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Statistics are obtained for pulse trains in which the pulse shapes as well as 
the time base are random. The general expression derived for the mean and 
spectral density of the pulse train require neither independence of intervals 
between time base points nor independence of the pulses. The spectral density 
appears as an infinite series that can be summed to closed form in many applica- 
tions (e.g., pulse duration modulation with skipped and jittered samples). If  
the time base is a Poisson point process and the pulse shapes are independent, 
stronger results become available; we are then able to calculate joint charac- 
teristic functions for the pulse process, thus providing a more complete statistical 
description. Examples are given, illustrating use of the above results for pulse 
duration modulation (with arbitrary pulse shapes) and telephone traffic. 

INTRODUCTION 

I n  var ious  applicat ions involving pulse  trains,  bo th  the  pulse  shape and 

the  t ime  base are r andom in nature.  As one example,  consider  pulse dura t ion  

modu la t ion  ( P D M )  of a r andom signal wi th  irregular  sampl ing  t imes  caused 

by j i t ter  and the  r andom loss of  pulses. A second example  concerns d is turb-  

ances in a receiver  due  to an electrical  s torm;  the  t imes  and effects of 

l ightning bol t s  are each random.  T h e r e  are also p h e n o m e n a  not  ordinar i ly  
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regarded as having random pulse shapes and time base, but which may be 
interpreted as such a pulse train. An example of this type is the number of 
telephone lines in use when the length of calls as well as their origination 
times are random. 

In this paper, we show how some of the statistics of pulse trains with 
random pulse shapes and random time base may be calculated. Two techniques 
are discussed. The first of these results in general expressions for the means 
and spectra of such pulse trains; these expressions are valid also for correlated 
pulses and time bases with intervals between pulses that may be neither 
independent nor identically distributed. The other technique yields even 
more information, namely the first and second order probability densities for 
the pulse process, but under the more restrictive condition that the time 
base is a Poisson point process? 

The second order statistics of the impulse train 

s(t) = ~ %3(t -- t.) (1.1) 

were considered by the authors in an earlier paper (1968). The time base {tn} 
was assumed to be a stationary point process [Beutler and Leneman (1966a) 
and (1966b)], while {%} was taken to be a wide stationary discrete parameter 
process with specified covariance. From the second order properties of s(t) 
it is easy to deduce similar results for ~ c~h(t --  t~), thus treating pulses 
of fixed shape with random amplitude and time base; the pulse train 
~.~_~ ~ h ( t  --  tn) merely represents the s(t) of (1.1) after its passage through 
a linear timc-invariant filter with response function h('). However, this model 
is incapable of generalization to pulse trains in which the shapes of the 
respective pulses may vary also. For that case we must analyze the statistics of 

y(t) = ~ h.(t -- t.), (1.2) 
~ e o  

in which {t~} is again the random time base (a stationary point process) and 
h~(') is the n-th pulse. A typical pulse train of this type is shown in Fig. 1. 
It  is seen that ~ o  ~ h ( t  - -  t~) becomes a special case of y(t)  when we take 
hn(t ) = ~ h ( t )  in (1.2) 

In the next section, we shall find universal formulas for the mean and 
spectral density of the y(t)  of (1.2) under the following hypotheses. I t  is 

1 For this restricted case, the spectrum (only) is calculated in Mazzetti (1964). 
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tn- 2 

FIG. 1. 

hn(t - tn)  hn+q ('I - t  n-l-l) 

A realization of a train of randomly shaped pulses. 

supposed that {t~} is an ergodic stationary point process, and that the random 
functions {h~(t)} are independent of {tn} with means 

E[h~(t)] z m(t) (1.3) 

that do not depend on n. The transform covariance for {h~(t)} is 

F,*(o~) = E[H~+,(oJ) H~(~o)], (1.4) 

where the overline denotes complex conjugacy and Hk(co) is the Fourier 
transform of hk(t). The point of (1.4) is that the indicated expectation satisfies 
the weak stationarity condition that it does not depend on m, but only on n. 

