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" Summary

This report gilves a pfeliminary,account of a new
formulation of automata and system theory. Using Lawvere's
notion of a hypérdoctrine, a single unified theory encompéssing
the minimal realization theories of sequential machilnes;
aigebra automata; a new generalization of algebra automata
to non—equationally definable theories, giving arbitrary
recursive computations as behaviours; linear systems;
machines with algebraic structure; and machines with restric?gd
inpup; is presented. 1In addition,Afhe concept of a coorqr
inatized machine 1s introduced, and a duality for such
machines which is closely connected to the minimal real-
ization theory 1s described. Coordinatized machines ‘wilth
each of the above types of étructuré may be definéd;
moreover, linear systems have a natural coordinatization
relative to which the general duality spécializes to the

Kalman duality.
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0. Introduction

This report gives a preliminary account of results
from the author's doctoral dissertation, currently.in
preparation.

In recent years there have been attempts to unify .the
minimal realization theories of various branches of

automata and system theory, notably those of sequential
machines and linear systems, as in [12]. Also, attempts
have been made to unify the duality of linear systems
theory with the apparent duality or partial duality
between reachability and observability for automata, as
in [9]. Last year, Goguen [2] achieved a unification of
the minimal realization theories- of sequeﬁtfél machines
and affine systems, among others; and also initiated the
study of adjunctions between behaviour and realization ¢
functors.

In this report I present another, quite different,
formulation of machine theory which‘unifies automata theory
and linear systems theory, and also contains a new fype of
duality for machines which specializes in the case of linear
systems to give the familiar duality. The intefesting fea-

tures of this formulation aré these:

- Thé mathematical apparatus used is that of a hyperdoc-

trine, which was introduced by Lawvéré as a model of higher



order logic, proof theory, and sheaf theory. Machines and
their behaviours, as well as other features of machine theory
are expressed easlly and naturally using the operations of

a certain hyperdoctrine.

- Special cases of the type of machine considered
include sequential machines; algebra automata; a new gener-
alization of algebra automata to non-equationally definable
theories, giving arbitrary recursive computations as -
behaviours; linear systems; machines with algebraic struc-
ture; and machines with restricted input.

- A general minimal realization theory is developed
which specializes in each of the above cases to the known
theory (if any). Also, a more comprehensive set of behaviour-
realization adjunctions than has'previously been discussed
is presented.

- The notion of a coordinatized machine is introduced,
and a general theory of duality for such machines is developed.
These machines also have a canonical realization theory
which i1s closely related to the realization theory of
ordihary machines. Behaviour—realization adjunctions
also carry over to coordinatized machines. A linear system
has a natural coordinatization in this sense, and the
Kalman duality is seen.to be a special case 6f the duality
for coordinatized machines.

- There is considerably mére mathematical structure in

the hyperdoctrine considered than is actually used in the



prcliminary applications. I rmive some examples to show
the system theoretic significance of some of this extra
structure; and I think these examples indicate that we

may expect significant new features to emerge on further

investigation.



1. A }“llnd(\m(‘n1,."l_!‘_wl.“f‘;\t..'_l.p'lﬁl__(_:

lany of the observations of this section have been
made elsewhere; but the crucial one, the use of the left
and right adjoints to the forpgetful functor from right
actions to sets, is new. This formulation of sequential
machine theory motivates the development of section 3.

Let X be a monoid. We denote a right action
(a, x) b a*x : A x X > A of X ona set A by (A, ).

For any set A, we may define a right action of X on

the set A x X by
(a, x) = x' = (a, xx').

The assignment A b (A x X, ) may be eXtended to a
functor from the category of sets to the category of right
X-actions. This functor is left adjoint to the forgetful

functor from X-actions to sets.

For any set A, we may define a right action of X on

the set AX of functions from X to A by
(f « x")(x) = f(x'x).

The assignment A b (AX, «) may be extended to a functor
from the category of sets to the category of right X-actions.
This functor is right adjoint to the forgetful functor from

right X-actions to sets.

