Normal coordinate analyses of molecules with the amide group

J. JAKEŠ and S. KRIMM*

Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor Michigan

(Received 30 December 1969)

Abstract—Normal coordinate analyses have been performed on molecules with the amide group using force constants transferred from N-methylacetamides and polyamides. The molecules involved were hexamethylenedipropionamide, N,N'-dihexyladipamide, N,N'-dihexylsebacamide, some N-alkylamides, and some C-deuterated derivatives of nylon 66. In some molecules the dependence of frequencies on torsion angles about C—C(=O) or N—C(=H₂) was studied. Dispersion curves were obtained for nylon 6 and nylon 66. The agreement between observed and calculated frequencies is good in most cases, and a complete or nearly complete assignment of infrared frequencies has been established.

INTRODUCTION

In the preceding paper [1], a force field for the amide group was derived. The goal of this paper is to apply this force field to other molecules with the amide group which were not part of the previous refinement. For these we have selected N-alkylamides and diamides, whose infrared spectra were measured by KESSLER [2], two C-deuterated nylon 66 with data from HEIDEMANN [3], and the γ form of nylon 6. In some molecules the dependence of frequencies on torsion angles was studied, and dispersion curves for nylon 6 and 66 were obtained. The agreement between calculated and experimental frequencies is generally good, although some features in the spectra still remained unexplained.

STRUCTURE OF MOLECULES

While the structure of nylons has been thoroughly studied and well established by X-ray diffraction, for example by BUNN *et al.* [4], KINOSHITA [5], and BRADBURY and ELLIOT [6], in the other molecules with the amide group studied here we were able to find the complete X-ray structure in the literature only for hexamethylenedipropionamide [7]. This determination shows the backbone to be nearly planar with only a very small deviation from planarity. In the other molecules we must rely on the infrared spectra for a structure determination. In view of the presence of a strong 1420' cm⁻¹ band in the spectra of N,N'-dihexyladipamide and N,N'-dihexylsebacamide, we assumed their structures to be planar or nearly planar like that of hexamethylenedipropionamide. We do not know anything about the structures of N-ethylacetamide,

^{*} Permanent address: Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia.

^[1] J. JAKEŠ and S. KRIMM, Spectrochim. Acta 27A, 19 (1971).

^[2] H. B. KESSLER, Ph.D. Thesis, University of Michigan (1952).

^[3] G. HEIDEMANN and H. ZAHN, Makromol. Chem. 62, 123 (1963).

^[4] D. R. HOLMES, C. W. BUNN and D. J. SMITH, J. Polymer Sci. 17, 159 (1955).

^[5] Y. KINOSHITA, Makromol. Chem. 33, 1 (1959); 38, 21 (1959).

^[6] E. M. BRADBURY, L. BROWN, A. ELLIOTT and D. A. D. PARRY, Polymer 6, 465 (1965).

^[7] L. H. JENSEN, S. KRIMM, R. G. PARRISH and D. L. WOOD, Acta Cryst. 10, 528 (1957).

N-propylacetamide, and N-butylacetamide. Therefore we performed frequency calculations for these molecules as a function of the torsion angle about the NH--- CH_2 bond. This dependence turned out to be very small in the region above 700 cm⁻¹. where the only data are available, and therefore the calculations were of little help for structure determinations. Some hints showing the probability of the presence of more than one conformation were found in the region below 1000 cm^{-1} . In the N-alkylpropionamides, the absence of a 1420 cm^{-1} band shows that the torsion angle about the CH_2 —CO bond should differ from the *trans* angle. We calculated the complete dependence of frequencies on this angle for N-methylpropionamide. For N-ethylpropionamide, N-propylpropionamide and N-butylpropionamide, we used the values (0°, 0°), (45°, -45°), (60°, -60°), (45°, 45°) and (60°, 60°) for the torsion angles about the CH2-CO and NH-CH2 bonds. The first pair of angles corresponds to the planar form and the next two to a structure similar to that of the γ -form of nylon 6 (the actual torsion angle should lie between 45° and 60°). The last two were added in order to learn something about the interaction between the two torsions. The same values of the torsion angles, omitting the last two, were used in N-nonylcapramide and in the γ -form of nylon 6.

The rotations about the CO-CH₂ and NH-CH₂ bonds introduces the problem of the dependence of cross force constants between the A-B-C and B-C-D angle coordinates on the torsion angle about the B-C bond. We felt that it was not worth while assigning an independent value of this cross term to each torsional angle, and instead we used for this term an interpolation formula, $f_{ij} = a + b \cos \phi$. Instead of introducing the constants a and b, we introduced the values of f_{ii} for 60° and 180° (if the conformation in the planar form was trans or gauche) or for 0° and 120° (in the case of cis or skew conformations). For the interaction between the X--C--C angle and the CO out-of-plane bend we used the formula $c\sin \phi$, where ϕ is the X-C-C-N dihedral angle; a similar relation was used for the interaction between the X--C--N. angle and the NH out-of-plane bend. This introduces a total of 10 new force constants five for each rotated bond. Four of these were determined from N-methylacetamide (e.g. cis HCC with CCO). We do not have any information about the values of the remaining six constants, and these were assigned zero values. This leads to some uncertainty in the calculated frequencies for nonplanar forms, and probably some discrepancies between calculated and experimental frequencies may be explained in such terms.

RESULTS AND DISCUSSION

γ -form of nylon 6

The γ -form of nylon 6 may be obtained from the planar form by rotation about the CO—CH₂ and NH—CH₂ bonds by the same angle but in opposite directions [5, 6]. The value of the angle is a bit below 60°, and we chose for the calculation the values 45° and 60° in order to see how sensitive the calculated frequencies are to small changes of this angle. The polymer chain is generated from the repeating unit by the operation C_{2s} , the unit cell contains two repeating units, and the factor group of the chain is C_2 . Therefore, each mode of the monomer unit is split into two infrared active modes, one of species A, polarized parallel to the chain axis, and the other of