The class of stationary point processes for which the spectral density 
expression is obtained embraces most (t~} considered to be realistic time bases. 
Poisson point processes are included, as well as uniformly timed sampling 
that has been subjected to random jitter and/or random deletion (skipping) 
of pulses. Other possible variations on the stationary point processes include 
systematic skipping of some originally existent points, and points at intervals 
of varying lengths following a planned or random sequence. Stationary point 
processes are analyzed in Beutler and Leneman, (1966a) and (1966b), and 
the statistics of point processes required for this paper are calculated therein. 

FIRST AND SECOND ORDER STATISTICS 

The mean and spectral density for the y(t) of (1.2) can be derived in terms 
of simple closed form expressions. The spectral density appears as an infinite 
series in terms of / 'n* and fn*, where the latter is the generating function of 
the distance separating n successive points, i.e., of tk+ ~ -- te. As will be 
seen from the examples that follow the derivation, the infinite series repre- 
senting the spectral density of the pulse train can be summed to an analytical 
expression for many models of interest in applications. The arguments used 
will be heuristic, but the validity of the final results can be established either 
by alternative methods (in the time domain) or by justifying the various 
types in the calculation. 
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The mean y(t) is computed by taking expectations of (1.2) successively 
on {hn(t)} and {t~}. Because of the independence of these two random processes 

E[y(t)] :- E[ ~ h~(t -- tn)] = E[_~ m(t -- t~)]. (2.1) 

Now if we let s(t) = ~ 3(t -- t~) it is possible to write 

co 

, ~ ( t  - t, ,) = f m ( t  - -  ~-) &) ,4~- 
--¢o 

and hence 

(2.2) 

(2.3) 

From an interchange of expectation and integration in (2.3) one then obtains 

(2.4) 
co 

Ely(t)] -- ~ f re(u) du. 

In the formula (2.4) E[s(t)] = fi represents the average number of pulses per 
unit time. The expectation of s(t) has been derived in Beutler and Leneman 
(1968), and values of the mean number of points per unit time/9 are available 
for a wide variety of stationary point processes in Beutler and Leneman 
(1966b). 

The spectral density S u can be adduced by first computing the correlation 
E[y(t + r) y(t)] and then taking the Fourier transform of the expectation. 
This method has been used for the s(t) of (1.1) in Beutler and Leneman 
(1968), but becomes inconvenient when an attempt is made to generalize 
the same technique to y(t). The same result may be attained more simply 
by utilizing the direct method [Davenport and Root (1958), p. 108], which 
means that we use the formula 

1 I T e - ~ t d t  2 . S~(w) = lim E (-T f y(t) ) (2.5) 
T~co 0 

The indicated limit is best taken by letting T = fi-lN, with N then tending 
toward infinity through the integers to attain the desired limit. Such T is 
convenient because it allows us to suppose that for large N approximately N 
pulses fall into the interval (0, fl-lN]. This is indeed true if {t,~} is an ergodic 
stationary point process as defined in Section 3.6 of Beutler and Leneman 
(1966a); i.e., if the average number of points in (0, T] tends toward fi for 
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almost every realization as T - +  oo. ~ We also assume that the interval 
(0,/~-IN] is sufficiently large so that the contributions of pulses intruding 
from outside the interval and tails of pulses lost by restricting the interval 
are negligible compared with N. Then over (0, fi-lN] y(t) is approximated 
~-~+N--1 h ~ ( t -  t~), where t~ is the first point past the origin. Insofar as 
the statistics of the sum are concerned, k is irrelevant because of the station- 
arity of {t~} and the assumption (1.4) which permits us to translate the indices 
of H~. Accordingly, we take k = 1 and obtain asymptotically 

f~o-l Ny( t ) e -i~t dt = ~ H~(~o) e -i~t". (2.6) 
1 

This expression is substituted into (2.5). On multiplying it by its conjugate 
and taking its expectation we find that 

