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On the Structure of 
a Class of System Identification Problems" 

Sur la structure d'une cat6gorie de probl~mes d'identification des syst~mes 

Lrber die Struktur einer Klasse von Problemen der Systemidentifikation 

O cTpyrrype rnacca npo6JIeM ono3naBanrin CrICTeM 

W. L. ROOTI" 

The identification of non-linear systems.from input and output data is essentially a linear 
problem, so that general questions of when and how can a system be identified can be 
answered with linear analysis. 

Sununa~--Systems of the form y=Hx are considered, 
where x is the input signal, y is the output and H is a trans- 
formation. The input and output signals belong to Lz 
spaces, H belongs to a specified class of continuous, not 
necessarily linear, transformations. The fundamental 
problem is to identify H from measurements of x and y. 

The approximate representation of certain transforma- 
tions H in terms of polynomial integral operators is dis- 
cussed. The concept of a determinable class, which is used 
throughout, and some of its properties are reviewed. An 
illustrative example concerning human operator tracking 
problems is presented. A structural characterization of 
determinable classes based on work of Hsieh and Bala- 
krishnan is given and then used as foundation for an 
application of linear regression analysis to the problem of 
identifying an H belonging to a determinable class when 
there is observation noise. Finally, the notion of deter- 
minable class is applied to a class of stochastic operators 
and an elementary convergence theorem is given. 

1. INTRODUCTION 

THE SUBJECT of  this paper is the identification o f  
systems as represented in inpu t -ou tpu t  form. The 
purpose is to present some theoretical structure to 
serve as a foundat ion for the analysis o f  a rather 
wide class of  identification problems, with special 
emphasis on the questions, when, and in what  sense 
is identification possible. The systems considered 
may be in general linear or  non-linear, time- 
invariant or  time-varying, and with single or  multi- 
variable inputs and outputs, a l though some restric- 
tions are imposed in places. Stochastic systems are 
also considered. The work here is intended to apply  
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chiefly to off-line testing o f  processes, or  to fixed 
experiments on systems under controlled conditions. 
N o  effort is made to treat iterative identification 
procedures which up-date and improve the infor- 
mation about  an unknown system as it operates. 
However,  some of  the material of  this paper is 
relevant to a study o f  such procedures. 

The background of  the work presented here is 
contained chiefly in earlier work by PROSSER and the 
author  [1, 2, 4, 5] and by BALAKRISHNAN and 
HSIEH [3], for example. Specific connections are 
pointed out later. 

Section 2 contains general definitions and nota-  
tions, and the idea is introduced that an inpu t -  
output  identification problem can always be treated 
as a linear problem. This observation is funda- 
mental for all that  follows. In section 3 some basic 
facts are given about  polynomial  integral trans- 
formations,  such as a Volterra series, and an approx-  
imation theorem is stated. Such t ransformations 
are used throughout  the rest of  the paper to repre- 
sent the systems being considered, and the material 
o f  section 3 is included partly to justify their use. 
See also a comment  in the Conclusions section. 
Section 4 is illustrative example couched in terms of  
a human operator  tracking problem. Section 5 
contains a solution for the noise-free identification 
problem in certain cases in terms of  the spectral 
resolution of  an operator  determined by the input 
signal. This is essentially an abstract version of  a 
port ion o f  a development done by Hsieh and 
Balakrishnan, and is included because sections 6 
and 7 depend on it. In section 6 a special modifica- 
tion o f  infinite-dimensional linear regression analysis 
is applied to identification when there is observa- 
t ion noise present. Section 7 contains definitions 
and a theorem about  determining the moments  o f  
an unknown stochastic system. Both sections 6 and 
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7 are believed to be formally new, although the 
mathematical arguments required are rather 
obvious. 

These last three sections actually present al- 
gorithms for identification, but they are in terms of 
eigenvalue problems which would normally be too 
difficult to solve. They are really intended to 
provide existence theorems and a foundation for 
the study of efficient computational algorithms in 
special cases. The procedure described in the 
example, section 4, on the other hand, is practical 
in many circumstances, but it is fairly standard. 
The concept of a determinable class of unknown 
systems, defined in section 2, is used throughout to 
give a unified point of view. 

2. D E F I N I T I O N S  A N D  P R E L I M I N A R Y  R E S U L T S  

The systems to be considered can be charac- 
terized by the equation y=H(x ) ,  where x (the 
input signal) is an element of a specified set ~', y 
(the resulting output signal) is an element of a 
specified set °2/, and H (the system transformation) 
is an element of a specified class At' of functions 
from 5f into ~ .  The basic identification problem 
to be discussed is, briefly stated, to find an He~Cg 
that adequately represents an unknown system 
from the results of one or a series of experiments 
involving the introduction of known input signals 
x and the measurement of the corresponding 
output signals y. The sets 3?7, ~ ,  ~ ,  together with 
any mathematical structure they are to have, will 
be stipulated as the paper proceeds. In section 7 
the transformations H are stochastic. 

One can regard each xeSf as determining a 
function from ~ into ~ .  To emphasize this point 
of view, we write y = H(x) = X(H),  HeJ/F, i.e. X is 
the mapping that assigns output y to system H 
when x( , , ,X)  is the input signal and y =  H(x). 
Then, obviously, the problem of identifying H 
when the input signal is x is essentially the problem 
of inverting the mapping X. If  the output space Y/ 
is a linear space this can always be interpreted as a 
linear inversion problem as follows. Define addi- 
tion and scalar multiplication in the way they are 
conventionally defined for spaces of functions, i.e. 
for each HI, //2, H E ~  and all real numbers 
define H 1 + Hz, ~H, respectively, by 

( H, + H2)(x)= Hi(x) + Hz(x) ,  .ve:~g 

(otH)(x) = 0t[H(x)], x ~ ' .  

Extend o~' if necessary so that it is closed under 
linear combinations; then out ° becomes a linear 
space, or a vector space. This extension is permis- 
sible because it only enlarges the basic class of  
systems being considered. The notation Jg will 
be retained, but it is henceforth assumed o~ is a 

full linear space. Then .¥ is a linear transformation 
on ~ ,  because: 

X(otH~ + fill2) = (o~H, + [3H2)(x ) = ct[H, (x)] 

+ fl[H2(x)] = ~X(H,)  + fiX(H2 ). 

The first and third equalities follow from the 
definition of X, the second from the definitions of 
addition and scalar multiplication in ~ .  In 
summary: 
(A) With the linear structure prescribed lbr ~ ,  

the mapping X from ~ into q¢ detined by 
y = X(H)  = H(x) is linear. 