			y-nylon 6		······································			
Calo.								
	$\phi = \phi$	45°	, φ=	= 60°	A			
Exp. [8, 9]	A	B	A	B	Assignment			
1643	1653	1653	1657	1657	Amide I			
1567	1555	1555	1555	1555	Amide II			
	(1477	1478	1477	1477	<i>B</i> 5			
1463	1473	1474	1473	1473	<i>B</i> 4			
	(1461	1459	1460	1459	B ₃			
1439	1441	1442	1439	1440	B ₂			
	1420	1420	1420	1420	<u>B</u> 1			
	1382	1385	1383	1384	W ₄			
1369	1369	1374	1370	1375	Wa			
	1365	1348	1364	1348	Amide III			
1000	1307	1302	1308	1302	$\frac{T_{2}}{\pi}$			
1300	1300	1300	1300	1304	21 W			
1000	1290	1320	1290	1021	^W a			
1200	1280	12/8	12/1	12/0	28			
1400	1924	1201	1200	1200	T 2			
1018	1904	1917	1201	1978	TH W			
1170	1180	1176	1186	1176	T_{-}			
1120	1134	1126	1136	1132	- 8 S-			
1140	(1088	1081	1082	1078	B_{-}			
1078	1071	1086	1067	1082				
	1064	1064	1064	1064	s.			
	1046	1025	1046	1025	Š.			
1000	1002	1013	998	1007	8			
976	961	937	963	924	R,			
914	925	969	922	971	CHCO stretch			
	838	840	830	839	- R,			
777	765	776	764	782	R ₂			
	744	735	752	738	Amide IV			
730	722	725	721	724	R ₁			
711	695	693	692	691	Amide V			
623	619	605	630	617	Amide VI			
519	516	511	514	508				
439	449	434	446	438				
	377	336	384	338				
	307	284	309	296				
	248	209	208	209				
	133	194	137	198	Skeletal Dend			
	123	104	123	140	and torsion			
	60 88	124	71 71	120				
	46	85	45	69				
	38	61	38	60				
	21	39	21	38				
		N-deu	terated v-nvlo	on 6				
			Cale.					
	φ =	= 45°	$\phi =$	60°				
Exp. [9]	A	B	A	B	Assignment			
1636	1639	1639	1643	1643	Amide I			
1476	1488	1490	1489	1491	Amide II			
	1476	1476	1475	1475	B.			
1467	1471	1470	1472	1469	B,			
	1458	1459	1456	1459	B			
1436	1440	1440	1438	1438	B_2			
	1420	1420	1420	1420	B_1^-			
1373	<i>{</i> 1376	1376	1376	1376	W _s			
2010	L1368	1372	1369	1372	W			

Table 1. Experimental and calculated frequencies of γ -nylon 6, normal and N-deuterated, as a function of CH₂—CO and NH—CH₂ torsion angles

		N-deuter	ated y-nylon 6	(cont.)	
	,	Ce	do.	60 0	
10.mm 10.1	φ=	40° 10	γ •	= 60°	1
wrb. [a]	A	<u></u>	А		Assignment
	1339	1335	1338	1336	W,
1209	£1305	1305	1305	1305	T_1
1002	L1303	1302	1302	1302	T_{s}
1094	(1282	1283	1284	1282	W.
1204	L1279	1275	1278	1274	T_s
1237	1233	1239	1230	1241	$T_{\mathbf{A}}$
1220	1218	1216	1217	1217	W,
1171	1184	1175	1193	1177	T_{\bullet}
1133	1133	1140	1135	1143	8,
1070	(1091	1087	1085	1083	<i>s</i> .
1079	£1080	1081	1073	1076	R.
	1064	1064	1064	1064	<i>s</i> .
	1053	1033	1053	1032	8.
1000	997	1012	995	1006	<i>s</i> .
974	984	992	983	993	Amide III
	956	959	957	961	<i>R</i> .
913	920	929	917	917	CH.—CO
					stretch
831	835	836	828	837	R_{*}
771	759	767	759	769	B
	734	727	738	730	Amide IV
733	721	723	720	723	R,
633	639		648		Amide VI
611		624		633	
527	522	512	524	513	Amide V
	493	498	488	496\	
441	445	433	444	437	
	375	336	383	338	
	306	281	309	293	
	248	257	267	266	
	133	193	136	198	Skeletal bend
	123	153	123	147)	and torsion
	88	124	93	123	
	65	100	71	101	
	46	65	45	62	
	38	60	38	60	
	21	38	21	37)	
		•••			

species *B*, polarized perpendicular to the chain axis. The calculated and experimental [8, 9] frequencies of ordinary and N-deuterated nylon 6 are listed in Table 1 together with assignments made on the basis of eigenvectors. These assignments may become ambiguous for individual modes which are interacting strongly, but in any case each frequency contains a large contribution from the mode to which it was assigned. The symbols *B*, *W*, *T*, *R* and *S* refer to the CH₂ bending, wagging, twisting, rocking and C—C stretching modes in the polymethylene chain, respectively, and each bears the sequence index of the chain progression. From this table the frequency of the amide V band is seen to be almost 20 cm⁻¹ off its calculated value. This frequency is sensitive to some of the force constants which were neglected (see above), and moreover it may be influenced by interaction with the amide IV mode, whose position in polyamides is uncertain. The calculated frequency at 1420 cm⁻¹ is seen to be quite insensitive to the rotation angle. This is in contrast with its absence or shift to 1440 cm⁻¹ in the spectrum of the γ -form. Since another frequency

^[8] B. SCHNEIDER, P. SCHMIDT and O. WICHTERLE, Coll. Czech. Chem. Commun. 27, 1749 (1962).

^[9] P. SCHMIDT and B. SCHNEIDER, Coll. Czech. Chem. Commun. 28, 2685 (1963).

is calculated at 1440 cm⁻¹, we cannot decide if this frequency is greatly reduced in intensity and hidden on the side of the 1440 cm⁻¹ band, or is simply shifted to 1440 cm⁻¹. The fact that the corresponding eigenvector is also quite insensitive to the rotation angle does not seem to support the hypothesis of great reduction of intensity after rotation. All other features of the spectra except the two mentioned above are explained quite well by the calculation, and the calculated and experimental frequencies are very close.

To follow the dependence of frequencies on rotation angle more closely, we calculated the complete dependence of the frequencies of ordinary (nondeuterated) nylon 6 on the angles about the CO---CH₂ and NH---CH₂ bonds. We let these angles change from the standard all-*trans* values by the same amount in opposite directions in the interval from 0° to 180° in steps of 15°, and also in the same direction in steps of 30° (a change of sign in both angles does not affect the frequencies) to get some information about interaction of these two rotations. With these rotation angles, frequencies were calculated for phase differences of 0° and 180° in the polymer (note that for rotation in the same direction the 180° modes are not unit cell modes). The plots of the dependence of each frequency on the rotation angles are shown in Fig. 1.