B - 1 N  2 N 

E ( y(t) e -i°,t dt ~- ~ F*_~(co) E{exp[--iw(t• - -  t,n)]}. (2.7) 
° 0  m , q ~ = l  

The right hand expectation represents (for n >/m) the characteristic 
function for n -- m successive intervals between points. If the probability 
density function for the length of k successive intervals n is called fk ,  we may 
definers* as the corresponding characteristic function and writef~* as 

f 
co 

fk*(ioo) = e-i~f~(x) dx = E{exp[--ico(t~+~ --  tj)]}. 
0 

(2.8) 

For many stationary point processes of interest in applications, the fk* have 
been calculated in Beutler and Leneman (1966b). The negative indices on 
the right side of (2.8) produce expectations of the complex conjugate for each 
term, so that it is consistent to define f*  (it0) = f*(ioJ) and F_*n(o~ ) = I'n*(oJ ). 
With this convention the left side of (2.7) becomes 

- I N  2 N 

E ~ yt t)  e -'~*dt = • F*_~(~olf*(ioJ).  (2.9) 
~ 0  m , n = l  

Nei ther  this  a s s u m p t i o n  nor  the  one following are needed  to effect the  final result ,  
b u t  they  greatly facilitate its derivation. T h e  alternative approach  t h r o u g h  a t ime  
domain  a r g u m e n t  also yields the  same final express ion for the  spectral  density,  and  
this  provides  an  addit ional  check on its validity. 

T h e r e  exists s ta t ionary poin t  processes  for wh ich  different sets of  lengths  of  n 
successive intervals do not  all have  the  same dis t r ibut ion funct ions ,  b u t  these  do no t  
appear  to be of physical  interest .  See Beutler  and  L e n e m a n  (1966a), Section 4.2. 
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The calculation of the spectral density S u is completed by dividing the double 
sum in (2.9) by f i q N  and taking the limit on N, in conformance with the 
expression (2.5) for Su • Thus 

1 u F* (w]f* (iw)]. (2.10) 

The double sum is replaced by a single sum and the denominator moved 
inside the summation, viz., 

S,(@ - fi iA:m [ ~ [I -- ~-~- l C,*(co)f,*(ico)]. (2.11) 
I---N 

The desired spectral density is therefore 

Su(w) = fi ~ Fk*(co) fi~*(ico), (2.12) 
- c o  

which can also be written 

S~(~o) = fi lFo*(OJ) + 2 Re [ ~ Fk*(~) fk*(iw)] I. (2.13) 

The first formula (2.12) for S~ is certainly more elegant than the second, but 
the latter has proved more useful in the actual computation of spectral 
densities. 

The expression (2.12) for the spectral density Sy generalizes the Ss for 
(1.l) as obtained in Eq. (2.27) of Beutler and Leneman (1968). To see 
this, we observe that y(t) = ~. h~(t -- t,) specializes to s(t) = ~, a,3(t -- tn) 
if we let ha(t ) = ~S(t). Then H~(w) = c% and so/'~*(c~) = E[am+ne%] ~--- p(n) 
[in the notation of Beutler and Leneman (1968)]; this yields Eq. (2.27) of 
Beutler and Leneman (1968) directly. 

As a first example, consider pulse duration modulation (PDM) with 
rectangular unit height pulses whose pulse width a n is given by a signal x(t) 
sampled at time t,~, i.e., a~ ----- x(t~). Then y(t) = Y~ h~(t -- t~) with 

h~(t) = l ;  0 ~ < t <  a~ (2.14) 
otherwise. 