This simple observation, which is obvious to 
anyone who has thought about such things, is 
important because it says that the input-output 
identification problem can always be studied by 
linear analysis. When observation noise is added, 
the problem can be treated as a linear regression 
problem. The observation takes on practical as 
well as theoretical importance if, when parameters 
are introduced, as they must be to permit actual 
computation, they are introduced in such fashion 
as to determine linearly the transformations H. 
Then the actual computation algorithm will be 
linear, or, in the usual terminology, the problem will 
be "linear in the parameters". The only condition 
necessary for this linearity of X is that Y/ be a 
linear space, and this condition is satisfied when 

is an L2-space as required in the next paragraph. 
For the remainder of the paper it will be assumed 

that the input and output signals x(t) and y(t) will 
be real- or vector-valued functions that are square- 
integrable Lebesgue on R 1, the real line, or some 
subset thereof. For x(t) to be vector-valued will 
mean that x( t )={x l ( t  ) . . . . .  xu(t)  }, M finite, 
where each xi(t) is real-valued. In case x(t), z(t) are 
vector-valued square-integrable functions on a set 
A the notations 

and 

[ x ( t ) 1 2 = x ~ ( t ) +  . . . + x ~ ( t ) ,  

JIxPt2=f AIx(,)12dt 

M 

(x, z) = A ~" xi(t)z'(t)dt 

are used. We shall denote the L2-space with the 
inner product just defined by L2(A) for both the 
scalar-valued and vector-valued cases. It will be 
indicated in context when signals may be vector- 
valued. The set ~ will always be a subset of the 
set of continuous functions from £r into ~¢, where 
the topologies of £r and ~¢ are those given by the 
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L2 norms. Two different norms will be used for 
~f': the supremum norm defined by 

I . i  =supllHxll, 
X 

useful when 5f is bounded, and a Hilbert space 
norm, to be defined later, which can be used when 

contains only transformations of a certain form. 
Although the kind of identification problem in 

question here is basically the inversion of the 
transformation X, there are several general con- 
siderations which influence the directions to be 
taken. First, the transformations X are usually not 
invertible; so we must be content with something 
like pseudo inverses, or we must limit their domains 
so that they are (nearly) invertible. Second, even 
if the inversion is possible in principle, a precise 
determination of H is usually neither necessary nor 
practically feasible. So even before taking into 
account statistical errors caused by noisy observa- 
tions, there is some point in regarding the identi- 
fication problem as an approximation problem. 
Third if the identification algorithm is to be carried 
out by digital computation, it must involve only 
finite sets of data. Even if the algorithm is to be 
done by an analogue technique, there is often some 
insight provided by considering finite-dimensional 
approximations. In an attempt to construct some 
abstract identification theory that explicitly takes 
account of these considerations, the author and 
others [1, 2, 4, 5-7] have used the concept of a 
determinable class of  unknown systems. There are 
of course other ways to do this, but the determin- 
able class concept will be used here. A formal 
definition follows. However, !t should be noted 
that in the view of the author this definition should 
be regarded as a prototype, to be modified, genera- 
lized or specialized in obvious ways as may be 
appropriate to a given situation. 

Let ~ be a subset of an L2-space; let q¢ be an 
L2-space, and let ~ be a normed space of con- 
tinuous functions H with domain ~ and taking 
values in ~ .  The norm of H, which is arbitrary as 
far as this definition is concerned, is written I1HII. 
Let ~ ~ M', them: 

Definition 1. Let 5>0  be given. ~ is an 5- 
determinable class if there exists x e f ,  a finite set of 
continuous real-valued functionals mi(y ), i = 1 , . . . ,  
N, bounded on bounded sets, and a continuous 
function /~ from R N (N-dimensional real Eucli- 
dean space)into ~¢f such that II H-lCi (m, (Hx) , . . . ,  
mN(Hx))ll--< ~ for all He~ .  

Definition l a. ~ is a determinable class if it is 
t-determinable for every 5>0(x, N, {mi} and / /  
may all depend on 5). ~ is determinable with 
respect to (wrt)x if it is 5-determinable for every 

8> 0 with the same x. The value taken on by [/ 
is a determination of the unknown system. 

The idea behind these definitions is to formalize 
criteria as to when systems can be identified from 
input-output measurements, because in general 
they cannot, and to establish a point of view from 
which to consider identification procedures. The 
definitions do not encompass the question of 
random errors of observation, which must be 
considered separately, and, since they are for 
deterministic systems only, they will hence have to 
be modified when we consider stochastic systems. 

It is easy to show [1] that a necessary condition 
for a bounded set 9 to be determinable is that it be 
totally bounded* in the metric topology given by 
the norm, or, equivalently, that ~ have compact 
closure. This is by no means sufficient, however, 
for it does not guarantee the approximate in- 
vertibility the definition requires. A necessary and 
sufficient condition, proved in Ref. [1] is: 

(B) A bounded subset ~ of ~,~ is determinable if 
and only if: (i) @ is totally bounded (ii) for 
any e > 0  there is an x=x(e)~Sf such that for 
any H 1 and H2e@ satisying IIH,- 211> , 
then IIH, x-H2xlT >0  

Superficially, the determinable class definition 
applies to identification using measurements with 
only one input signal--we shall call this one-shot 
identification, but this is not really so. Of course, 
for time-invariant systems it is fundamentally 
meaningless to distinguish between one-shot and 
K-shot identification if the choice of the observa- 
tion interval T is free. However, for time-varying 
systems it is not meaningless, if we consider for the 
K-shot identification that the time variation is 
repeated for each new testing period. Also, for 
systems with finite memory, even time-invariant 
ones, it is conceptually useful to consider repeated 
measurements instead of one continuous measure- 
ment. A little thought will convince one that the 
determinable class concept applies to K-shot 
identification also, if one regards the sequences of 
input and output signals as new signals represented 
as vectors of length K. 

A remark is in order before concluding this 
section. The term identification can have various 

* A subset ~ of a metric space is totally bounded if, 
given any e>0, ~ can be covered with a finite number of 
open spheres of radius 8 with centers in ~. In a separable 
Hilbert space (e.g. an L2-space) an equivalent condition is: 
given any complete orthonormal set {~}, and any e>0, 
is totally bounded if and only if i) Ilxll~< constant for all 
x ~ ,  ii) there is a positive integer N=N(8) such that 

I(x, 
i=N  

for all x ~ .  In  a f ini te-dimensional  Eucl idean space any  
bounded  set is totally bounded .  
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connotations, including that of finding the actual 
physical structure of an unknown system. Here, 
obviously, we do not ask for so much ; we ask only 
for some mathematical representation of a trans- 
formation, close in some norm to the transforma- 
tion performed by the system. For arbitary norms 
this may be a little artificial, but if the norm is the 
sup norm it is evidently reasonable--because then 
we know that I / ~ - H I < ~  is exactly the right 
condition to guarantee that having made the 
identification H we can predict the output of the 
system to within ~ for any input ,ce.~ as long as the 
system remains unchanged. 

3. POLYNOMIAL INTEGRAL TRANSFORMATIONS 

In the remaining sections the systems being 
discussed are represented by transformations of 
the form : 

y(t)  = [H(x) ] ( t )  

= , = o  ~ f " " f ah"(t '  s' . . . . .  s ,)x(s,)  

. . . x(s ,)ds,  . . . ds, t¢T  (1) 

where A, the time during which the input is applied 
and T, the time during which the output is observed, 
are subsets of R ~, where xeL2(A) ,  where the zero-th 
order term is ho(t ), and where N is any finite 
positive integer. In the case of vector-valued 
signals, y( t )= {yl(t) . . . . .  yM(t)}, and the expres- 
sion h,(t, s I . . . . .  s,) x(s 0 . . .  x(s,)  is to be inter- 
preted as the vector 

M 

}-', h~',7""i"(t, sx . . . . .  s , )x i~(sO. . ,  xi.(s,) 
i l ,  . . . ) i n  

j =  1 . . . . .  M ' .  