Fig. 1. The dependence of the frequencies of nylon 6 on the torsion angles around the CO—CH₂ and CH₂—NH bonds. Both torsion angles are changed by the same value, either in the same direction, or in opposite directions. The dependence is shown for phase differences between adjacent monomer units of $\phi = 0^{\circ}$ and 180°. (a) rotation in opposite direction, $\phi = 0^{\circ}$; (b) rotation in opposite direction, $\phi = 180^{\circ}$; (c) rotation in the same direction, $\phi = 0^{\circ}$; (d) rotation in the same direction, $\phi = 180^{\circ}$.

Diamides

Spectra of three of the diamides, namely hexamethylenedipropionamide, N,N'dihexyladipamide, and N,N'-dihexylsebacamide, were measured by KESSLER [2]. Our calculated infrared active frequencies for these molecules are compared with the experimental values in Table 2. For the first molecule the structure is well established by X-ray analysis [7]. For the last two, no such structure analysis is available; however, polarized spectra of long, thin single crystals have been obtained [2]. An examination of the dichroism of bands in these spectra shows that out-of-plane modes (A_u) are predominantly perpendicular to the plane of cleavage (which is parallel to the long dimension of the crystal and perpendicular to the surface planes which define the thin dimension), while in-plane modes can be parallel or perpendicular to this plane.

Hexamethylenedipropionamide				N,N'-dihexyladipamide				
Exp. [2]	B _u	A.	Assignment	Exp.[2]	Bu	мо. А _н	Assignment	
1623	1644		Amide I	1634	1645		Amide I	
1534	1556		Amide II	1610			A	
1479	1478		В. В.	$\frac{1560}{1530}$	1556		Amide II	
1464	1461	1458	CH, as bend	1477	1479		$B_{\rm s}({\rm NH})$	
1443	1445		В.		(1474		$B_{\bullet}(\rm NH)$	
1418	1427		CH _a (CO) bend	1466	{ 1472		$B_{\star}(CO)$	
	1374		Ws		1471		$B_{n}(\mathrm{NH})$	
	1371		CH _s sym bend		1460	1458	CH, as bend	
1362	1362		Amide III	1440	1452		$B_{\rm q}(\rm NH)$	
	1332		W,	1449	1442		$B_1(\mathrm{NH})$	
		1305	T_{1}	1414	1422		$B_{\bullet}(CO)$	
1272		1269	CH _a (CO) twist	1385	1381		$\tilde{W_{s}}(NH)$	
1259		1260		1970	(1378		Amide III	
1244	1261		CH _s (CO) wag	1370	1373		CH, sym bend	
1215	1217		W ₁		1366		W ₄ (NH)	
1176		1178	T	1340	1343		$W_{3}(NH)$	
1103	1111		S_2			(1305	$T_1(NH)$	
		1073	$R_2(CO)$	1302		{1304	$T_2(NH)$	
1064	1067		S_{\bullet}			1302	$T_{\mathbf{g}}(CO)$	
1047	1058		CH ₃ rock	1294	1296		$W_{g}(NH)$	
1029	1038		S_{\bullet}	1287		1285	$T_{3}(\mathbf{NH})$	
996		993	Rs	1271	1278		W _s (CO)	
984	990		CH ₂ -CH ₂ stretch	1253		1248	$T_{4}(NH)$	
898	897		CH ₂ -CO stretch	1233	1231		$W_1(NH)$	
811		808	R ₁ (CO)	1200⊥		1201	$T_{5}(\mathbf{NH})$	
796		797	R ₃	1193	1200		W ₁ (CO)	
735		721	R1	1156		1158	$R_6(NH)$	
687		697	Amide V	1138	1134		$S_1(NH)$	
	683		Amide IV	1133		1144	$T_4(CO)$	
		580	Amide VI	1086	1102		$S_2(NH)$	
	536)		1065	1067		$S_6(\rm NH)$	
	391	}	Skeletal band	1052	1056		$S_{5}(\mathbf{NH})$	
	320	1	Daciobal Dona	10021	(1051		$S_{3}(\rm NH)$	
	275	/		1028⊥	1031		S ₂ (CO)	
		224	Amide VII		999		S_4 (NH)	
		187	CH _a torsion	991		995	$R_{5}(\rm NH)$	
	156)		936	944		C-CO stretch	
		126		907		904	$R_{3}(CO)$	
		84	Skeletal bend	890	{ ⁸⁹¹		CH ₃ rock	
		50	and torsion		ι	890	K ₄ (NH)	
	29			800	- 10	798	К ₈ (NH)	
		28		749	749	= 10	Amide IV	
		12)				742	.К ₂ (NH)	