To find F1~* we first take the Fourier transform of h~, viz., 

H~(o)) = e -i~t dt -- 1 -- e -i~a~ i~o (2.15) 

643/I8/4-3 
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We assume that the samples a~ are pairwise independent identically distrib- 
uted random variables so that we have 

Vk*(~o) = I E[H,~(~o)]I z, k 4 :  0, (2.16) 

and also 

r0*(~o ) - -  E[J H,(w)lz]. (2.17) 

Accordingly, 

for nonzero k, and 

Y'k*(~°) = 5 [1 1 - -  ¢(~o)j2 ] 

F0*(~ ) = 2 { 1  --  Re[¢(oJ)]). 

(2.18) 

(2.19) 

In the preceding two equations, ¢ denotes the characteristic function of any 
az~ , 

¢(~o) = f ei°°adG(a). (2.20) 
0 

I t  only remains to substitute t he / ' k*  into the appropriate spectral density 
relation (2.12) or (2.13). Since fo*(ico) = 1, the first of these formulas yields 
for the spectral density of P D M  with rectangular pulses: 

S~(o~) = ~ 1 --[¢(oJ)l~ + 1 1  --¢(oJ)l = fk*(co) (2.21) 
00 2 

The  alternative form of S~ which features a one-sided infinite series in the 
fk* is 

S~(o~) = ~ 1 --  Re[~(~o)] + ] 1 - -  ¢(o~)f2 Re f~*(~o) . (2.22) 

Although Su appears to have a singularity at ¢o = 0 due to the 1/oJ ~ term, such 
is not the case because of the behavior of ¢ near the origin when a ,  has finite 
variance. However, Y~f~*(0) diverges, reflecting the existence of a delta 
function at the origin. The  intensity of this delta function is the square of 
the mean of y(t), and this mean is seen to be 

E[y(t)] = fi f ~  re(t)dt : f i lE [f]~ hn(t ) dt]l = fi{E(a~)} (2.23) 

by (1.3) followed by an interchange of integration and expectation. We have 
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also used E[hn(t)] = re(t) (by definition), and the fact that the integral of  
h~(t) is merely am. 

We continue this example with a generalization to pulses of  arbitrary 
shape. Now 

= , a,~ > 0, (2.24) 

where h(') has a Fourier transform, is differentiable (we admit delta function 
derivatives), and h(- -or)  = h(oo) = 0. Then  

oo oo 

Hn(oJ ) -- , ( h  (--~)e-¢°'adt = a,~ f_~ h(u)e -i~'°" du, (2.25) 

which we may integrate by parts to obtain 

1 It~(w) = ~ f_~ h'(u) e -~"~'' du. (2.26) 

The independence of the an permits us to find r'~* easily from (2.16) and 
(2.17); for nonzero k, 

1 oa 2 
f h'(u)$(uw)du (2.27) v~.*(~,) = g~ -~  

and for k = 0, 

1 
f f® h'(u) h'(v)q~(w[v - -  u]) dudv. (2.28) Vo*(~) = ~ -~  

As before, q~ is the characteristic function of any a n , and the prime denotes 
differentiation of a function with respect to its argument. In  some instances 
it may be more convenient to once more integrate by parts; this rephrases 
(2.27) in terms of h and ~b', and (2.28) as a function of h and 4". 

The  above expressions f o r / ~ *  are somewhat simplified by the change of 
variable u - -  v = s, v = t. I f  we then put 

we shall have 

and 

co 

A(t, 04 = L f h'(s + t) 4(o,,) ds, 
O )  ~ c O  

co 

Vo*(o,) = 7 J f_~ h'(t) A(t, co) at 

(2.29) 

(2.30) 

r,~*(,,,) = I A(0, ~)12, k ~ 0. (2.31) 
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The  reader can easily verify that these two formulas agree with t h e / ' k *  pre- 
viously obtained for the rectangular pulse, for which h'(u) = 3(u) - -  3(u - -  1). 
Moreover,  substitution into the Formulas (2.12) or (2.13) for the spectral 
density is routine and will not be carried out here. As in the case of rectangular 
pulses, the spectral density is obtained in closed form whenever ~f~*(ico) 
can be summed. 