Note that each h, may be taken to be symmetric 
in the variables s~ . . . . .  s, since only the symmetric 
part of h, contributes to the integral. One can 
justify the generality of such transformations on 
intuitive grounds, since the class of all such trans- 
formations is obviously a large class, by consider- 
ing infinite series and analytic functionals, or by 
considering approximations to continuous func- 
tions using the Stone-Weierstrass theorem. Here 
the last is done, and although the basic idea is well- 
known there are some details to be considered, so 
a formal statement is made. First some elementary 
properties are established. 

Let the n tu term of the sum in equation (1) be 
denoted H,(x) .  H ,  is a homogeneous polynomial 
integral transformation, and 

N 

H= y. H.. 
n = l  

Define a norm for H,, to be denoted by 

j =  I. il . . . . .  i , ,=  I A A 

Ih'o,,j. ' ' i n ( l ,  ,51 . . . . .  s O l Z d s , . .  

Then define IIHII by 

N' 

Ilgll =-- !ln.II 2, 
n = l  

H.!!, 

ds,,dt . 

1"he norms so defined will be called Hilbert- 
Schmidt norms (HH, H is the conventional Hilbert- 
Schmidt norm in the linear case when n = 1 ). Both 
norms are obviously true norms, the first being the 
ordinary norm for the Lz-space of vector-valued 
functions of (n+ 1) variables, £.e ,=Lz(A" x T), and 
the second being the norm of the direct sum of the 
5¢,, 5e=£~°o@ . . .  @5°N. It is consistent to use 
the same notation for both norms, since the norm 
for the homogeneous transformations can be 
regarded as a special case of the other one. For 
transformations as given by equation (1) with 
finite Hilbert-Schmidt norm the following pro- 
perties hold: 

(C) If y = H , ( x ) ,  q=H,,(O, x and ?,~Lz(A), and 
I[H.JI < m then: 

(i) y¢L2(T),  and IIYlI-< IIH,,/i II:,lt". 

(ii) tly-qlt <g2nl[g,[] 
l[x- ll[max(llxl!, I1 -It)]" -' 

Proof. These follow from the Schwarz in- 
equality. (i) is trivial. See Ref. [2], e.g. for a proof 
of (ii) in the scalar case. 

It follows from (C) that for ally fixed N and with 
each ][H,[[ < oo, H as given by equation (1) is  a 
uniformly continuous function from any bounded 
subset ~r of Lz (A)  into Lz(T). Let .~ be any fixed 
compact subset of L2(A) and let L2(T) be fixed, 
then denote by ~)fN the class of all polynomials of 
the form of equation (1) of degree less than or 
equal to N mapping f into Lz(T ). Let ~ be the 
class of all bounded continuous functions F from 
Y" into Lz(T ) made into a Banach space with the 
usual norm: 

IFI = supilFx n . 
xg 

Then oWNco~, and the following approximation 
theorem holds 

(D) Let ~ = ~ -  have compact closurc. Then, 
given e > 0, there exists N =  N(~) such that for 
every F~Cg, there is an H ¢ ~  N satisfying 
I F - H I < ~ .  

Proof. See Ref. [8]. 
This approximation theorem is taken to be 

sufficient justification for restricting the discussion 
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to determinable classes of systems where the 
transformations H are all of the form given by 
equation (1), even though the signal space, ~e is 
not always assumed to be compact. 

4. EXAMPLE 

To help clarify the concepts already introduced 
and to provide a lead-in to the material of the next 
three sections, an illustrative example involving a 
second-degree polynomial integral transformation 
is discussed. The calculations to be made actually 
apply for the most part to any system representable 
by such a transformation, however the example will 
be formulated in terms of compensatory tracking 
problems for a human operator of a dynamical 
system. 

In a compensatory tracking situation, a human 
operator adjusts the magnitude and polarity of a 
signal forcing a given dynamical system so as to try 
to make the system output follow a given input. Let 
the output signal be denoted by y(t) and the input 
signal by x(t); both are real-valued functions of 
time. The operator does not know x(t), but is 
presented with a real-time visual display of the 
error, e ( t )=x ( t ) - y ( t ) .  He opelates a manual 
device, say a stick, that controls the signal into the 
dynamical system and tries to reduce the error to 
zero. Suppose for simplicity that the signal into 
the dynamical system is proportional to the position 
of the stick, and let it be denoted by z(t). The 
human operator is acting as the controller in a 
dosed-loop control system as shown in Fig. 1. In 
this environment the human operator is an un- 
known system with input 8(0 and output z(t). One 
problem is to identify this unknown system which 
takes 8(0 into y(t); another is to identify the com- 
plete closed-loop system which takes x(t) into y(t). 
For convenience, these are referred to respectively 
as problems I and II. As will be indicated, problem 
I may not be very practical, but it does illustrate 
certain points in the paper. 

FIG. 1. Human operator tracking loop. 

In the usual approach to problem I the human 
operator is characterized as a time-invariant linear 
dynamical system of known form, but with a few 
unknown parameters to be determined. It is 
known, however, that neither of the assumptions, 
time-invariance or linearity, is quite true, and even 

if they were the assumption of the form of the 
transfer characteristic for the human operator is 
pretty much guesswork. So it would be reasonable 
to consider a more general model for the human 
operator, and a model that allows for time varia- 
tion and some nonlinear!ty is: 

z(t)= oOt(t, s)8(s)ds 

f.f. 
+ 92(t, Sl, s2)t~(sl)8(s2)dslds2, 

.Io3o 

0<t_<z.  (2) 

It is not known to the author from experimental 
results whether in fact this is or is not an adequate 
and reasonable model for the human operator. 
However, it is plausible, and permits bringing out 
certain points in discussion. 

If the controlled system is linear or nearly so, a 
plausible model for problem II is, similarly, 

I 
6 

y(t)= ht(t, s)x(x)ds 
o 

f.f. 
+ h2(t, sl, s2)x(sl)x(sz)dsxds2, 

dodo 

O < t < z .  (3) 

Now there is a real difference between the two 
problems in that the input signal, x(t), can be pre- 
determined by the experimenter in problem II, 
whereas 8(0, the input for problem I, cannot be. 
Some consequence of this fact are mentioned 
below. However, the form of equations (2) and (3) 
are the same, so the formal calculations to follow 
apply to either. 

Let the following assumptions be made: 
(i) 0 < 6 < • < oo. Note that in problem I 6 = ~, 

in problem II the input signal can be turned 
off and the operator given some additional 
time so that z can be strictly greater than 6. 

(ii) with a suitable normalization, 

Ilxll 2 =f:x2(t)dt l. 
Note that this can be guaranteed in problem 
II and made reasonably certain in I. 

(iii) Ihl(t, s)[ and [h2(t, sl, s2)[ are each bounded by 
fixed constants, which is a reasonable assump- 
tion for either problem. This condition implies 
that IIH U = Ilhl[I Ilhd 2, as previously de- 
fined, is finite, since the ranges of integration 
are finite. 

(iv) hi(t, s ) = 0  for t <s,  h2(t, sl, s2)=0 for t <s  I or 
t < s  2, i.e. the system is causal. 
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Now let {~b~(s)}, i=  1, 2 . . . . .  be a complete 
orthonormal system (cons) for L2[0, 6] and {rli(t) }, 
i = l ,  2 , . . . ,  be a cons for L2[0, z]. A specific 
choice of these functions will be made later. Then 
there exist the generalized Fourier expansions: 

x(s)= ~. aj?.(s), a.=(x, ~b.) (4) 
n = l  

y(t)= ~ c.q.(t), c.=(y, q.) (5) 
n = l  

~o 
hi(t, s)= ~ bjiqj(t)dpt(s ), (6) 

j , i = l  

b j i =  h i ( t ,  s)qj(t)~l(s)dsdt 
o o 

h2(t, st, s2) = ~ bji,i2rl~(t)~i,(sl)~i~(s2), (7) 
j ,  i t , i 2 = l  

f,f,f,  bJ'"2 =JoJoJo h2(t' st, s2)qj(t)c~,,(s~)O,,(s,)dslds2dt. 