These observations lead to an elegant formulation of

machines and their behaviours, as follows.
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Let (Q, *) be a right action of a monoid X of inputs

on a set Q of states. Let oa: T »+ Q be a read-in function

with domain I, a set of initial conditions. Let A: Q »- J

be a read-out function with co-domalin J, a set of final

conditions.

Denote by sub u_ (this notation will be explained
later) the forgetful functor from right X-actions to sets.

A machine may thus be formulated as a diagram

T -2+ sub uy (Q, ')-—A+ J.

Using both adjunctions, we obtain

' - ke)
(I x X, *) =2 (q, -) = (3%, 9
Using the right adjoint to sub ﬁx we obtain

o,
- J.

N

I xX

This is precisely the behaviour of the machine, that is;
the function assigning to each initial condition 1 e I,
and each input x € X the final condition A((ai) + x) € J
which results.
Conversely, given a behaviour
B
I xX—J

we have, vlia the right adjoint to sub U
B' X
(IXX, .)__’(J, .)



Any factorization of B say

=
B
X )

(T x X, ;)____—» (J R

N yA
(A, *)
may be interpreted, using both adjunctions, as the machine
I—‘g—-> sub u_ (A, -)—§L+ J
Furthermore, the behaviour of this machine is precisely B.

Moreover, the condition that a machine

-2 sub u, (Q, -)—l—* J

be reachable, in the usual sense, is simply-that

sub ux’a
I x X ———— Q

be onto; and the condition that the machine be observable,

in the usual sense, is simply that

=
sub U, A

Q - g%

be 1 - 1.
In the category of right X-actions, any morphism has
a unique epi-mono factorizatipn through its image ( also
coimage). In particular, given a behaviour
B
I x X —J

we factor B through its image



Since the forgetful functor has both right and left
adjoints, it preserves monomorphisms and eipmorphlsms, so
that the resulting machine is both reachable and observable.

- Indeed, it is the familiar minimal realization of B.




2. Hyperdoctrines

Lawvere [ 1 ] introduced the notion of a hyperdoctrine
to model, amon,; other things, higher order logic. Much of
the terminology derives from this interpretation.

Hyperdoctrines provide the appropriate setting in
which to pursue the development of section 1. The use‘of
the hyperdoctrine (cat, Sets) is not an empty generalization;
it is essential to the applications we shall consider.

A cartesian closed category C has finite (including

empty) products; and has, for each A ¢ Ob C a right adjoint
(YA o

for the functor ( ) x A: C » C. The functor ( )A is called

exponentiation by A. The empty product; that is, the terminal

object, 1s denoted by 1.

A hyperdoctrine consists of:

- a cartesian closed category T, the category of types.

- for each object X of T, a cartesian closed category P(X)

called the category of attributes of type X.

- for each morphism f: X = Y in T a functor sub f: P(Y) =+ P(X)

called substitution along f.

In the examples we consider, sub( ) is functorial,
although in general one requires this only up to coherent
natural isomorphism.

- for each morphism f: X - Y of types, left and right adjoints
for sub f, If: P(X) » P(Y) and NIf: P(X) -~ P(Y), called

respectively existential and universal guantification along f.




The hvnerdoctrine which shall be of most interest to
us is the hyperdoctrine (cat, Sets) described below. 'The

structure which appears in the hyperdoctrine (cat, Sets)

=]

s woll xnown In the literature (under other names, in most

‘s,
F

cases). We omit details of the cartesian closed structure
of the type and attribute categories, and of the existential
and universal quantification functors.
The type category is the category cat of small categories.
The category P(X) of attributes bf type X is the category
of set-valued functors from X, with natural transformations

as morphlsms.

Substitution is composition: for f:+ X + Y, ¥: Y + Sets,
sub £ (¥) = ¥ o f

For each f: X = Y, sub f: P(Y) » P(X) has a left adjoint
¥

CLf: P(X) » P(Y) and a right adjoint If: P(X) > P(Y).
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3. A Reformulation of Machine Theory

The contents of this section generalizes and extends
that of section 1, and is new. First we recapture section
1, and then imitate that development 1n the hyperdoctrine

(cat, Sets).