Table 2. Experimental and calculated frequencies of some diamides

	N,N'-dihe	xyladipar	nide (cont.)		N,N'-d	ihexylseb	acamide (cont.)
Exp. [2]	B _u	A _u	Assignment	Exp. [2]	B _u	A _u	Assignment
742		741	B , (CO)			1257	T _e (CO)
726 1		721	$R_{\star}(\mathrm{NH})$	1245		1248	T, (NH)
683 1		695	Amide V	1239	1251		W (CO)
		582	Amide VI	1225	1229		W, (NH)
	524	<u>۱</u>		1200		1201	$T_{s}(\mathbf{NH})$
	441			1190二	1191		$W_1(CO)$
	420		SL-11 L 3	1159		1158	$R_6(\rm NH)$
	363	1	Skeletai Della	1135	1134		$S_1(NH)$
	292			1119		1120	$\bar{T_{6}}(CO)$
	218)		1093	1104		$S_{2}(\mathbf{NH})$
		215	Amide VII	1065	1069		$S_6(CO)$
		211	CH ₂ torsion	10001	1066 ($S_{6}(\mathbf{NH})$
	166	۱		1054	1056		$S_5(NH)$
		128		100-1	1051		$S_3(\rm NH)$
		117		1032	1037		$S_4(CO)$
		108		1006	1013		$S_{2}(CO)$
	73		Skeletal hend		(1001		$S_4(NH)$
		69 >	and torsion	992		997	$R_{7}(CO)$
		54		<u>-</u>		(995	$R_{5}(NH)$
		32		940	947		C
		24		890	892		CH ₃ rock
	15			074	l	890	$R_4(NH)$
		6/		804_		803	
	NT NY/ 121 .	11		- 800		798	<u>в</u> (ПД)
	N,N -dine	хуцераса	mide	755		758	
17mm [9]	D Calc	, ,	Assignment	740_L	721	142	Amida IV
\mathbf{Exp} . $[\mathbf{z}]$	Du	A 8	Assignment	796 1	191	791	R (NH)
16311)				720		790	$R_1(CO)$
1608	1644		Amide I	680 1		898	Amide V
1534	1556		Amide II	*** T		581	Amide VI
1001	/1479		B.(NH)		550	<u> </u>	
	1475		B.(CO)		481	1	
1468	1474		$B_{\star}(\mathrm{NH})$		440		
	1472		B.(CO)		402	}	Skeletal bend
	(1471		$B_{s}(\rm NH)$		336	1	
	`1460	1458	CH, as bend		298)	
1451	∫1456		$B_4(CO)$			215	Amide VII
1401	1452		$B_2(\mathrm{NH})$			211	CH ₃ torsion
1437	1442		$B_1(NH)$		199)	
1418	1420		$B_{g}(CO)$		189	1	
	(1385		Amide III			139	
1374	1380		$W_{5}(\mathbf{NH})$		126		
1370	1373		CH ₃ sym bend			125	
	1370		$W_4(\mathbf{NH})$			114	
1359	1358		$W_7(CO)$			102	Skeletal bend
1339	1342	1000	W ₅ (NH)			78	and torsion
1311]		1308	$T_{\mathbf{g}}(\mathbf{UU})$			56	
		1305	$T_1(\mathbf{NH})$		53	I	
		1304	$T_{2}(\mathbf{NH})$			46	
	1000	1302	$T_4(00)$			25	
	1302 (1000				11	17	
1287 🔟	1200	1985	7 (NH)		11	ا ہ	
	1	-200	- 8(-1-)			/	

Table 2 (cont.)

: polarized parallel to cleavage plane.

 \perp : polarized perpendicular to cleavage plane.

While this does not fully define the structure, the overall pattern of polarizations suggests that the chain axes are essentially perpendicular to the plane of the thin crystal, with the $C=0 \cdots H$ —N bonds being oriented predominantly parallel to the long dimension of the crystal.

The observed bands are reproduced quite well by the present normal coordinate analysis. We should, however, note some problems. In hexamethylenedipropionamide the $CH_2(CO)$ wagging frequency is off by more than 15 cm⁻¹, probably due to the fact that no molecule with a CH₃CH₂CO-group was used in the force field refinement. Several deviations of about 10 cm⁻¹ are also observed in the C-C stretching region. Similar deviations occur in the spectra of the other two molecules. For the latter, the amide V band is completely absent in the parallel polarization. but the CH₂ rocking bands still possess some intensity in this polarization. This may be due to the fact that the amide group is rotated slightly with respect to the polymethylene chain so that the transition moments of the amide V and CH₂ rocking modes are not exactly parallel. A serious disagreement with the predicted polarization is the parallel polarization of the $R_{e}(NH)$ bands at 1156 and 1159 cm⁻¹ in N.N'-dihexyladipamide and N.N'-dihexylsebacamide respectively. A possible explanation for this may be by analogy with the 1176 cm⁻¹ T_5 mode of nylon 6, which is known to be strongly enhanced in intensity by rotation to the γ form. If a small rotation occurs, which is probably the case, the 1156 and 1159 cm⁻¹ bands may obtain some intensity from weak interaction with in-plane modes having parallel polarization.

A study of the polarized spectra of two sequences of diamides, namely $(CH_3)_n CONH(CH_2)_m)_2$ and $(CH_3(CH_2)_nNHCO(CH_2)_m)_2$ with varying *m* and *n*, would be of great value in helping to remove the remaining uncertainties in the force field.

N-alkylamides

The infrared spectra of some N-alkylamides, namely N-methyl, N-ethyl, Npropyl and N-butyl derivatives of acetamide and propionamide, and of N-nonylcapramide, were obtained by KESSLEB [2]. We calculated the dependence of vibrational frequencies on the torsion angle about the CH2-NH bond for N-ethyl, N-propyl and N-butyl acetamide, and on the torsion angle about the CH_2 —CO bond for N-methylpropionamide. The plots of these dependencies are shown in Fig. 2. For other derivatives of propionamide two torsions should be considered. We restricted ourselves to the planar form and to rotations about both bonds by the same angle of 45° and 60° in opposite directions (similar to that in the γ form of nylon 6) and in the same direction. In the N-nonylcapramide we omitted the rotation in the same direction. The experimental frequencies and those calculated for the planar form and for torsion angles of 45° and 60° are listed in Table 3. An examination of this table shows that most of the infrared bands are well understood on the basis of the normal coordinate treatment. The difficulty with the $CH_2(CO)$ bending mode met in the γ form of nylon 6 still persists in the propionamide and capramide derivatives, and the same is true of the amide V band in N-nonylcapramide. The main difficulty is in assigning the 1116 and 1119 cm⁻¹ bands in N-ethylacetamide and N-ethylpropionamide respectively. Due to this fact, our confidence in the calculated frequencies of the propyl and butyl derivatives in the 1100 cm^{-1} region should also be lower. The cause for this may be the neglecting of the six force constants in the rotated isomers (see above), or the uncertainty in the force field due to ill-conditioning. In the region below 1000 cm⁻¹ some hints of the possible existence of more than one conformer may be found in the presence of additional observed bands. In the liquid propyl

Fig. 2. The dependence of the frequencies on the torsion angle for N-alkylamides. The dependence on the angle around the NH—CH₂ bond is shown in cases (a)–(c) and on the angle around the CO—CH₂ bond in case (d). (a) N-ethylacetamide; (b) N-propylacetamide; (c) N-butylacetamide; (d) N-methylpropionamide.