It should be observed that there is of course a slight 
misuse of notation here; in each case the partial 
sums in the expansions on the right converge in 
mean square to the left hand side, e.g. 

lim a.dp.-x ~ 0 ;  
N-'+ oO 

they do not necessarily converge at each s and t 
unless some further condition is imposed. 

Using the expansions given by equations (4), (5), 
(6) and (7) in equation (3) yields 

y(t)= ~] bj,ayl,(t)+ ~, bj,~i2aqa,zrll(t ) , 
j , i = l  j ,  i b i 2 = l  

and then forming the inner products (y, ~/k) gives 
the infinite set of equations 

cg= ~ bk,a,+ ~ bkil,2al,a,2, k = l ,  2 . . . .  (8) 
i = l  i t , J 2 =  1 

It will be observed that this is a system of linear 
equations in the unknown parameters b u and 
bk.~,.t~, as has to be the case since the system 
representation is linear in h~ and h2, and h~ and h2 
are linearly dependent on their generalized Fourier 
coefficients, the b's. It is obvious that this property 
of linearity in the unknown parameters will always 
hold when a representation of the unknown system 
in polynomial integral transformations is used. 

Now let it be assumed that the unknown system 
belongs to a determinable, and hence totally 
bounded, class 9 .  Then, by the characterization of 

totally bounded sets in a Hilbert space given 
before, for any e > 0  there are N=N(e) and 
N' =N'(e) such that H is changed by less than 5, 
in the Hilbert-Schmidt norm, if the series expan- 
sions for h~ and h2 given by equations (6) and (7) 
are truncated by allowingj to run only from 1 to N' 
and each i to run only from 1 to N. With this 
truncation the infinite system of equations in 
infinitely many unknowns, equation (8) is replaced 
by the finite system of equations: 

N N 

Ck= Y" bua~+ }~ 
t = 1  t 1 , t 2 = I  

k = l  . . . . .  N' 

b k h i 2 a i ~ a i 2  + g k , 

(9) 

where ak is an error. From the inequality (i) given 
in (C) it follows [ekl<~ for each k, for all the 
systems in the class and for any input x satisfying 
Ilxll--< 1 It is obvious, but important to note, that 
if the input signal x can be chosen as desired then 
it may be chosen so that all the a~ vanish for i>N 
and then the errors ek in equation (9) all vanish. 
It should also be noted that N(0 and N'(~), 
although always finite, will depend on the choice 
of the ~b~'s and r/t's, which amounts to saying that 
the totally bounded class of unknown systems is 
better described in some coordinate systems than 
in others. 

Thus we are led to consider the system 

N N 

Ck = ~ bkeai+ ~ bl,~at,ai2, 
i = 1  i l , t l = l  

k = 1 . . . .  , U '  ( 1 0 )  

which may be exact or approximate, depending on 
x. It is desired to find the bki and bklli2, for once 
they are known H is known to within e in Hilbert- 
Schmidt norm. Now, because of the symmetry 
of the right hand sides of equations (10) in the a .  
the bkt,~ ~ enter only through the symmetric sums 
(bk. ~2 + bk~l) and there is no loss in generality in 
assuming bkiztz=bki2i~ for all k, i s, i 2. Note that 
this is the same as assuming h2(t, st, s2) is sym- 
metric in Sa and s2. Hence, there are actually 
N '{N+ [N(N+ 1)/2] } = (N'/2)(N 2 + 3N) unknown 
b's in the N'  equations. Thus, if the class ~ is to 
be one-shot determinable there must be prior 
information sufficient to give (N'/2)(N2+ 3 N ) - N '  
independent relations among the b's. At the other 
extreme of no prior information, the b's clearly 
cannot be determined in fewer than (N2+ 3N)/2 
separate experiments. In fact, one can easily show 
that (N 2 + 3N)/2 different inputs x can be chosen so 
that if that many experiments are performed inde- 
pendently the resulting N'[(N2+3N)/2] equations 
are uniquely solvable for the b's. To keep things 
simple, only an example of a choice of inputs for 
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me case N =  3 is given, but the result generalizes to 
all N in a completely obvious way. Actually only 
blocks of ( N 2 +  3N)/2 equations have to be con- 
sidered simultaneously when there are no extra con- 
straints, because the equations for one fixed value 
of k are independent of those for another. 

In the case N =  3, for each k there are nine equa- 
tions in nine unknowns. Let the n th input be 

x(a)( t) = a(tnYp t ( t ) + aC2aYp z( t) + a(~)dp 3( t) . 

However, the Haar functions do not actually need 
to appear here because the first 2" Haar functions 
on [0, ~] for any positive integer n, can be replaced 
by the functions 

$~(0 = 0 ,  O<  t <  "~ ~ 
1), I 

2" 

=2,/2, ( i - 1 ) z < t < / . z  
2" 2" 

Assign values to the a's according to the following 
table: 

=0,  / z < t < ¢ ,  
2" 

i = l ,  2 . . . . .  2" 

a l  a2  a3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 0 
2 0 0 
0 1 0 
0 2 0 
0 0 1 
0 0 2 
1 1 0 
1 0 1 
0 1 1 

If the matrix of coefficients of the b's, for each 
fixed k,  is now written out it is readily seen to be 
nonsingular. The equations deeouple so that at 
most two equations need be solved simultaneously, 
and the solutions are: 

bkl-- ~, --~k , bklt-- 
2 2 

bk2 = 4c~3) -- c~'L) , b122 = c~4) - 2c[3) 
2 2 

, cI  ° - 2cI~) bk 3 - 4 c ~  5) - c~ 6) b,33 = 
2 2 

bkt2 = c~ "), c (s) c~ 9) bkt3----- k , bk33 = 

where c~'°=(y °'), ~h,) and y(n) is the output cor- 
responding to the input x ("). It is clear that al- 
though if there are many unknowns many experi- 
ments are required, the computations can be very 
simple if the input signals are properly chosen. 

Everything that has been said thus far is true no 
matter what the orthonormal functions ~bt and ~h 
may be. However, three particular choices seem 
worth mentioning: ordinary Fourier series of 
sines and cosines; Haar functions, or functions 
closely related); and eigen-functions of particular 
operators, to be discussed in general in the next 
Section. Haar functions, it will be recalled, are 
defined as plus-minus couplets of square waves on 
successive intervals of length 2- ' ,  n = l ,  2 . . . .  

in the sense that the ~bi are orthonormal and can be 
made into a cons by adjoining the Haar functions 
from 2 "+ t on. In context, N is taken to be 2" for 
some n, and the q~i defined as above. With these q~i 
the a's become simply averaged sample values of x, 
which are easy to compute and interpret and if the 
~,~ are chosen similarly, the b's and c's also become 
averaged sample values. These functions are 
particularly useful if the unknown system is time 
invariant or even nearly so, for then there are 
simple relations among the b's which reduce the 
number of unknowns. In the pure time-invariant 
case, using these ~b~ and ~/l, the bk~ can be written as 
b~_~, and the bki,i2 as bk- t , . k - i2 .  