The  second example is concerned with the theory of telephone traffic, and 
more particularly with the number  of lines in use at any specified time t. 4 
We assume that the lengths of calls are independent random variables with 
identical probabili ty distributions G(-). The  n-th call is initiated at t ime t n 
(n = 0, ~ 1 ,  ~2,. . .) ,  and {t~} constitutes a Poisson point process (over 
the entire real line) for which/3 is the average number  of calls initiated in any 
unit  period. Finally, it is supposed that there are a sufficient number  of lines 
to assure that every potential caller can in fact initiate a call whenever desired. 

In  the example, we determine the mean and autocorrelation of the number  
of lines in use. This  number  is modelled by y(t) = ~ h~(t -- t~), where h~(t) 
is taken to be the rectangular function defined by (2.14), with a~ the duration 
of the n-th call. Hence the general results we have already derived are appli- 
cable to this problem. For instance, the mean number  of lines in use is 

(2.32) 

T h e  autocorrelation function is in theory also available, since we may sub- 
stitute for the f~* in the spectral density formula (2.12), and then take the 
inverse Fourier transformation for the autocorrelation function. However, 
we shall find it more instructive to start with the general autocorrelation 
expression, and to evaluate it directly. 

We assert that the autocorrelation E[y(t + ~) y(t)] is 

(2.33) 

in which 

/'~(u, v) - :  E[h~+~(u) h~(v)], (2.34) 

4 T h e  same mode l  has  been used  to represent  the  n u m b e r  of  uni t s  be ing  serviced 
by a sys tem wi th  an infinite n u m b e r  of  servers,  and  the  n u m b e r  of  fibers in a cord 
consis t ing of fibers of  r a n d o m  lengths.  Consequent ly ,  the  resul ts  of  this  example  have 
been  obta ined earlier by  alternate me thods ;  see Rao (1966) and  Haj i  and  Newell  (1970). 
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and fk represents the density function for k successive intervals between 
points. Verification of the correctness of (2.33) is accomplished by taking 
the Fourier transform on r; the result should be the spectral density S u as 
given by (2.12). The  double integral in (2.33) may be written 

so that its transform on 7- gives rise to the integral 

co 

f / k ( l u - - v @ 7 - 1 )  e-''°'dT- 

- e '~''-') [f; fk(x)e-i°"dx Jr- f2 fk(x)e+'~'" dx]. (2.35) 

It  will be recalled that fk is the probability density function for k successive 
intervals, and that fk* is the corresponding characteristic function according 
to (2.8). Hence the right side of (2.35) gives rise to fk* as well as fk* = f * "  
To  complete the verification of (2.33) we obbserve that irk and F~* [as defined 
by (2.34) and (1.4), respectively] are connected by the transform relation 

= f Fk(u, v) e .... ) dudv. (2.36) 

We require that irk(u, v) ~ lrk(v , u); since, in any case, irk(u, v) = F_k(v , u), 
we have irk*(co) = F*k(oJ ). It follows from the latter and (2.35) that the k 
index term in (2.33) transforms into the --k and -~-k terms of (2.12). The  
single integral term in (2.33) becomes the zero index term of (2.12). 

With the aid of (2.33) we now evaluate the correlation Ru for the number 
of telephone lines in use at any given two times. Because of the symmetry of 
Ru(r), it suffices to consider ~- ~> 0. Then  for the h~(-) defined by (2.14), 

I'o(U + ~-, u) = E[hm(u + 7-) h~(u)] = E[h~(u + 7-)], (2.37) 

if u ~> 0, and ir0(u + ~, u) = 0 otherwise. This means that F o is specified 
for u > / 0  by the distribution function G of the length of any call since 

E[hm(u @ T)] ~- P[(u @ 7") ~ am] = 1 --  Plain < (u @ 7-)] 
(2.38) 

= I - a ( u  + 7-). 