			N-ethylaceta	mide	
	4 -	° C	alc.		
Exp. [2]	$\varphi = A'$	A"	$\phi=45^{\circ}$	$\phi=60^{\circ}$	Assignment
1653	1664		1664	1663	Amide I
1555	1557		1555	1555	Amide II
1480	1472		1469	1467	CH ₂ bend
	(1458	1458	1458	$CH_{a}(CH_{a})$ as bend op*
1460	{ 1456		1454	1453	$CH_{s}(-CH_{s})$ as bend ip*
	(1452	1452	1452	CH ₃ (-CO) as bend op
1439	1443		1444	1444	CH ₂ (—CO) as bend ip
1368	∫1382		1382	1383	CH ₃ (—CO) sym bend
1000	L1373		1373	1373	$CH_3(CH_2)$ sym bend
1351	1357		1357	1358	CH ₂ wag
1292	1305		1306	1306	Amide III
		1244	1243	1242	CH ₂ twist
1151	1164		1159	1161	N-CH ₂ stretch
1116		1149	1168	1171	R ₂
1073	1085		1061	1050	CH ₃ —CH ₃ stretch
1041		1055	1055	1056	CH ₈ (CO) rock op
1002	1004		1003	1002	CH ₃ (—CO) rock ip
947			.		
935	948		942	939	CH ₃ -CO stretch
892	902		896	892	CH ₂ (CH ₂) rock ip
800		808	803	799	R ₁
775					
720	000	725	726	727	Amide V
620	626	-00	623	622	Amide IV
		288	597	599	Amide VI
475	440		451	459	01 h-1-1 1
427	0.40		074		Skeletal bend
	359	040	374	382)	OTT OTT transfer
	105	240	192	192	Chalatal hand
	190	1.61	2/4	207	Skeletar Denu
		144	140	104	CH CO terrior
		61	59	58	N-CH ₂ torsion
		~	N-propylaceta	mide	
	ሰ (۲ ۵	ic.		
Exp. [2]	A'	A"		$\phi = 60^{\circ}$	Assignment
1656	1664	-		1663	Amide I
1555	1557			1555	Amide II
	1479			1475	B ₂
	(1465			1463	$CH_{3}(CH_{3})$ as bend ip
	J	1458		1458	CH ₃ (-CH ₃) as bend op
1460	1	1452		1452	CH ₃ (CO) as bend op
	(1450			1447	
1437	1439			1437	$CH_{s}(-CO)$ as bend ip
1366	{1383			1384	CH _s (CO) sym bend
	(1378			1379	UH ₃ (UH ₂) sym bend
	1366			1000	¹⁷ 2
1000	1322			1022	Amido TIT
1289	1295	1980		1287	
1920		1408		1991	-1 T
1200		1434 1159		1170	- 1 g P
1140	1141	1100		1140	N_CH stretch
11315	1141			1110	AT OIL BUILDUIL
1094	1111			1091	CH ₂ -CH ₂ stretch
1080					
1038		1055		1056	$CH_{s}(-CO)$ rock op

Table 3. Experimental and calculated frequencies of some N-alkylamides

		N-propyls Cal	cetamide (cont.) c.	
Exp. [2]	A' '	A "	$\phi = 60^{\circ}$	Assignment
1024	1039		1037	CHCH_ stretch
980	991		991	CH _a (CO) rock ip
947	965		945	CH _a (-CH _a) rock ip
			872	R
889	885	894	887	CH_CO stretch
870				-
847				
775				
763				
743		745	745	R ₁
727		725	727	Amide V
	629		631	Amide IV
		596	598	Amide VI
	489		498)	
	331		355	Skeletal bend
	323		318)	
		217	207	CH_CH_torsion
		202	111	Amide VII
		144	144	CH _a -CO torsion
	138		271	Skeletal bend
		75	74	CH ₂ -CH ₂ torsion
		55	52	N-CH, torsion

N-butylacetamide Calc.

	d	00		
Exp. [2]	A' =	A"	$\phi=60^\circ$	Assignment
1653	1664		1663	Amide I
1555	1557		1555	Amide II
	1479		1477	B_{\pm}
	(1471		1470	$B_{\mathbf{s}}$
		1458	1458	CH _a (CH _a) as bend op
1464	{ 1458		1456	CH _a (CH _a) as bend ip
		1452	1452	CH ₍ (CO) as bend op
	1450		1447	В,
1439	1439		1438	CH _a (CO) as bend ip
1000	(1381		1383	CH.(CO) sym bend
1365	{1376		1376	CH. (CH.) sym bend
	1371		1372	W
	1353		1354	W.
1292	1309		1310	Amide III
•		1302	1301	<i>T</i> ,
		1275	1275	T_{\bullet}^{\dagger}
1259	1264		1265	W.
1225		1218	1219	T ,
1148)	(1156	1170	R_{4}^{1}
1133	1142		1141	<i>s</i> .
1117	11112		1099	S.
1096	L L			•
	1063		1059	S.
1038		1055	1054	CH. (CO) rock op
	1022		1014	S.
998)	(992		985	CH. (CO) rock ip
984 }	962		916	CHCO stretch
961)		944	968	<i>R</i> .

		N-butylac	etamide (cont.)	
	Cal	c.		
Ехр. [2]	$\phi = A'$	0° 	$\phi = 60^{\circ}$	Assignment
				······································
886	880		881	CH ₂ (CH ₂) rock ip
		800	797	R_{2}
736		729	730	R_1^-
725		725	726	Amide V
620	641		637	Amide IV
		596	599	Amide VII
515				
500	487		489)	
450	423		436	Skeletal bend
	297		318	
	249		282)	
		218	210	CH _a —CH _a torsion
		202	91	Amide VII
		145	144	CH _a CO torsion
		106	104	CH ₂ -CH ₂ torsion
	104		225	Skeletal bend
		70	69	CH ₂ —CH ₂ torsion
		40	38	CH ₂ —N torsion
		N-met	hylpropionamide	