Thus far the discussion has been concerned 
entirely with the noise-free case, and in fact 
observation noise will not be treated in connection 
with this example. However, if there is noise 
added to the observation only, i.e. if y is replaced 
by y + n  where n is noise, then the estimation of the 
b's becomes a standard linear regression problem 
to be treated in the usualway.  The fact that the 
system of equations (I0) is invertible for a proper 
choice of inputs guarantees that each b can be 
estimated, and this is discussed further in section 6. 
If  the input is perturbed by additive noise then the 
estimation is no longer a linear regression, of course; 
this problem is not considered here. In the human 
operator identification problems additive noise 
might well not be a serious factor; however, if 
additive noise must be considered anywhere in the 
closed loop then it affects the input, and the linear 
regression analysis based on equation (10) does not 
apply. Practically, problem I is more likely to be 
involved in difficulty, because under normal 
operation the input e(t) is small so that small noise 
disturbances are important. This is just a mani- 
festation of the fact that with any identification 
scheme at all the identification of an element 
interior to a dosed loop is chancy at best. 

It is apparent that the human operator identi- 
fication problem formulated as problem II can be 
solved in the noise-free case by the procedure 
indicated, but that repeated measurements are 
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usually necessary, that is, there will be k-shot 
determinability. The number of measurements de- 
pends on how many terms are necessary to describe 
the unknown system to within the allotted tolerance 
t', and on how much prior information there is, to 
be used to relate certain of the b's to each other. 
If the ortbogonal functions based on the Haar 
system are used, one can readily specify from a 
rough knowledge of the response time of a human 
operator what length of sampling interval is 
necessary, and hence how many orthogonal 
functions and how many parameters are necessary. 
For problem I the procedure may not be very use- 
ful, even in the noise-free case, because it is not 
possible to predetermine the input signals e(t). 
This implies two things: the equations (10) become 
approximations because of the neglected coefficients 
a~, i > N ,  which has the same sort of effect as noise 
at the input, and the al will not be such as to permit 
an economical inversion procedure for the system 
of equations (10). In fact, extra measurements may 
be required in order to make the system invertible. 

There remains a difficulty, which indeed was one 
of the reasons for choosing this example for 
illustration, that perhaps a human operator is not 
nearly enough a repeatable system, so that two 
experiments run with identical inputs may not yield 
closely the same output. If this proves to be so, 
then the human operator may be regarded as a 
stochastic system as discussed in section 7. His 
average response may be found by averaging the 
results of several experiments with the same input, 
and correlations may be found by the procedures of 
section 7. 

5. DETERMINABLE CLASSES IN TERMS 
OF SPECTRAL DECOMPOSITIONS 

For a rather wide subclass of transformations of 
the form of equation (l) it is possible to introduce 
coordinate functions so as to "diagonalize" the 
identification problem. These functions, which are 
the eigenfunctions of operators related to X, 
replace the q:s  and the products of ~bi's that 
appeared in the example just discussed. 

From now on it is assumed that jug, the class of 
systems to be admitted into discussion, consists of 
transformations H of the form of equation (1). 
Under the change of variables {si, t}-,{u~, t}, 
u ~ = t - s ~ ,  and the definition k , ( t ,  u~ . . . . .  u ,)  
= h,( t ,  t -  uj . . . . .  t - u,) ,  equation (1) becomes y( t )  

=.=o~f " " f nk"( t '  Ul . . . . .  u . ) x ( t - u O  

. . .  x ( t - u . ) d u l  . . .  du . ,  t ~ T  (11) 

where the us range through B. We now make some 
new special assumptions: (1) the zero'th order 

term is zero, k o = 0; (2) either the kernels are time- 
invariant, k , ( t ,  u~ . . . . .  u,,)=k,(u I . . . .  u,), or 
k, is of the special form 

M 

k ,  = ~ o:., i ( t )k. , i  
i = 1  

where each k.,  i is time-invariant and the ~., l(t) are 
known bounded functions; (3) T is a finite interval 
in R 1. The reason for (I) is that in almost any 
problem a zero'th degree term can either be found 
in advance and subtracted out, or else it is random 
and represents observation noise and so should be 
treated specially. Noise is considered in the next 
section. The reason for (2) is that it simplifies the 
problem and permits the development of the kind of 
structure theory given here. It does not quite mean 
we are limited to time-invariant systems, since 
time-varying systems with "finitely many degrees 
of freedom" in the time variation are allowed for 
by the generalization indicated. See also the last 
section. The reason for (3) is that observation 
periods always are finite. This assumption also 
happens to imply a discrete spectral theory, as will 
be seen. It will be assumed here that k.(u~ . . . . .  
u,) = 0 if any ]ui] > c = finite constant. Such systems 
will be referred to as systems with finite memory, 
although of course such a restriction implies finite 
anticipation also. In such cases the set B can 
certainly be taken to be [ - c ,  c]. As before, each 
x ~ L 2 ( A ) ,  and each k,, or k , , i  in the time-varying 
generalization, ~Lz(B"). Then it follows from (C) 
that y~L2(T) .  

A system transformation H is now represented 
as the family of time-invariant kernels k = k { k ~ ,  
. . . .  ks}, or, in the time-varying case as k =  {kl~, 
• . . ,  k l M l , . . . ,  ks1 . . . .  , kN~, ,} .  In the first 
instance the transformation X can be written as a 
sum of linear integral transformations 

y = H x = H k = X t k l + . . .  + X N k  N (12) 

where X is a linear mapping from the space 
a ~ = L e l ~ . . .  ~&° u into L2(T), where now and 
henceforth £#. =L2(B"), and where X and each X, 
are bounded linear transformations. In fact, under 
the assumption that T is a finite interval: 

(E) X is a compact transformation. 

P r o o f  Since x~L2(A), each X. is Hilbert- 
Schmidt, by an obvious calculation, as long as T 
has finite measure, irrespective of whether A has 
finite measure or not. Hence each X. is compact, 
from which it follows easily that X is compact. 

In the second instance X k  can again be written 
as a sum, of which a.~( t )X. tk .~  is a typical term. 
Since a.~(t) is bounded and X.~ is compact, the 
product a . t ( O X . t  is compact, and X is compact. 



On the structure of a class of system identification problems 227 

Thus (E) still holds. For convenience, when 
expressions need to be written out we shall consider 
only the time-invariant case; the changes necessary 
to go to the more general case will be clear. 

It follows immediately from (E) by standard 
Hilbert space operator theory, for example, see 
Ref. [9], that: 
(F) (i) G = X * X  is a compact, self-adjoint, positive 
operator from our into ~ .  Hence there exists an 
orthonormal set of eigenvectors q~i~Yt ° and cor- 
responding eigenvalues 2i>0,  2 i~0,  such that 
Gq~i=21flpi and such that for any h~Jf  Gh=Zci(o i. 
(ii) F =  XX* is a compact, self-adjoint, positive 
operator on L2(T). If qi=2-~X~b~, then {qi} is an 
orthonormal set in L2(T), Frli=2i49i, and for any 
y~L2(T), Fy=Z,d~rli. (iii) Let 6ex be the closed 
linear subspace of g spanned by the q~i. Then 

R(X*) (the closure of the range of X*)=5°~. The 
null space of G = the  null space of X = 5e~ (the 
orthogonal complement of 6ax). 