A monoid X may be viewed as a category with a single
object.

Set valued functors ffom XOp,'where X is a monoid
viewed as a category, are precisely right actions Qf X
(on the set to which the single object is mapped). Natural
transformatibgs are just morphisms of right actions, as

one can see from the dilagram

()« x

Q —m Q

Furthermore, if 1 is the one object, one morphism
category, P(l) may be identified with Sets In an obvdous
way.

The crucial observation which establishes 1link between
machine theory and the hyperdoctrine (cat, Sets) 1s the
following. Define u,: l + X°P (the only functor).

Then sub u_: P(x°P) + P(1) is the forgetful functor from
right X-actions to Sets. Zux:.P(l) + P(X°P) assigns to
each set A, the right action (A X X, *) described above.

Mu,: P(1) ~» P(Xx°P) assigns to each set A the right action
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(l\x, «) descerlibed above.
Thus all of the constructions of section 1 may be done
using the operations of the hyperdoctrine (cat, Sets).
Indeed, we may define a machine M= (E, u, X, ¢, I, a, J, A)

in (cat, Sets) to consist of a functor u: E - X which is

onto objects, called the behaviour scheme of M (comparé ux);

$ ¢ Ob P(X); I, J € Ob P(E); and morphisms o, X in P(E) of
the form

I-—g* sub u ¢-—l» J

We define a morphism (h, f, k): M »- M' of machines
over the behaviour scheme u to consist of h: I » I',

f: &> o', k: J » J' such that the diagram

I — sub u & —— J

h sub u f . lk

IJ'—— sub u o' — J°?

commutes.

We define a behaviour over u: E - X to be a morphism

in P(E) of the form

B: sub uZ ul->J

for some I, J ¢ Ob P(E).
We define a morphism (h, k): B + B' of behaviours
over the behaviour scheme u to consist of morphisms

h: T » I'yk: J » J' such that the diagram
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R
subu Y u I —-— Jd

sul v Lo hl lk

sub u L ul'—>J'
B’

commutes.
We define the behaviour of a machine

M= (E, u, X, ¢, I, a, J, A) to be the morphlsm

B(M) = Mo a

—

where  etc indicate the transforms relative to the appro-
priate adjunctions. We may extend B to a functor.

A machine is reachable if sub u‘a is an epimorphism

and observable if sub u X' is a monomorphism.

We can then show tﬁe
Theorem. Every behaviour B: sub u I u I + J 1is reallzed by
a ﬁnique (up to isomorphism) reachable and observalbe ;achiﬁé.

Denote by Mach(u), Rch(u), Obs(u), Beh(u) the categories
of machines, reachable machines, observable machines,
behaviours over a fixed behaviour scheme u.

Then we have the following adjunctions. Some of these
adjunctions have not been discussed, even in the case of
ordinary machines, as far as I know.

The functor Bu: Mach(u) - Beh(u) has a left adjoint
uu: Beh(u) » Mach(u) and a right adjoint pu: Beh(u) -+ Mach(u) .
As we saw in section 1, machines which realize a given
pehaviour B arise from factorizations of FB. UuB arises from

-

1 B
trulI—ZIul—Tuld
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and in ordinary machine theory corresponds to the free
monoid machine.
yuB arises from
B 1
Tou T = I u g o= Jhu g
mmis machine is the "all possible output functions" machine,
with left translation as the action.

The category Rch(u) 1is coreflective, with the core-
flector (right adjoint to inclusion) pu: Mach(u) =+ Rch(u)
which assigns to each machine its reachable part.

The category Obs(u) is reflective, with the reflector
(left adjoint to inclusion) wu: Mach(u) + Obs(u) which
assigns to each machine its observable component.

The restriction of Bu to Rch(u)lhas a right adjoint
namely ju: Beh(u) - Reh(u) which assigns to each behaviour
its reduced (reachable, observable) realization. ‘This
corresponds to the behaviour—realiéation adjunction discussed
by Goguen [2 ].