These considerations, together with the change of variable u + 7- = x, 
permit us to write the first integral in (2.33) as 

g .  co t ,  oo 

| 1 ; (7 -+u ,u )  d u = j  [ 1 - - G ( x ) ] d x ,  7 - ~ 0 .  (2.39) 
~¢X9 "r 
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In the second integral of the autocorrelation (2.33), we have by the assumed 
independence of the {h~(t)} 

U~(x, y) = E[hn(x)] E[h,(y)], k ~ O. (2.40) 

Thus F~ fails to depend on its index, and the summation may be applied only 
to thef~.  But for a Poisson point process {t~} it follows that whenever u =7(= v 

fk(I u -- v I) = fi, (2.41) 
k = l  

as shown in Beutler and Leneman (1966a), Eq. (4.1.2). Accordingly, the 
summation of the double integrals in (2.33) becomes 

~- v, ((~° E[hn(u)] ) 2 (2.42) 

in which the right side is attained by interchanging expectation and integra- 
tion, and noting that the integral of h~(t) is a n . The values of the integrals 
(2.39) and (2.42) are substituted into (2.33), the expression for R~. When 
use is made of the symmetry of the autoeorrelation, the final result is seen 
to be 

co 

f [1 -- G(x)] dx + {fi[E(a,)]} 2. (2.43) 

In the above example, the special role played by the Poisson point process 
and the assumed independence of telephone call durations made it possible 
to evaluate R u explicitly. In the absence of these specialized conditions it is 
generally easier to calculate the spectral density S~, in large part because 
the f~* usually constitute terms of a power series. 

STATISTICS FOR POISSON POINT PROCESSES 

When the underlying time base of a pulse process is a Poisson point process, 
the numbers of pulses in disjoint intervals are mutually independent, and 
the number of pulses originating in a given interval depends only on the length 
of the interval. These special properties [which almost serve to specify 
the Poisson point process (see Beutler and Leneman (1966a), Section 4)] 
can be exploited to obtain more complete statistics than the first and second 
order moments found in the preceding section. Indeed, when {tn} is a Poisson 
point process and the h~(t) are mutually independent random functions, we 
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can determine the characteristic function for the pulse process y ( t ) =  
Zh~(t -- t~); once this characteristic function is known, any statistic ofy(t)  
is (at least in theory) available. Joint statistics depend on multivariate charac- 
teristic functions, and these are complicated indeed. Nevertheless, we will 
indicate how these are obtained, and give an explicit formula for the joint 
characteristic function of y(tl) , y(t2). The utility of these results will then 
be demonstrated by applying them to the number of telephone lines in use, 
thereby generalizing the last example in the preceding section. 

We consider again the y(t) of the form 

y( t )  - -  ~ h.( t  - -  t .) ,  (3.1) 
- - o o  

with the specializing assumptions that {t.} is a Poisson stationary point process 
and that the k~(t) are mutually independent. For this y(t) we seek its character- 
istic function E{exp[iAy(t)]}. The indicated expectation is taken in two stages. 
First, the expectation with respect to {k~(t)} is denoted by 

El[e i~(t)] = E 1 iexp [JR ~ h ~ ( t -  t~)]l . 
_ a o  

(3.2) 

Because of the hypothesized independence of the k~, this expectation can 
be written 

in which 7 t is defined 

El[e *a~(~)] = f l  7t(t -- tn, A), (3.3) 
_ c e  

~(u, ;~) = El{exp[ihhn(u)]}; (3.4) 

since the h~ are identically distributed, 7 j does not depend on the index n. 
We define further 

1 log 7,(u, ~) (3.5) 

so that the expectation (3.3) becomes 

El[eia~(~)] : exp [iA ~ g(t -- tn ' A)] (3.6) 