Thus the problem of inverting the operator X to 
find k has the following, necessarily incomplete, 
solution: 

(G) Let k = k x + k ' ,  k~6e.~, k'~6¢~. Let k~=Za:ck~. 
Then y =  Xk=Ea~2~q~. Since the 2~ are known, in 
principle, the a i can be found from Oll, Y)=a~i~, 
and k~ is then known, k' cannot be found from 
operations on y. 

This solution was essentially obtained by HSIEH 
and BALAKRISHNAN, e.g. Ref. [3]. From (G) one 
has (see Ref. [4] for a proof, which is however 
almost immediate) a characterization of classes 
determinable wrt x: 
(H) Let ~ = 9 ~ '  be bounded and determinable 
wrtx, where the norm on Yg' used for the definition 
of determinability is defined by 

N 

Ilnll 2= E IIk.ll z, 
n = l  

where Ilk.l[ is the regular norm for L2(B" ). Then, 
for cg some totally bounded subset of 5e ,  ~ =  {k~ 
+f(k~)} where kxeCg and !(k~) is a known con- 
tinuous function from C into Se~. Conversely, 
any subset of this form is a class determ;nable 
wrt x. 

It follows from the definition that any deter- 
minable class can be approximated by a class 
determinable wrt x, and hence a set of the form 
just described. If ~ is bounded so that the norm 

IHt =supllHxll, 
J¢8 

is appropriate, then it also follows from the defini- 
tion that if is determinable in Ii'll norm, the 
Hilbert-Schmidt norm, it is also determinable in 
I. I norm (sup norm). 

To save a considerable amount of space and also 
to make the arguments more evident, the develop- 
ment in this Section has been given in an abstract 
operator notation. The operators X ' X ,  written 
out, are in fact N × N matrix arrays of polynomial 
integral operators and the q5 t are N-vectors of 
functions, the first of one variable, the second of 
two variables, etc. For example, see Refs. [3, 4] for 
the full expressions. 

6. OBSERVATION NOISE 

With observation noise present the identification 
problem of the previous section becomes that of  
estimating k in the equation 

y(t) = ( Xk)(t) + n(t), t~T (13) 

where n(t), which represents the noise, is either a 
sample function from a real-valued (measurable, 
separable) stochastic process, or, in the vector case, 
is the set of sample functions 

n(t) = (nx(t) . . . . .  riM(t)}. 

We assume Eni(t ) =0,  teT, and Rij(t, z)= Eni(t)nj(z), 
i, j =  1 . . . . .  M. is continuous in the closure of T× T. 
Thus all sample functions except a set of probability 
zero belong to L2(T ) since T is of finite measure. 
The set of functions k = { k  1 . . . . .  kN} are to 
satisfy the same conditions as in section 5. 

A modification of linear regression analysis is 
given that is fitted to the determinable class concept. 
As will be seen, the condition that H, or k, belongs 
to a determinable class greatly simplifies the noise 
analysis, since it reduces the problem to an essen- 
tially finite-dimensional one. 

For both theoretical and computational purposes 
it is convenient to recast equation (13) so that the 
linear operation is self-adjoint. Thus we may look 
at either 

y = X X * b + n ,  k = X * b  (14) 

or at 

g = X*y = X * X k  + X*tl (15) 

Although the first has one advantage of being 
stated in a simpler space the second leads to a 
simpler exposition. We note that X*n is a "noise" 
in ~ = ~ 1 ~ . . .  ®£eN whose matrix covariance 
function defines a non-negative definite, self- 
adjoint, compact operator F on ~ satisfying 
E(X*n,  f ) (X*n ,  g) = (Ff, g), f ,  g~,ff. 

Let e > 0  be chosen arbitrarily small, but then 
fixed. Since k is stipulated to belong to a deter- 
minable class ~ ,  kx, the projection of k on 5ax 
must belong to a fixed totally bounded subset of 
5p.  There is then an N =N (~)  such that if 
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k~ = k~ + k~, where k; is the projection of k~ on the 
finite-dimensional linear subspace Sg~ spanned by 

. . . . .  Ilk -k;ll<" for all keN. We 
content ourselves with estimating k~, since if k~ 
were truly known we would have an e-determina- 
tion of k~, the only part of k that can be found 
without supplementary information. Now define 
the operator S on 5"~ as the restriction of X*X to 
6e .  Obviously, ff kx = k~ + k~, k ~ e ~ ,  kx~5°,O 6~, 
X*Xk~=Sk~+r, where Sk'e6°~ and reS~,eSe~. 
Let { ~  . . . . .  ~kN} be an orthonormal set of eigen- 
vectors of S - ~ F S  -~, which is a self-adjoint 
operator on 5,,-, and let {/il . . . . .  /is} be the 
corresponding eigenvalues, / i i>0,  i=1 . . . . .  N. 
Let P~ be the projection on 6°:~ and consider the 
restriction of equation (15), 

g' = Pig = Sk; + P~X* n. (16) 

Operating on equation (9) with S-~ gives 

f=S-~g'=k[, .+S-~P'X*n.  (17) 

Then, 

N N 

where the ~i are the random variables 

(S- IP;X*n, Oi). 

The ~t satisfy: 

E~i=0, 

E¢t~j=E(X*n, S-lOi)(X*n, S-lOj) 

= ( S -  ~ F S -  10~, Oj) = / i ,~ j .  

The only estimator linear i n f t h a t  gives an unbiased 
estimate of k~, is 

N 

k= ~(J; O,)O,. 
This estimate gives a mean squared error of 

N 

EIIk~-~ll ~-- E/i~. (18) 

However, depending on ~ ,  x and the noise, there 
may be obvious linear estimators that give uni- 
formly a smaller mean squared error. In particular 
it may be better to truncate the linear unbiased 
estimator ~ by deleting terms. Let ct be a subset 
of the integers 1 . . . . .  N and fl be the comple- 
mentary subset. Define 

Then 

~ , = ~ ( j ;  9,~e,. 

Since ~x is totally bounded and its projection on 
~9~ is already " th in" ,  it may be possible to ensure 
that certain l(k~, ~j)l 2, or sums of such terms, are 
less than the corresponding /i j, or sums o f / i f s .  
In such case fl should include these j 's. To sum- 
mafise: 

(I) Given e>0 ,  there exists a linear estimator/c of 
k x with bias _<e and mean-squared error 

N 

El[fc-kxl[2 < E/i~+e 2, 

where N=N(e )  and /ik are as defined above. In 
certain cases one can exhibit linear estimators with 
uniformly less mean-squared error over the deter- 
minable class. 

The (formal) special case when the observation 
noise is white is valid and yields the result 

N 

eltk'-  ~112= F, (~oz/'tk), 

where a2=El(n, r/i)l 2 for all i. 

7. STOCHASTIC SYSTEMS STATIONARY IN 
THE OBSERVATION TIME 

This section consists of a slight elaboration on 
the observation that if the kernels of equations of 
the form of  equation (l l) are stochastic, then taking 
second moments of these equations yields new 
equations of the same general form, of twice the 
degree, with deterministic kernels. The concept of 
determinable classes can be applied in a statistical 
sense to such stochastic systems by applying it in 
the usual way to the related deterministic systems 
formally described by the second moment equa- 
tions. The chief reason for suggesting this approach 
is that it provides a framework for studying the 
identification, in some sense at least, of  a class of 
time-varying systems. In general, the identification 
of time-varying systems is possible only if the 
systems are known to have special properties, and 
the definition that follows prescribes one special 
property sufficiently restrictive to at least open up 
the possibility o f  stochastic identification. 