The restriction of Bu to Obs(u) has a left adjoint,
namely ju: Beh(u) - Obs(u) which assigns to each behaviour
its reduced realization.

These adjunctions may be summarized in the dlagram

~ Mach(u)

Obs(u)
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Except for the lower left adjunction, whose counter-
part has been discussed by Goguen [ 2] for sequential
machines with quite general algebraic structure on their
state and input spaces, I do not know of any discussion

of these adjunctions, even for ordinary machines.
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4. Applications

Suitable specializations of machines in (cat, Sets)
lead to various familiar typés of machine.» It should be
kept in mind that the preceding minimal reaiization theory
aprites In cﬁch case, as well as the develbpmeht'which we

shall see in later sections.

4,1 Sequential machines

Taking u = Uy s where X 1s a monoid, we obtain sequen-

tial machines with input monold X, as we have seen.

.2 Algebra Automata

(o]

An Q-algebra, where & = U Qn is a unfion of disjoint
n=0

sets Qn of n-any operation symbols, is a set A together

n

with functions wA: A" > A for each Yy ¢ Qn, each n.

The free Q-algebra on generators T, Q(I), where I

is any set consists of expressions formed as follows:

(1) I v Q, c Q(I)

0

(i1) if Eqs voes En e Q(I) and V¥ € 2, then

VEL ... By e R(I).

In particular, for any natural number k, we define
a(k) = Q({xl, cees xk}).

Ty

nc 8

An equational theory in Q consists of a set T =
n

0
where Tk is a set of formal equations of the form £ = &'
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where if k = 0, &, &' € Q(0); 1f k > 0, &, &' € Q(k) - Q(k-1).
A T-algebra 1is an Q-algebra 1n which all equations of
T are satisfied.

The free T-alpgebra on generators I, T(I), where I is

any’set, i5 the quotient of Q(I) relative to the smallest
consruence containing all identifications which are Suﬁsti—
tution instances of equations in T.

In particular, for any natural number k, we define
T(k) = T({xl, ceey xk}). |

In [ 3] Lawvere showed how, given an equational theory
T, one may define a cgtegory T in such a way that the
T-algebras aré precisely the product-preserving functors
from T to Sets. The category T has a singl% object k for
each natural number, and the morphisms from,k to & are

given by
_ X
T(k, 2] = T(k)".

Composition in T is given by substitution of representative
expressions.

A right action of a monoid may be viewed as a monadilc
(@, = ¢ for 1 # 1) algebra. Thatcher and Wright [ 4]
initiated the generalization of automata theory to non-
monadic algebras.

For a given theory T, a T-algebra automaton 1s a

T-algebra A together with functions a: I + A, A: A > J.
The behaviour of the T-algebra automaton (A, a, A) is the

function
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B: T(T) = J

I 5 A 1s the function

defined by B(&) = A(EA(a)) where EA: A
induced by evaluation of the expression & in A (strictly,
sinﬁe £ is an equivalence class of expressions, we evaluate
a representative; and this is of course well-defined since
"A is a T-algebra)

With I = ¢, J = 2, we are using A to recognize a
certain subset of the initial T-algebra T(¢), as in [ 5 ].
With I, J = A, a, A = 1A, we are evaluating expressions on
data from A.

To formudate algébra automata as machines in (cat, Sets),
let T be as above. We denote by S the skeleton (i.e.,
isomorphic objects are equal) of the categofy of finite

sets. We have an embedding u: sOP » T as follows: For any

fuﬁction
£ {xq, «-es xk} > {xq, oees x,}
we have
(£0x)), «ees £(x)) € TS,

that is, a morphism & + k in T. This gives the functor u.
Sets may be viewed as T-algebras for which &, and

hence T are empty. In this case, the associated category

may be seen to be s°P .  That is, product preserving functors

from SOP to Sets may be interpreted as sets.