Exp. [2]	A' '	A"	$\phi = 45^{\circ}$	$\phi = 60^{\circ}$	Assignment
1653	1644		1652	1657	Amide I
1560	1555		1557	1557	Amide II
	(1465	1465	1465	CH _s (NH) as bend op
	1464		1464	1463	CH _s (-NH) as bend ip
1464	ł	1458	1458	1458	CH ₂ (CH ₂) as bend op
	1458		1458	1459	$CH_{s}(-CH_{s})$ as bend ip
	1427		1427	1427	CH ₂ bend
1410	`1416		1416	1416	CH _a (—NH) sym bend
1949	(1371		1372	1372	CH _a (CH _a) sym bend
1308	1356		1354	1352	Amide III
1272	•	1269	1277	1279	CH, twist
1236	1255		1243	1240	CH, wag
1160	1158		1159	1160	CH. (-NH) rock ip
1100	l l	1133	1133	1133	CH _s (NH) rock op
1109	1089		1103	1107	CHNH stretch
1068	•	1072	1073	1074	R_{2}
1045	1052		1038	1034	CH ₂ (CH ₂) rock ip
971	979		977	975	CH_CH_stretch
867	874		874	873	CH ₉ —CO stretch
805		808	800	792	- R ₁
699		699	722	672	Amide V
	673		672	738	Amide IV
		581	594	599	Amide VI
	438		431	429)	
	326		315	307 }	Skeletal bend
	223		266	281)	
		217	194	191	CH ₃ CH ₂ torsion
		177	171	168	Amide VII
		139	139	139	CH _s -NH torsion
		58	58	58	CH.—CO torsion

Table	3	(cont.)
1,01010	•	(00/00-)

	N-ethylpropionamide								
			Onn	osite	Cale. Sa	me			
	ф =	0°	dire	stion	direc	tion			
Exp. [2]	A' ^Ψ	Ă″	$\phi = 45^{\circ}$	60°	$\phi = 45^{\circ}$	60°	Assignment		
1650	1644		1653	1657	1653	1657	Amide I		
1550	1556		1555	1555	1555	1557	Amide II		
	(1472		1469	1467	1469	1467	CH ₂ (NH) bend		
	1460		1460	1460	1460	1460	CH ₃ (CH ₃ CO) as bend ip		
1462	{	1458	1458	1458	1458	1458	CH ₈ (CH ₂ CO) as bend op		
	1	1458	1458	1458	1458	1458	CH ₈ (CH ₂ NH) as bend op		
	1454		1453	1451	1453	1451	CH ₈ (CH ₂ NH) as bend ip		
1447	1427		1426	1426	1426	1426	CH ₂ (CO) bend		
	(1374		1373	1373	1373	1373	CH ₃ (CH ₃ NH) sym bend		
1372	{1371		1372	1372	1372	1372	CH ₃ (CH ₂ CO) sym bend		
	(1369		1369	1368	1370	1369	Amide III		
1346	1345		1346	1347	1346	1346	CH ₃ (NH) wag		
1272	ſ	1269	1248	1247	1249	1247	CH ₂ (CO) twist		
	(1260		1280	1282	1279	1281	CH ₂ (CO) wag		
1236		1244	1239	1237	1240	1237	CH ₂ (NH) twist		
1152	{1152		1149	1153	1152	1156	N-CH ₂ stretch		
1119	ι	1149	1168	1172	1168	1171	$R_{g}(NH)$		
1080	1081		1046	1041	1063	1054	CH ₃ CH ₃ (NH) stretch		
1070		1072	1071	1058	1047	1041	$R_{2}(CO)$		
1053	1060		1067	1072	1071	1072	CH ₃ (CH ₂ CO) rock ip		
1001	1001		1000	999	1001	1000	CH_{s} — $CH_{2}(CO)$ stretch		
902	{ 908		904	903	903	901	CH ₃ (CH ₃ NH) rock ip		
	C 903		900	896	899	896	CH _s —CO stretch		
801		806	806	803	806	803	$R_1(NH)$		
775		810	793	788	789	782	$R_1(CO)$		
695		698	701	702	702	702	Amide V		
	682		708	723	721	737	Amide IV		
		580	609	606	603	603	Amide VI		
	435		447	456	439	449	a		
	355		373	384	369	378	Skeletal bend		
	279	040	280	290	315	312)			
		243	179	199	178	181	$CH_3 - CH_2(NH)$ torsion		
	101	201	200	101	207	202	Ch ₃ -Ch ₃ (CO) torsion		
	101	154	213	110	200	110	Amido VIT		
		73	71	011	120	67	N_CH. torsion		
		44	11	44	44	48	CH = CO torsion		
		7.8	77	77		*0			
			1	I-propy	lpropionan	vide			
			Opr	osite	UHIC. Sai	me			
	ቀ =	0°	dire	etion	dire	etion			
Exp. [2]	A' ^Ψ	A"	$\phi = 45^{\circ}$	60°	$\phi = 45^{\circ}$	60°	Assignment		
1059	1044	<u>.</u>	1000	1077	1.020	1057	A		
1003	1044		1003	1007	1003	1007	Amido I Amida IT		
1999	1000		1000	1000	1000	1000	Amide 11		
	(14/8		1470	1470	1470	14/0			
1484	1400		1404	1403	1404	1400			
1404	1 400	1450	1400	1400	1400	1450	CH (CH CH) as bend ip		
	(1450	1400	1400	1408	1460	CH (CH.CO) as hand or		
	1449	1400	1408	1420	1408	1490	R September 19		
1439	1497		1441	1498	1441	1498	CH (CO) band		
	1981		1420	1920	1420	1229			
1376	1301		1921	1379	1270	1379	CH.(CH.CO) arm hand		
1010	1369		1380	1360	1960	1380	CH. (CH.CH.) sym bend		
1344	1359		1357	1356	1357	1356	Amide III		
1013	1000		1007	1000	1007	1000	ATTING ATT		