A system describable by equation (1 l) is said to 
be observation-time stationary (ots) if the fourth 
moments of all the kernels k,(t, ul, . . . ,  u,) exist 
and are bounded for all values of the variables 
and if Ek,(t+r, ul . . . . .  u,)km(t, u~ . . . . .  u ' )  
--F,, ,(r;  ul . . . . .  un; u~ . . . . .  u~,) n, m =0,  1 . . . . .  N, 
where each F,m depends on observation times only 
through their difference. The F.,~ are bounded for 
all values of their arguments, afortiori, by the 
assumption about fourth moments. A practical 
example of a linear ots system is given by the 
scattering of electromagnetic waves from a volume 
containing a great many randomly moving charged 
particles where such parameters as the number and 
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velocity distribution of the particles are kept 
constant. Another possible example is given by 
human operator problems, as discussed previously. 

Consider ors stochastic systems representable by 
equation (11) with real-valued inputs and outputs, 
with the following additional constraints on the 
stochastic kernels: (i) k,( t ,  u p . . . ,  u , )=0  with 
probability one whenever [u~[ > c, i=  1 . . . .  , n; 
n =  1 . . . .  , N (finite memory and anticipation). 
(ii) F0o(~ ) is known, and Fo,(Z; u l , . . . ,  u , )=0,  
n = l  . . . . .  N. (fii) Ek,( t ,  Un . . . . .  u , )=0,  
n = 0, 1 , . . . ,  N. Condition (ii) is imposed because 
ko(t) is taken to represent observation noise; it is 
of no consequence mathematically. Condition (iii) 
is imposed for convenience; if the average values 
of the kernels are not zero one would estimate 
their average values, in a fashion analogous to the 
estimation of covariances to be discussed, and 
subtract the estimates. The basic observation 
interval, denoted by T, will be taken to be ]0, T l, 
T > 0 ,  but it is necessary to consider repeated 
experiments with successive observation intervals 
of length T. The input signal x will belong to 
L2(A ) where A is an interval [ - c - b ,  T + c + b ]  for 
some b > 0. 

Now let %, 0 < x o < b ,  be fixed and let d=zo+C.  
Then, for any T satisfying M <%" 

y(t + ~ )  - -  ko(t + z) + .= ~.J - ~  

u ,  . . . . .  

d -  c 

• . .  x ( t + ~ - u ~ ) d u l . . ,  du,, t~T, 

f a k , ( t+T;v~+z ,  o,+ z )x( t - -v l )  . . o  . o . ,  

- - d  

. . .  x ( t - v . )dv~  . . . do..  

Taking the expected value of y(t)y(t + z) yields 

f Ey(t)y(t  + ~) = 1" oo(¢) + p = 1 d - d ' ' "  - a 

. . . .  o . + , , , . ,  . . . . .  %)] 

x(t-vO.. ,  x(t-t, pdv~ . . .  dr,,. (19) 

We put z , ( t )=Ey( t ) y ( t+~) - roo(Z)  (recall that 
Foo(~) is assumed to be known), and 

~p, ~(01 . . . . .  /)p) 

P 
= Y~ r. .~_~(~;  v ~ + ~  . . . . .  v , + ~ ;  v . + ~ , . . . ,  v p .  

Then equation (19) becomes: 

f z,(t) . . . .  v , ) x ( t - v , )  
p = l J - a  -a )~p' ~(vl . . . . .  

. . .  x ( t - v . ) d v l  . . .  d r . .  (20) 

Equation (20) formally describes unknown, time- 
invariant systems of the kind discussed in section 5, 
but with the unknown systems represented by the 
families of  kernels ?~= {yl ,~ . . . .  , ~N,~}. Of  course 
the interpretation is quite different; since z,(t) 
cannot be measured directly but can only be 
estimated statistically from the results of repeated 
measurements, the kernels ~v., can at best only be 
estimated statistically. Note that the conditions 
imposed are more than sufficient to guarantee that 
? ~ # 6 = L a ~ @ . . .  e l a  N. 

We shall say that a class ~ of unknown ots 
stochastic systems each representable by an 
equation of the form of equation (11) is second- 
order stochastically 8-determinable (To) if the fourth 
moments of the k,(t ,  u p . . . ,  u,) are uniformly 
bounded for all k ~ ,  if all kn(t, ul, . . . ,  u,) are 
independent of km(t', u 1, • • •,  urn) for] t -  t l  I > a > T 
+ 2 c + 2 b ,  and if for each z, lz [ <z  o, the correspond- 
ing class of (deterministic) systems formally 
described by equation (20) is an 8-determinable 
class. Then, 

(J) If  ~ is such a class of stochastic systems, given 
8>0,  there exists K=K(8) such that if K in- 
dependent measurements are made 7,, ]~1 <z0, can 
be determined, with probability greater than 1 -  8, 
to within 8 in norm. 

Proof. Let xsL2(A)  give an 8/2 determination 
of Y,. With this x, let p(t, t +z)  = Ey(t)y(t +~). 
Suppose that measurements are repeated with 
replicas of x starting at 0, A, 2A, etc., where 
A > T+ 2c + 2b so that the outputs y in any pair of  
observation intervals are independent. Then 

11 K h - - - i  -=7.k E y(t + kA)y(t  + ~ + k A ) - p ( t ,  t +~).2 I E 
I 

= l v a r l y ( t ) Y (  t + x) l " (21) 

The assumptions of uniformly bounded fourth 
moments, finite memory and anticipation, and the 
integrability of x 2 yield the fact, after an obvious 
calculation, that varlY(t)y(t+z) I exists, and in fact 
is uniformly bounded for all z and all ke~ .  Hence 

t'rl 1 r 
lim E /  I-- E y ( t + k A ) y ( t + ~ + k A )  
x-,co Jo lKk=l  

- p ( t ,  t+~) lZdt=0 

uniformly for all keD, and 

am slle.,-z.tl--0 
1(-'~ QO 
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uniformly for all k e ~ ,  where the estimate ?~k ns 
given by 

- , k -  -~ ~ y(t  + kA)y( t  + r + kA)--  F,,o(r ) . 
k=l  

Since the mapping  from ~?JcLz(T  ) into ~ that 
gives the estimate o f  7~ is uniformly cont inuous on 
the image of  ~ ,  by the definition of  an e-deter- 
minable class, the conclusion follows that for K 
sufficiently large ~,~ can be used in a determination 
of  7, with the stated accuracy. 

Evidently, except where the polynomial  integral 
operators are homogeneous,  the individual co- 
variances F,,,  of  the kernels cannot  be estimated; 
however, this is of  no concern since only the y, are 
required to compute  output  covariances for known 
inputs. The restriction of  attention to covariances, 
as has been done, is unnecessary, al though it 
would appear  to be the only practically useful case; 
an entirely analogous discussion can be given for 
the determination of  nth moment  functions. 