Tt is easy to see that if &: T » Sets is a product
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preserving functor corresponding to a Téalgébra, then
sub u ¢ is fhe'underlying set. The left adjoint Tu is an
extension of the free algebra functor, Whichlis left adjoint
to the Férgetful functor, so Zu(I) = T(I).

Ah algebra automaton gives us a machiue ih (cat, Sets)

over the behaviour scheme u

I e N sub u ¢ fA* J

where ¢ is product preserving. Its behaviour is a functor
sub u L u I » J; that is T(I) = J and may be seen to be
the behav1our in the usual sense.

On the other hand, given a function T(I) =+ J we may
calculate the reduced realization. The resu}ting functor
T - Sets may be shown to be product preserving; that is,

a T-algebra, in fact, the minimal realization of [6].

4.3 Recursive Computation

Recent work by Lawvere and Tierney hasrmade it possible
to treat non-equational theories in the same way as equational
theories are treated by Lawvere. Given a theory (set of
sentences) T in higher order logic, one can construct a
topos T (a topos 1is a cartesian clogsed, finitely bicomplete
category in which the functor assigning to every object its
set of subobjects 1s corepresentable) with the property that
models of T ére precisely the topos structure preserving
functors from T to Sets.

We can formulate in such a language definitions of
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arbitrary recursive functions. (These can not be formulated

in an equational theory, since they involve essentially

partial operations, such as minimization). The behaviouf

of the analogue of an algebra automaton would be the evalua-

tion of terms (descriptions of recursive functlons); that

is, the function assipgning to a recursive function descrip-

tion and data in a model, the value of that recursive function.
This generalization of algebra automata has not been |

discussed elsewhere.

4.4 Linear Systems

It seems to me that this 1is a particularly convincing
example, since the formulation in (cat, Sq}s) meshes pre-
cisely with Kalman's elegant formulation of linear systems
[ 7]. In fact our formulation explains certain features

of Kalman's which, as it turns out, arise as left and right"™’

adjoints.

A discrete-time, constant linear system over a field

K is specified by linear maps

A: X > KP

where X is a finite dimensional vector space over K. The

dynamical interpretation of the system is

x(t + 1) = 8§x(t) + ou(t)

y(t) = xx(t)
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where t € 2, x € X, u € Km, y € kP.
We paraphrase the formulation of Kalman (7], X may
~be interpreted as a left module over the polynomial ring

X{27] wilth the actlon
f o x = £(8)(x)

where f € K[z] and f(8): X - X is f evaluated at

§ ¢ Hom[X, X]. Therefore we may represent the linear system

as a diagram

K™ 2 x 2 kP
finere X underlies a K[z] action. The diagram is in the
category of vector spaces over K.
We now formulate linear systems as machines in
(cat, Sets).
For any ring R, the modules over that ring may be

defined by an equational theory (with @ _ = {4}, Ql = R,

2

Q. = {0} and suitable equational axioms). Let TK be the

0
category associated with the theofy of K-modules for a-

fixed field K; that 1s, the theory of vector spaces over
K. Let TK[z] be the category associated with the theory
of modules over the polynomial ring K[z], There is a

natural embedding u: TK > TK[z] induced by K c‘K[z]. We

have thus represented a linear system as a diagram
m o A

KM 2 sub u X = KP

where X is here interpreted as a K[z]-module (since sub u
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1s Just the forgetful functor from K[z] modules to K vector
apacen).

we can now see why Kalman must formulate his input-
output maps as K[z]-linear maps from K™ z] to Kp[[é—l]]

1). We are able to

(formal power series in z~
show that £ u K™ = K™ z] and T u kK® = kP[[z71]]. 1If the

behaviour of a linear system in our sense is

B: sub u £ u K" » Kp, then the behaviour in Kalman's sense
is just B: £ u K™ > 1 u kP,
It follows that our reduced realization is the classical

one.

4.5 Machines with Algebraic Structure

One can define a tensor product of theories with the
property that product preserving functors from T into the
category of product preserving funétors from T' to Sets .
are ina 1 - 1 correspondencé with product preserving functors

from T @ T' to Sets. (see [10]). For example,

is the theory of N-actions, where

T = TK® T where T

Klz] N N
N is the monoid of natural numbers under addition.