Since E[e ~au(~)] = E2El[ei~U(o], where E z is the expectation with respect to 
{tn} , completing the calculation of the characteristic function requires that 
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we apply E 2 to the expectation (3.6) immediately above. To facilitate this 
operation, we observe that the exponential 

co co 

g(t -- t~ , A) = f g(t -- u, A) dN(u), (3.7) 
_oo  --co 

where N(t) is the stationary increment process with N(0) ~ 0 and a unit jump 
at each t~ [compare Beutler and Leneman (1968)]. Since N(t) may be assumed 
continuous from the right, the integral in (3.7) is of the Riemann-Stieltjes 
type and may be regarded as the limit (as the intervals between variates tend 
toward zero) of the sums ~kg(u~, h)[N(u~+t)-  N(uk)], where {u,} is an 
increasing (nonrandom) sequence on the real line. Now since {t~} is a Poisson 
point process {N(uk+l) -- N(uk)} constitutes a mutually independent set of 
random variables and so 

E2(exp l~ iAg( t - -u~ ,A) [N(ue+l ) - -N(u~)] l )  

= I-I Ez{exp (iAg(t - u~, A)[N(u~+I) -- N(u~)])}. (3.8) 
k 

Moreover, N(t) is a stationary increment process, which means that 
N(v) -- N(u) and N(v -- u) have the same statistics. Hence 

E[e i~(t)] = lim 1] E2{exp[iAg(t -- u~, A) N(uk+ x -- uk)]}. (3.9) 
k 

The right side expectation is easily evaluated because N(t) is known to be 
a simple Poisson process whose characteristic function [see Parzen (1962), 
pp. 13 and 30] is 

E[e i~'N(t)] = exp{fit(e ~" -- 1)}. (3.10) 

Thus, with the role of y being played by Ag(t -- u~, A) and that of t by 
(uk+a -- uT~) the right side expectation in (3.9) becomes 

]-[ exp ((fi(u~+ 1 -- ul~){exp[iAg(t -- uk, A)] -- 1}) 
k 

= exp (/3 [Z  {exp[iAg(t-  uk, A ) ] -  1}(uk+ 1 -- uk)]) 

- + e x p l f i  f~  [7 - r ( t - -u ,A) - -1]du  t 

exp {fi f~co du I . (3.11) = E ~ ( ~ ,  A) - 1] 
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The  right side of (3.11) above is the limit of the indicated Riemann sums, and 
use has been made of the relation between g(u, ~) and W(u, ;~) [see (3.5)] in 
arriving at the final form. The characteristic function of y(t), according to 
(3.9) and (3.11), is therefore 5 

If  ° I E[e ~(t)] = exp fi [T(u, A) - -  11 du . 
--co 

(3.12) 

An extension of the preceding arguments is used to derive higher-order 
characteristic functions such as 

I f  I E[e ~lv(~)+~a~y(t+~)] == e x p  fi [ T ( u ,  g -~  "r, ~i l ,  ~2) - -  1] d u  , ( 3 . 1 3 )  
-co 

in which 

~(x, y, hi ,  ,~2) = El{exp[iAlhn(x) + iA2h~(Y)]} (3.14) 

by definition. From the joint characteristic function the autocorrelation can 
be obtained, and similar methods are applicable to higher joint moments. 
In  view of the apparent difficulty of dealing with y(t) ~- ~ h~(t -- t~) [a very 
general form of pulse train], the characteristic function forms (3.12) and (3.13) 
are remarkably simple. 

As an example, we continue the telephone line usage problem of the 
preceding section, with the same assumptions as before. For this process, 
we obtained the mean and autocorrelation function (2.32) and (2.43), respec- 
tively. The  techniques of the present section enable us to go further. In  
particular, we shall derive first- and second-order characteristic functions, 
and hence in principle all first and second-order statistics. 