8. CONCLUSIONS 

A partial theory of  the identification of  non- 
linear systems from inpu t -ou tpu t  data has been 
developed based on :  (1) the fact that quite 
generally the identification problem can be posed 
as a linear one, (2) the determinable class concept, 
and (3) representations in terms of  polynomial  
integral t ransformations,  a Volterra series. These 
ingredients have led to a unified theory covering a 
reasonably wide class o f  problems. The actual 
definition o f  determinable class is somewhat  
arbitrary, but  some such idea seems necessary to 
allow for  a systematic treatment of  approximat ion 
errors and reduction of  data to finite sets o f  
numbers. The use of  Volterra series is subject to 
some criticism on the practical grounds that it 
often leads to an unreasonably large number  of  
parameters. However,  there are both theoretical 
and practical reasons for using it. The theoretical 
reasons are that it is quite general, as pointed out 
in section 3, that  it leads to problem formulat ions 
that are linear in the parameters, as evidenced in 
section 4, and that it is well-fitted to the use of  
Hilbert Space methods.  It is in a sense the natural 
extension of  the linear integral t ransform formula- 
tion of  linear problems. It can be practically useful 
in problems that are only slightly non-linear, as in 
those mentioned involving a human operator,  or 
in problems that are exactly quadratic,  as e.g. 
many  optical filtering problems, or  the determina- 
t ion o f  the covariance o f  a linear system. However,  
it is only one representation and others may often 
be preferable. 

The treatment o f  observation noise made possible 
by restricting the unknown systems to belong to a 
determinable class is felt to  be o f  some value, 

because it replaces infinite-dimensional linear 
regression problems, which arc badly bcimvcd ,n 
the sense that the lineal" unbiased cstimator~ often 
have infinite variance, by finite-dimensional ones 
which, al though they do not yield unbiased c~,~i- 
mators to the original problem, do yield satis- 
factory estimators. 

Many systems occuring in nature are not 
repeatable, but they possess a kind ot" average 
repeatability which makes it appropriate for them 
to be modelled as observation-time-stationary 
systems. The problem of  determining covariances 
o f  such systems has been i:nbedded in the general 
identification theory so as to permit the use of  
results from that theory. 

The theory described is only a partial one 
because among  other things, it does not touch on 
iterative procedures, it does not treat the question 
of  different system representations and it does not 
concern itself with stochastic inputs. 
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R6sum6--L'article consid/~re des syst6mes de la forme y = Hx, 
off x est la grandeur d'entr6e, y est la grandeur de sortie et 
H est une transformation. Les signaux d'entr6e et de sortie 
appartiennent ~t des espaces L2, H appartient g une cat6gorie 
donn6e de transformations continues, non n6cessairement 
lin6aires. Le probl~me fondamental consiste ~ identifier H 
/k partir des mesures de x et de y. 

L'article discute la repr6sentation approch6e de certaines 
transformations H au moyen d'op6rateurs integraux poly- 
nomiaux. II passe en revue le concept de la cat6gorie deter- 
minable, qui est constamment utilis6, et quelques unes de 
ses propriet6s. Un exemple se rapportant aux probl~mes de 
l'op6rateur humain illustre l'article. Celui-ci donne une 
caract6risation structurale des cat6godes determinables bas6e 
sur les travaux de Hsieh et Balakrishnan et cette earact6risa- 
tion est ensure utilis6e comme base d'application de l'analyse 
regressive lin6aire au probl~me d'identifieation d'un H 
appartenant ~ une eat6gorie determinable en presence de 
bruit dans l'observation. Finalement, la notion de cat6gorie 
determinable est appliqu6e /tune categoric d'op6rateurs 
al~atoires et un th6or~me 616mentaire de convergence est 
donn& 
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Zusammeafasmmg--Bctrachtet werden Systeme der Form 
y=Hx, wobei x das Eingangssignal, y das Ausgangssignal 
und H e i n e  Transformation ist. Die Eingangs- und Aus- 
gangssignale geh/~ren zu L2-R~iumen, w~ihrend H zu einer 
vorgeschriebenen Klasse yon stetigen nicht notwendiger- 
weise linearen Transformation geh/Srt. Das Grundproblem 
besteht in der Identitikation von H durch Messungen von 
x und y. Die angeh~iherte Darstellung yon bestimmten Trans. 
formationen in Termen vielgliedriger Integraloperatoren 
wird diskutiert. Der Begif f  einer erfaBbaren Klasse, der 
durchweg benutzt wird, und einige ihrer Eigenschaften werden 
geprtift. Ein erl/iuterndes Beispiel in Bezug auf Nachf'tih- 
rungsprobleme mit menschlichem Operator wird dar- 
gestellt. Eine strukturelle Kennzeichnung erfaBbarer Klassen, 
die auf  Arbeiten yon Hsiek und Balakrishnan basiert, wird 
angef'tihrt und als Begriindung ftir eine Anwendung der 
linearen Regressionsanalyse auf das Problem der Identifi- 
kation eines H angefiihrt, das zu einer erfaBbaren Klasse 
geh6rt, wenn ein maBbares Rauschsignal vorhanden ist. 
SchlieBlich wird die Vorstellung einer erfaBbaren Klasse 
auf eine Klasse stochastischer Operatoren angewandt und 
ein elementares Kovergenztheorem angegeben. 

Pe3mMe---CTaTba pacCMaTpgSaeT CHCTeMId qbOpMM y=HX, 
r~Ic x gBYlHeTCg BXO~HOII KOOp]lJ~HaToi~, y flBJl~eTCg 
~hlxo]xHolt xoop~maTO~ X H ilBYI,IIeTC.q npeBpameHueM. 
Bxo~o~t  u Bmxo~og  cm'nanbi npxna~emaT z npocTpa- 
HCTaaM L2, H npm~a~ne~zHT K ]xannoMy Knaccy nen- 
pepl~BHbIX HO He O6g3~TeYfibHO-JIHHefiHblX HpcBpameHHfi. 
OCHOBHa$I 3a~a~a 3aKmoqaeTca e OHO3HaBaHHH H H 

H3MepeHHH X H y .  

CTaTb~I o6cy~aeT IIpH6J1H3HTeYIbHOe H306pa)KeHHe 
HeKoTOpblX npeapameHHR H IIpH HOMOIJ~H MHOFOqYIeHHI~IX 
HHTerpaJ'IbHbIX OlXepaTOpOB. OHa pacCMaTpHBaeT KOHI~elIT 
onpejIengeMoro Knacca, l<OTOpbfi~ rlOCTO~IHHO HCrlOYm3yeTe~, 
H HeKOTOplde H3 ero CBOi~CTB. I-lpHMep OTHOC~IIIIHI~C~I K 
npo6neMaM aenoBe,~ccgoro oncpaTopa I£nn~oCTpHpyeT 
CTaTbrO. I'Iocne~q~ ]tact cTpyKTypHOC oxapaKTepH3O~aHHe 
onpc~enseMb~x KJ~aCCOB OCHOBaHHOC Ha Tpy~lax XcHexa H 
%anaKpHmHaaa H 3TO oxapazTepH30Ba~He 3aTeM Hcnonb- 
3yeTcll KaK OCHOBa npHMeHerms YIHHeitHOFO perpeccHBHoro 
aHaJm3a K npo6neMe ono3HaBaHrm HeKOTOpOro H npPma- 
~ne)Kamero K onpe]~engeMoMy Knaccy B npHCyTCTBHH 
myMa B Ha6YI~O]leHHH. B 3aIU1K)qeHHe, KOH~eIIT Ol'lpe~[CJI~l~b- 
MOrO KYlacca HpHMeHgeTC~I K ~naccy cnyaai~HbIX onepaTopo~ 
H ]IaeTcg 3~eMeHTapHag TCOpCMa CXO~HMOCTH. 