Thus if we want to consider T-algebra automata in the
category of T' algebras, we will have functors T - Setsz'
and hence T @ T' » Sets.. Using the behaviour scheme
T' >+ T ® T' (the tensor product has natural injections) we
can discuss these machines in our framework.

Goguen .[2] has a formulation which unifies much of

realization theory. (also the study of behaviour-realiza-
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tion adjunctions was initiated in [2]). He constructs a
triple (monad, standard construction) in a closed monoidal
category which 1s analogous to AW A X S* where S¥ is the

free monoid on a set S. A machine 1s a dlagram
1~>A-~>J

where A is an algebra over this triple (he does not describe
his construction this way). I expect that many, if not all,
of his examples can be formulated in the present framework
using the tensor product of theories T @ T', where T' is

a theory whose algebras form the closed monoldal category,
and T is a théory whose algebras in Setsz' are the algebras

over the triple.

4,6 Machines with Restricted Input

Let G be the state graph of a.- (non-deterministic)
generator for some set of strings over the alphabet S. We
define a catepory G having as objects the states of G and
as morphisms all triples (g, o, g') where o 1s a str}ng
resulting from a transition from g to g'. Composition is

~glven by
(g', o', g") o (g, 0, g') = (g, oo', g").

For any category X, Ob X is the category with objects
as in X, but only identity morphisms.
Suppose G has an initial state 0 and a final state 1.

Let L be the language generated by G; that 1s, the set of
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all 6 ¢ S* such that (05 0, 1): 0+ 1 in G. A behavliour

over L is a function
B: I x 1 ~>J

for some4sets I, J. For given sets I, J, B is essentially
a behaviour over the scheme u: Ob G ~ G (the obvious func-

tor), namely the morphism B: sub u Zu I + J given below

B

I sub uful—J

0 I I xG[o, 0] — 1

g b T x glo, g] — 1
: , ) B

1 ¢ ' 1 xglo, 1] — J

A machine M = (Ob G, u, G, ¢, I, a, J,7A) will be a

diagram
e A
I—> subudé¢—4J
0 I - 9(0) — 1

g ¢ — o(g) — 1

1 = 8(1) s g

Such a machine can be interpreted as follows. Assigh
to each g € Ob G a machine with input monoid G[g, g£]. When
a transition from state g to state g occurs, the machine
at g is switched off and the machine at g' is switched on
with an appropriate initial state. In our example, only
the machine at state 1 has outﬁuts, but we could change this

if we wanted to realize a different type of behaviour.
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5. Other Features of the Formulation

We have uéed some powerful apparatus to formulate
machine theory. So far we have not made use of much of
the mathematical structure available. Here we present
some examples which show that we can expect to find machine
theoretic significance in this extra structure. These
applications were not designed into the formulation and
hence providé evidence that this 1s -indeed an appropriate

setting for much of automata theofy.

5.1 StatebGraphs

The category (cat, X) where X is a small category has

as objects functors u: E » X and as morphisﬁs‘commutative

triangles

The functor

(cat, X) » P(X)

ur I u (lE)

where 1E is terminal in P(E) has a right adjoint
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d e (1, ®) » X)

where 1 is terminal in Sets, and (1,%) has as objects

morphisms 1 + & x, X € Ob X and as morphisms commutative

triangles

1

7\

X —— Yo x!'

¢ £
where £: x + x' in X.- The functor to X is projection.

In the terminology of Lawvere [8], (cat, Sets) satisfies

the comprehension schema,Lawvere introducedﬁthis notion to

model the relation between predicates P(x) and their exten-
sions {a | P(a)}. 1In our case, (1,%) is just the state
graph of the action ¢. That is, (1,%) has as bbjects (in
the case where ¢ is a monoid action) the elements of the

set on which the action is defined, and has as morphisms

arrows
X
q—> q'
where q' = q * x. The projection (1, ) - X is just the

labelling of the arrows of the state graph by monoid elements;
X
that is, (q — q') -+ x.