Although the second-order characteristic function (3.13) clearly includes 
the first order one (3.12) by taking h 2 = 0, we shall find it instructive to 
compute the two separately. To find E[e~aY(t)], we first obtain T as defined by 
(3.4). Since h~(t) is specified by (2.14) this random function can take on only 
the values zero or unity. Now if hn(t) = O, exp[iAhn(t)] = 1, and this is the 
case for t < 0 and t >~ an ; thus for t ~> 0, there is the probability G(t) that 

5 This result is not entirely new. For a Poisson renewal process {tn} specified on 
the positive half-axis and with y(0) = 0, the equivalent result for arbitrary t /> 0 is 
found in Parzen (1962); if t --+ oo, this result agrees with our (3.12). 
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h~(t) = 0 and [1 - -  G(t)] that h~(t) = 1. Here  G is again the probability 
distribution function of any an • These considerations imply that 

~(u, A) = 11 u < 0 (3.15) 
eia[1 - -  G(u)] -}- G(u) u >/O, 

E[da~(t)] = exp lfi(eia - -1 )  f [  [ 1 - -  G(u)] dul, (3.16) 

by substituting in (3.12) for T.  The  form of the characteristic function (3.16) 
shows that y(t) is Poisson distributed with parameter fl ~o [1 - -  G(u)] du. 
Essentially the same result is obtained when {t~} is a Poisson renewal process 
over the positive half-axis and y(0) ~ 0 [see Parzen (1962), Example 5E on 
pp. 147-148], except that the characteristic function asymptotically ap- 
proaches ours as t -~  oo. 

Since E[h~(u)] = 1 -- G(u) from (2.38), the characteristic function (3.16) 
also takes on either of the alternative forms 

E[e i~(o] == exp{fi(e ~a - -  I) E(a~)} - -  exp{(e ~a - -  1) E[y(t)]} (3.17) 

through an application of the identity (2.23). Therefore, the probabil i ty 
distribution of y(t) depends on {t,} only through the mean number  of calls 
per unit time, and on a~ only through its mean E(a~). 

The  bivariate characteristic function E[e ~lu")+ia~y"+')] is calculated as 
follows: for arbitrary ~-, 

E[e ialv(t)+iaz~(t~')] = E[d a2v(t)+*alv(~-')] (3.18) 

from considerations of stationarity and symmetry,  so it suffices to get this 
characteristic function for ~->~ 0. This  means that the ~(x,  y, Ax, A2) of 
(3.14) is needed only for x <~ y, since the latter argument is always greater 
than the former in (3.13), where T is used in the expression for 
E[eialV(O+ia~u(t+')]. There  are three cases. I f  y < 0, then T(x, y, t 1 , t2) : 1. 
I f  x < 0 ~< y, then W(x, y, ~tl, )to.) coincides with W(y, h~) as specified by 
(3.15). Finally, for x >/0 ,  we have both h~(x) and h~(y) unity with probability 
P[y  < an] : 1 --  G(y), h~(x) unity and h~(y) zero with P[x < a~ ~ y] : 
G(y) --  G(x), and both h,(x) and h~(y) zero with probability P[a~ <~ x] : 
G(x). Hence for - - r  ~< u < 0, 

W(u, u + % )h , A2) : ei~[ 1 - -  G(u + r)] + G(u + ~-), (3.19) 

and for u > / 0  

~(~, ~ + ~, ~ ,  a~) = e*~1+*~[1 - a ( .  + ~)] + e'~[G(u + "0 - G ( @  + a(~) .  
(3.20) 
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T h e  final step consists of subs t i tu t ing  T from (3.19) and  (3.20) into the 

expression (3.13) for the bivariate characteristic funct ion,  viz., 

E[e 'aI~(t)+i~v(~+')] = exp fi - -  G(u + r)] 

+ e ~ l [ a ( u  + , )  - -  a ( . ) ]  + [a (u)  - -  I]} du 

-~- fl(e ~a2 - -  l)  f l  [1 - -  G(u)] du) .  (3.21) 

Various specializations of this characteristic func t ion  (e.g., A 2 = 0 or r = 0) 
are left to the reader, as is the computa t ion  of the autocorrelat ion or other  
momen t s  dependen t  jo in t ly  only  on y(tl) and y(t~). 

RECEIVED: August 19, 1970 
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