
not initially excited. In this case the surface path will be a complicated curve traced out over 
the valley, permitting the possibility of encountering a lower ridge. Such an encounter 
would be manifest as a delayed snap-through of the shell. 

The lowest pass out of the valley around the undeformed configuration point is. for j. 
greater than xi, the nonsymmetric configuration with lowest energy level. The subspace of 
purely symmetric motion does not include this point, and the energy level required to exit 
the valley in this subspace is necessarily higher. Since the energy levels of all symmetric 
configurations in the ridge system are greater than the lowest pass. the ridge must “slope 
downward” in some direction as we move from the symmetric subspace. Thus even small 
deviations from symmetry may result in the surface path encountering a lower ridge. with a 
consequent reduction in the initial energy required for snap-through. 

It is clear that the rather high energy levels required for snap-through in the problem 
considered here is due to the form of the initial velocity distribution. A distribution with 
large asymmetric components would snap-through at substantially lower values. Even for 
purely symmetric distributions a wide variation is possible. Comparing the energy level 
found for immediate snap-through for the cosine distribution with the energy levels of the 
various symmetric configurations in Fig. 2 shows that for most of the range of i there are 
configurations with both higher and lower energy levels. Thus it must be possible to pick ~1 
distribution giving a surface path which would cross the ridge at either a higher or lower 
energy level than that for the cosine distribution. 

Thus the energy levels required for dynamic snap-through will vary markedly for 
different distributions of initial velocity. These levels may be significantly different than the 
sufficiency condition. The results indicate, however, that a criterion for a specificdistribution 
must be viewed with some caution. If the distribution is such that immediate snap-through 
occurs when the surface path associated with the motion crosses a relatively high point 
on the ridge, two results can be anticipated. The energy level will be sensitive to smah 
deviations in the distribution, and the shell will exhibit delayed snap-through. 
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Finally we consider the implication of truncating the modal representation to R; terms. 
We are attempting to span the functional displacement space with a N-dimensional coeffi- 
cient vector. We are, in effect, constraining the motion to paths for which all coefficients with 
index greater than N vanish. It is difficult to say how constrained and unconstrained paths 
of impending snap-through would differ. We know, however. that the significant topological 
features of the functional space are determined by the critical configurations. Thus it is 
necessary that the N-dimensional subspace include the critical configurations, i.e. that the 
critical configurations are accurately represented by a modal expansion truncated to N 
terms. 

In the present problem this was used to check the number of modes empirically de- 
termined for the case E. equal to five. A six term modal representation was used to compute 
the strain energy associated’with the critical configurations. The results agreed to within 
1 per cent with the values obtained from (22). 

Ac.ltnnlz,ledgr,nenr-This work was supported by the National Science Foundation through Grant No. GK-1071.5. 

REFERENCES 

[I] C. S. Hsv. On dynamic stability ofelastic bodies wtth prescribed initial conditions. In1 J. Engng SC;. 4. I (1966) 
[2] I. K. Mclvo~ and C. H. POPELAR. Dynamtc stability of a shallow cylindrical shell. .I. Dzgng Mech. Dr. Am. 

Sot. Cir. Engrs 93. No. EM 3 (1967). 
[?I C. S. Hsc. The effects of various parameters on the dynamic stability of a shallow arch. J. appl. Mech. 34 

(1967). 
[4j C. S. Hsu. Stability of shallow arches against snap-through under ttme wise step loads. J. uppl. Mech. 35 (1968). 
[5] C S. Hsv. Equihbrrum configurations of a shallow arch of arbttrary shape and their dynamic stability charac- 

ter. 1111. J. Non-linear Mech. 3 (1968). 
[6] N C. HUANG and W. NACHBAR. Dynamic snap-through of imperfect viscoelastic shallow arches. J. uppl. 

Mwh. 35 (1968). 
[7j L. J. OVENSHIRE. Dynamic Snap-through Stability of the Nonhnear Elastic Plane Strain Free Vibration of a 

Shallow Cylindrical Shell. Ph.D. Dissertation. University of Michigan (1969). 

[S] E. REISSNER. On transverse vibrations of thm. shallow elastic shells. Q. uppl. Math. 13 (1955). 