For the other types of machines discussed in section

4, (1, ) may also be interpreted as a state graph.
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Gopuen [11], and the present author (independently,
in unpublished work ¥ ) have given formulations of an
interconnection of systems as a diagram in a suitable
category, with the resultant system being expressable as
the 1limit of the diagram. The above adjunction is the
appropriate way to relate this formulation of sustems to

the better developed theory of systems with inputs as actions.

5.2 Computation Time

Suppose we have a function f: Q - Q. To any q € Q
and function h: Q + 2. we may assign the natural number:

least n (h(f7(q)) = 1). We can call this the computation

time of the program: ' do f until h' when started on the data
q. We may suppose without 1oss‘of generality that

{q | h(q) = 1} is closed under the action of f, otherwise

we replace the original f, h with the equivalent f', h'

givén by

f! h*
Q+Q— Q+Q— 2

\
n~1(1) | 2
f B

f
h™1(0) — q

f
Q — Q7 constant 1

% Private communication to Y. Give'on August 1967; also
Dissertation prospectus, Department of Computer and
Communication Sciences, University of Michlgan, October

1968.
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which do satisfy the condition.
We may interpret Q, f as an N-action, where N is the
monoid of natural numbers under addition, with the action

given by
q * n-= fn(q).

The category Setsx, where X 1s a small category, 1is a

topos (see 4.3). Thus we have a subobject classifier
X

Qe Ob Sets™ with the property that the subobjects of
¢: X » Sets are iIn a natural 1 - 1 correspondence with

morphisms ¢ + Q@ (comphre characteristic functions; in Sets,

Q= 2.

Given an element q ¢ Q we may consider” the corresponding

function
a
1— sub uN(Q, )

and hence

—

b uN 1— (Q, *)

The action I u,, 1 may be taken to be on N, namely

N
me* n=m+ n., We have a function

(@, <), @3 [N, ), Ql

induced by composition with Tq..
This assigns to every subaction of (Q, *) (such as

determined by h above) a subaction of (N, *). A subaction



28

of (N, ) ia easily seen to be a set of the form
{m ] m> Kk} rfor come kK, or the empty subaction. We may
see that to h: (Q, *) = Q,corresponding to h,is assigned

{m | m > least k(n(f¥(q)) = 1)}. Thus the function
[1, sub uy(Q,=)] x [(Q,+), @] ~ [£ uy 1, Q]

may be interpreted as assigning to each q ¢ Q and subaction
h the computation time on q of : do f until h. This may be

generalized.

Using the duality of the next section, the above
construction (in a generalized form) may be given a dual

interpretatioﬁ. Also, using the exponentiation in SetsX

the above construction and its generalizatiomns can be
represented internally in the category, and given a

sultable interpretation.
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6. Duality

Arbib and Zeliger [9] have investigated the duality
betweén reachability and observability for séduontial
machines. Tﬁere is a well known duality of this type er
linear machines. We present here a duality of this type
for general machines in (cat, Sets) which includes in a
certain sense the linear machine duality as a special case.
The construction is similar in part to that of [9] but

involves the essential extra notion of a coordinatized machine..

6.1 Coordinatized Machines

There is.a contravariant adjunction on the right
between P(X) and P(X°P). That is, there are contravariant
functors (both of which we denote by #)

4
P(X);:;:ﬁ?(xop)

such that
Lo, v¥1 2 [¥, ¢*]

The functor #: P(X) + P(X°P) 1s the extension to a functor

of the assignment
o 0P 2()
(X — Sets) > (X°P ——— SetsP——— sets)

That is, ¢#(x) = %%,

We note the following relations between # and the other

operations of the hyperdoctrine (cat, Sets)

(sub u ¢)# = sub u°P ¢#

(Z u ¢)# = 1 u°P ¢#
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Let (¥, R) be a left action of a monoid X. The right

2R

action (¥, R)# = (2%, *) is ;~tven by

(p » x)(r) = p(x ¥ r).