			Opposite Same				
	φ =	0°	dire	etion	direc	stion	
Exp. [2]	A' .	A"	$\phi = 45^{\circ}$	60°	$\phi = 45^{\circ}$	60°	Assignment
	1310		1312	1312	1311	1312	Wı
1280		1289	1289	1290	1289	1290	T_1
1271		1269	1245	1242	1245	1242	CH ₂ (CO) twist
1250	1257		1277	1279	1277	1279	CH ₃ (CO) wag
1236		1232	1229	1228	1230	1229	$T_{\mathbf{z}}$
1152		1153	1165	1169	1166	1169	R ₃ (NH)
1116	1132		1132	1135	1134	1137	<i>S</i> ₂
1083	1104		1098	1092	1096	1092	S ₂
1062	1	1072	1055	1050	1053	1048	$R_{3}(00)$
1002	1063		1070	1072	1070	1071	CH ₃ (CH ₃ CO) rock ip
1027	1033		1029	1028	1030	1029	<i>S</i> 1
1015			~~~		003		OT OT (GO) -to 1.1
972	995		891	988	891	988	CH3-CH3(CO) stretch
931	945		936	887	936	886	CH ₃ (CH ₂ CH ₃) rock ip
885		894	890	932	889	932	$R_{o}(\mathrm{NH})$
867	868		864	861	863	859	CHCO stretch
840							a
802		808	795	790	792	785	$R_{1}(CO)$
776							
744		745	746	748	745	746	$R_{1}(\mathrm{NH})$
700		697	707	702	701	702	Amide V
	677		701	722	718	734	Amide IV
		580	611	610	611	616	Amide VI
	498		500	501	490	488)	
	341		354	366	341	352	Skeletal bend
	308		314	314	317	319	
	257		267	277	307	309/	
		225	95	87	113	101	Amide VII
		209	208	208	203	207	CH ₃ -CH ₂ (CH ₂) torsion
		184	188	189	194	191	CH ₃ —CH ₃ (CO) torsion
	116		253	261	219	237	Skeletal bend
		74	73	73	72	71	CH ₂ —CH ₂ torsion
		71	39	39	40	41	NH-CH ₂ torsion
		38	68	67	63	61	CH ₂ —CO torsion

			ľ	I-butyl	propionami Cale.	de	
	d =	0°	Opp direc	osite tion	Sar diree	ne tion	
Exp. [2]	A' '	A *	$\phi = 45^{\circ}$	60°	$\phi = 45^{\circ}$	60°	Assignment
1647	1644		1653	1657	1653	1657	Amide I
1548	1556		1555	1555	1555	1555	Amide II
	(1479		1477	1477	1477	1477	B_{s}
	1471		1470	1470	1470	1470	B
	1462		1461	1461	1461	1461	CH _s (CH _s CO) as bend ip
1458	{	1458	1458	1458	1458	1458	CH _s (CH _s CH _s) as bend or
		1458	1458	1458	1458	1458	CH _s (CH _s CO) as bend op
	1456		1456	1456	1456	1456	CH _a (CH ₂ CH ₂) as bend ip
	11444		1442	1440	1442	1440	B_1
1435	1427		1426	1426	1426	1426	CH ₂ (CO) bend

N-butylpropionamide (cont.)									
			Onn						
	d =	$d = 0^{\circ}$ direction			direction				
Exp. [2]	A' * -	A"	$\phi = 45^{\circ}$	60°	$\phi = 45^{\circ}$	60°	Assignment		
	(1376		1376	1376	1376	1376	CH ₃ (CH ₃ CH ₃) sym bend		
	1374		1374	1375	1375	1375	W		
1366	{ 1371		1372	1372	1372	1372	CH ₃ (CH ₃ CO) sym bend		
	1364		1363	1362	1363	1362			
	(1340	1000	1347	1347	1347	1347	W 1		
、	(1075	1302	1302	1002	1302	1302	$\frac{T_1}{W}$		
1265	12/0	1075	1200	1200	1200	1200	^W 1		
1235	{	1270	12/4	12/9	12/0	12/0			
,	1950	1209	1242	1240	1242	1240	$CH_{\mathbf{s}}(CO)$ twist		
	1250	1918	1204	1200	1203	1280	$CH_{1}(U)$ was		
1149		1155	1166	1160	1166	1140			
1197	1134	1100	1194	1137	1138	1130	<i>8</i> .		
1114	1101		1101		1100	1100	21		
1100	1103		1103	1101	1101	1100	8-		
1.00	(1072	1047	1042	1046	1041	$R_{\bullet}(CO)$		
1063	1066		1061	1059	1061	1059	S.		
	1057		1070	1072	1070	1071	CH, (CH, CO) rock ip		
1046	•								
1033									
	1019		1011	1009	1012	1011	S.		
1000	1002		998	993	998	991	CH _a -CH _a (CO) stretch		
970							- - - -		
948		944	951	953	949	951	$R_{s}(\mathrm{NH})$		
943									
	926		874	873	873	873	CH ₂ -CO stretch		
901									
877	874		913	906	913	906	CH ₃ (CH ₂ CH ₃) rock ip		
803	l l	808	793	789	790	784	$R_1(CO)$		
	1	800	801	799	801	799	$R_2(\mathrm{NH})$		
740		-		-00					
735		729	730	732	730	728	$R_1(NH)$		
701		697	701	702	702	703	Amide V		
	684	800	709	722	719	737			
	200	990	400	100	405	017	Amide VI		
	409		472	408	401	4/8			
	9423 007		402	400	910 919	438	Shalatal hand		
	271		000	348	919	204	ORGIGORI DAUG		
	210	226	200 208	203	200 10a	200	Amide VII		
	216	0	200	267	254	271	Skelatel hand		
	21 X V	210	210	211	204 914	213	CHCH./CH.) torsion		
		184	189	188	102	191	CH_CH_(CO) torsion		
		108	105	104	104	103	CH_CH_(CH_) torsion		
	88		76	72	93	85	Skeletal bend		
		70	68	67	65	64	CH_CH_(NH) torsion		
		62	61	60	57	56	CH_CO torsion		
		30	30	30	31	32	CH. NH torsion		

Table	3	(cont.)