APPENDIX 

lnjnitesimal vibrations 

Neglecting tangential inertia and discarding all second order terms reduces the linear 
free vibration problem to solving the governing equation 

~+a2(i,rr”+2j”‘+;‘) = 0. (Al) 

The solution for general boundary conditions and arbitrary initial conditions is discussed in 
detail in Ref. [7]. For the simple support boundary conditions (lo), the solution is 

[ = C[5’, sin(,ii,r + $,)Z,(@ + 5;” sin&r) + d&T,(6)] 
?I 

(A2) 

where the bar denotes an asymmetric mode and the tilde denotes a symmetric mode. The 
quantities C, and d,, are arbitrary constants determined from the initial conditions. 
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The dimensionless circular frequencies are 

j” =I: (nl$ - /r2)/,2 

& = (cf - f12),/i2 

where u, is a root of the characteristic equation 

in which 

r3 tanh MI 2llG 
tan t,I = -.---~$~ 

11’ I+’ 

NJ’ = 1’2 -2p2 

II_: = +Iyz 

The asymmetric mode shapes are 

in which 

The symmetric mode shapes are 

2 cash w 1- 
cos onI- +$cos c, cash ; 

2~; 
-7cos c, 

n n WI8 i 

where 

+ 
2L?f cos u, 

\v; cash w, [ 

w, sinh \v, cos ~3, + L‘,, cash N’, sin 

11; 

itu,” sin 221, 

W$‘, 

_ 8 ~f~f cos’ 6, tanh tv,] - i 

Iv; 1 

The mode shapes satisfy the orthogonality condition 

(A33) 

cA3br 

(AS) 

(AL)) 

-I 

J Z,Z, dl- = 6,” IAIO) 
-1 

where d,, is the Kronecker delta and 2, represents either a symmetric or an asymmetric 
mode. 

It is worth noting that in (A3) and (AS) the term fl” is small compared to the first term. 
Thus the dimensioniess circular frequencies and mode shapes are essentiaily independent of 
j?. depending only upon the geometric parameter A. Atso the higher roots of (A4) approach 
odd multiples of (~2). With this the symmetric mode shapes approach 

on+ 1) 
t, = cosynr 
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The value of M for which (Al 1) is valid. however. depends upon 1.. For example for iL equal 
to three. the approximation is valid for n greater than two; whereas for i. equal to ten, n 
must be greater than five. 

(Received 2:! hfar~ 1970: revised 24 Aqusr 1970) 

ACicrpah-T--Mcnonb3yeTcx TeOpM5l IlOJlOJOii 06OJlO'lKn IL"51 WCJ3eROBaHn8 HeJl%iHefiHOJOIlOBej3eH3i!4 u#;IH"- 

np~~ecKoiinattenn,non~epme~xolinnocxohlynBilmetrlr~.xoTopoe~~n~e~capeaKulte~tlacnh~~eTpn~ecxoe 

~Mny,l~~BHoe IlaBneHCle,Bbt3blBaK)UleeHaganbHoe pac~~~ene~nec~~p~~~~ 22.n~ 060norKu. RonysaeTca 

ilOCTaTOYHOeyGlOBi4e LWyCTOfWiBOCTH,paCCMaTp~BZi$i KpifTA'feCKyK2 nnnpaBHOBeCHYI0 KOH&+JyPaUMKI. 

nonyraeTcfl KpHTwfecKoe wasewe, KoTopoe Bbl3blBaeT BHe3anHoe ,wit+ahwiecxoe npou4enxwBawe DAR 

KOC~HyCHOJOpaC~pe~e~eH~R.~JlR60nb~nHCTBaJeOMeTpn~i~TaTO~HblM yCnOBHeM RW,ReTCRnefiCTBnTe- 

.lbHO KOHCepBaTHBHaSl OUeHKa KpHTH'ieCKOJO 3Ha'ieHHR. 3TO 3Ha'leHne O'leHb YyCTBMTeZbHO Ha Manble 

OTKJlOHeHnR OT CMMMeTpIII(. 06onowa MO)l(eT TaKxe BbI3blBaTb 3aMeLInRKWlet? npOll.leflKHBaHHe LlnR 

3HaYIITelIbHO HCI3KnX 3Ha'leHd HalranbHOti CxOpOCT!,. ORHaKO, 23% 3TnX OByX CnyvaeB IlOCTaTOYHblM 

yC~OB~eMOCTaeTC~ KOHCepBaT~B~a~ OUeHK~.~~~Bb~BO~llTC~~3K~~eCTBeKHOJOTO~O~OJ~~~KOJO~~Jy~e- 

HTa.v~oorMe9efinO pawble pe3ynbrarbi ~0~~06bifio nonyreTb3nn ynpyrux pacnpeneneltuk. 


