Experimental and calculated photopeak efficiencies have been obtained for a 32 cm3 true coaxial Ge(Li) detector at four distances: 2 cm, 5 cm, 10 cm and 20 cm. A comparison of these results is presented.

During the past few years several papers discussing the experimental efficiency calibration of Ge(Li) detectors have appeared$^{1-7}$). Recently a paper by Aubin et al.8) describing a Monte Carlo computer program to calculate the efficiency of planar and true coaxial Ge(Li) detectors has been published. The present investigation was undertaken to provide a comprehensive comparison between the calculated results obtained with this program and experimental results obtained with the pair-point method$^{1-4}$). Ten sources were used to obtain the data for the experimental efficiency curves of fig. 1: 22Na, 60Co, 46Sc, 106mAg, 88Y, 24Na, 180mHf, 137Cs, 133Ce and 160Tb. The program of Aubin et al.8) was run on the PDP-10 computer of the University of Michigan physics department. Several hours of running time were required to obtain the data for each source-to-detector distance. Photon cross sections used in the calculations were taken from the work of Storm and Israel9); detector dimensions were

* This work was supported in part by the U. S. Atomic Energy Commission.

\dagger Present address: Physics Department, Albion College, Albion, Michigan.
taken from the specifications of the manufacturer (Ortec). A comparison between experimental and calculated values is shown in fig. 2. Because of the fact that the computer program can not reproduce the hump [produced by attenuation in the surroundings of the Ge(Li) crystal] at the low-energy end of each of the curves shown in fig. 1, the data of fig. 2 start at an energy well beyond this hump (0.2 MeV). As fig. 2 shows, the agreement between experimental values and calculated values is excellent.

The authors wish to thank Prof. M. L. Wiedenbeck for his continuing interest in this work and Prof. J. W. Chapman for providing generous amounts of computer time.

References
2) W. R. Kane and M. A. Mariscotti, Nucl. Instr. and Meth. 56 (1967) 189.