Suppose that elements r ¢ R are interpreted as nodes of
a network at which binary values appear. On an 1nput
signal x € X, each node receives 1its next value from the
node x ¥ r. The resulting right action on QR is as above.
In other words, a right action of the form (¥, R)# may be
interpreted as that realized by a certain type of network.
If (Q, *) is a subaction of (¥, R)# we may say that
the network (¥, R) realizes the action (Q, ). We may

Q

assume that the function R » 2% obtained by transforming

Q c 2R is 1 - 1, otherwise we replace (¥, R) by the smaller
network Im((*, R) -~ (¥, 29)) which realizes (Q, *) and has
the property.

Thus in general, we define a coordinatized action of X,

X a small category, to be a subobject o< W#,'é e Ob P(XOp),

Y ¢ Ob P(X),whose transform Y - ¢# is a monomorphism.

~

A coordinatized machine K = (E, u, X, ¢, ¥, I, a, J, A)

consists of a scheme u: E » X, a coordinatized action ¢< y#
over X, a: I - sub u ¢ in P(E), and A: J > sub uwoP ¥ in

P(E°P). We represent a coordinatized machine by a diagram

o # A# #
I— sub u ® = sub u ¥ —— J.

Note that 1s ¢ W#’is a coordinatized action, then so 1is

sub u S sub u W#. The dual of the above coordinatized machine
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X I
J = sub 1°P ¥ o sup uoF ¢#—ﬁ—» I”.
The behaviour of a coordinatized machine is ‘the behaviour of 1its

abstract part

I > sub u ¢ -~ J#

A coordinatized machine also has a concrete part, a network
J ~ sub uop ¥ > 1#

The fundamental result for coordinatized‘machines i1s that

every behaviour of the form

B: sub ul ul ~» J#

has a unique éoordinatized realization B such that the abstract
part and the concrete part of B are both reachable. This is the

codrdinatized machine obtained as follows. Consider

S uTlo>ImB-Tudl

and the resulting

‘ZuJ > Im-~ (ImI—B‘)#.

The coordinatized action is

Im B ~» Im#.

We define a morphism of qoordinatized actions
"

(6o ¥7) 5 (o1 yr

to consist of ¢ —i* ' and W'-g* ¥ such that
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¢ C— \y##
e

#
ores Y

commutes. We can then reconstruct the counterparts of the
adjunctions of section 3. Illowever we now replace observable

by addressable. (has a reachablc concrete part). Furthermore,

everything is dualizable, including behaviours, and these

functors commute with the dualities.

6.2 Duality for Linear Machines

For linéar machines, we have the following situation.
Morphisms from m to n*in the category TK[z] corresponding |
to the theory'of left K[z]-modules may be taken to be n X m
matrices over K[z]. Transposition gives us_-a contravariant
functor t: TK[Z] > TK[z] with t2’= 1. Thus TK[Z]Op is
the theory of right K[zJ]-modules. Any K[z] module V 1s'a
‘vector space over K, and so we may“speak of the dual vector
space V¥, It is easy to see that V¥ may be given a right

K[ zJ]-module structure.

Thus given a linear machine

Km__g* sub u V-—A* Kp

we construct a coordinatized linear machilne as follows. Define

V = (V¥ o t)#: T. > Sets, where t: Tﬁp + Ty is transposition.

v
).

We have the 1 - 1 functions

K
(This amounts to V(n) = 2

e o VE
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corresponding to

vl ox v 2

: X , # *
where \(vl, ey vn), (Vl’ cees Vn)) is mapped to 1 1if

* .
X vj(vi) = 1 and 0 otherwise. These give a natural trans-
i C ~

formation V - V = (V¥ o t)# which is a coordinatized action in

the above sense. We have the coordinatized linear machine

o ~ by ~
K"— sub uV » sub u Vv — Kp.

The dual of this coordinatized machine is

kP . (KP)¥ — sub u V¥ > sub u V¥ ——sr (K™ * - K™

which is precisely the coordinatized machine corresponding to

the usual dual of a linear machine.
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