		<u> </u>	N-nonylcapra	mide				
Opposite direction								
$\phi = 0^{\circ}$								
Exp. [2]	A' '	A"	$\phi = 45^{\circ}$	$\phi = 60^{\circ}$	Assignment			
1642	1644		1653	1657	Amide I			
1563	1556		1555	1555	Amide II			
	1479		1478	1477	$B_8(\rm NH)$			
	1475		1475	1475	$B_{\rm S}({\rm NH})$			
	1474		1474	1474	$B_{\rm c}({\rm NH})$			
	1474		1474	1474	$B_4(CO)$			
1464	1473		1473	1473	$B_{\gamma}(\rm NH)$			
	1471		1471	1471	$B_{s}(CO)$			
	1468		1467	1467	$B_4(\mathrm{NH})$			
	1460		1460	1460	CH ₈ (NH) as bend ip			
	1460		1460	1460	$CH_{3}(CO)$ as bend ip			
		1458	1458	1458	CH _s (NH) as bend op			
		1458	1458	1458	CH _s (CO) as bend op			
	1454		1454	1453	$B_8(\rm NH)$			
	1451		1401	1401	B ₁ (CO)			
	1440		1440	1440				
1490	1441		1400	1400	$B_1(\mathbf{NH})$			
1433	1420		1920	1926	$M_{1}(00)$			
	1994		1984	1984	W (NH)			
	1979		1278	1979	W (NH)			
1976	1976		1976	1376	(H (CO) arm hand			
1940	1373		1973	1373	CH. (NH) sym bend			
	1370		1370	1370	W _c (NH)			
	1363		1362	1362	Amide III			
1350	1351		1352	1352	W.(NH)			
1326	1324		1325	1325	W.(NH)			
	1315		1316	1317	W.(CO)			
		1308	1308	1308	$T_{a}(NH)$			
		1308	1308	1308	T _s (NH)			
1297		1305	1305	1305	$T_1(CO)$			
		1303	1301	1300	$T_{\mathbf{z}}(CO)$			
		1302	1302	1302	$T_1(\mathbf{NH})$			
		1299	1299	1299	$T_4(\mathbf{NH})$			
	(1287		1287	1287	$W_3(NH)$			
1285	{							
	l	1282	1282	1282	$T_{5}(NH)$			
	{	1272	1262	1260	$T_{3}(CO)$			
1264	C1267	10-0	1276	1277				
1258	10-0	1256	1255	1200	$\mathcal{I}_{8}(\mathbf{NE})$			
1248	1250	1004	1249	1200				
1236	1.010	1224	1220	1221	$T_{\gamma}(\mathbf{NE})$			
1222]	1219		1220	1227				
1202	1209	1004	1210	1210	$\pi_1(\mathbf{ML})$			
1105	I	1100	11202	1180	$T_4(00)$			
1160		1160	1188	1168	$B_{\rm s}(\rm NH)$			
1127	1135	~~~~~	1137	1139	S.(NH)			
1119	1121		1114	1116	S.(CO)			
	#-	1104	1083	1077	$R_{s}(CO)$			
	1100		1121	1120	S ₂ (NH)			
1081	1079		1065	1062	S _s (NH)			
1071	1066		1070	1068	S ₉ (NH)			
	1064		1064	1065	S ₈ (NH)			
	1062		1062	1063	S ₄ (CO)			
	1060		1058	1055	$S_{7}(\mathrm{NH})$			
	1050		1050	1049	$S_{s}(CO)$			

N-nonyleapramide (cont.)								
	Calc.							
	direction							
Exp. [2]	$\phi = A'$	0° . <i>A"</i>	Assignment					
	(1100)		1000					
1022	1031	1005	1030	1030	$S_6(NH)$			
1015	1,017	1027	1029	1030	$R_8(NH)$			
1015	1010		1000	999				
002	000		001	001	$S_2(CO)$			
888	1	980	966	989	$\frac{S_{5}(NH)}{R(NH)}$			
966	{	957	953	952	$R_{\rm c}(\rm CO)$			
929	951		943	936	CH.—CO stretch			
	(894		896	897	CH _• (CO) rock ip			
888	891		891	891	CH _• (NH) rock ip			
		888	884	881	$R_{a}(\mathrm{NH})$			
	•	845	841	837	$R_{\bullet}(CO)$			
820		823	824	824	$R_{5}(\mathbf{NH})$			
		773	775	777	$R_{\star}(\mathrm{NH})$			
758		766	767	767	$R_{2}(CO)$			
740		741	744	739	R ₃ (NH)			
	733		737	746	Amide IV			
	(726	722	721	R ₁ (CO)			
721	{	725	725	725	$R_2(NH)$			
	t	718	718	718	$R_1(NH)$			
715		696	693	690	Amide V			
		581	612	623	Amide VI			
	041		531	532				
	490		494	496				
	480		473	400				
	428		431	400				
	370		334	392	Skeletal bend			
	307		310	292				
	272		978	282				
	231		255	267				
	201	215	112	113	Amide VII			
		212	212	212	CH_CH_(NH) torsion			
		211	212	212	CH _e CH _e (CO) torsion			
	177	_	233	234)				
	142		166	169	Skeletal bend			
		141	141	141)				
		134	133	134				
		119	119	119(Skeletal torsion			
		111	108	108				
	109		160	160	Skeletal bend			
		104	98	96J				
		86	87	88				
		73	70	68				
	61		62	62				
		52	49	48	Skeletal torsion and bend			
		48	46	45				
		32	32	32				
	0.2	20	Z4	24				
	23	Q	21	21				
				105				

* op = out-of-plane; ip = in plane.

and butyl derivatives, the presence of other than *trans* rotamers about CH_2 — CH_2 bonds should be considered, although most probably their amount is small.

C-deuterated nylon 66

The NH-vicinal and CO-vicinal C-deuterated derivatives of nylon 66 were obtained, and their infrared spectra measured, by HEIDEMANN and ZAHN [3]. The calculation of infrared active frequencies of these molecules was performed, and the calculated and observed values are compared in Table 4. In the NH-vicinal deuterated derivative, the agreement is good and comparable with other molecules calculated here. A different situation occurs with the other derivative. Here, for the

(CD	(CH ₂)4	CD ₂ NH($CO(CH_2)_4CONH)_p$	((CH ₂) ₅ NHCOCD ₂ (CH ₂) ₂ CD ₂ CONH) _p Calo.					
Exp. [3]	B _u	A.,	Assignment	Exp. [3]	Bu		Assignment		
1632	1644		Amide I	1633	1638		Amide I		
1531	1553		Amide II	1534	1554		Amide II		
	1474		$B_{4}(CD_{3})$	1479	1478		$B_{s}(\mathbf{NH})$		
1464	1472		B ₄ (CO)	14/4	1474		$B_4(\rm NH)$		
	1461		$B_{2}(CD_{2})$	1460	1471		CH ₂ (CD ₂) bend		
1415	1422		B ₃ (CO)	1436	1445		$\overline{B}_{2}(\mathrm{NH})$		
1979	1382		Amide III	1370	1373		W ₅ (NH)		
10/4	1359		$W_{s}(CD_{s})$	1949	1354		Amide III		
1001	ì	1302	$T_{\bullet}(CO)$	1040	1330		$W_{3}(\mathbf{NH})$		
1301	{	1299	$T_{\circ}(CD_{\circ})$	1308	·	1305	$T_{\mathbf{z}}(\mathbf{NH})$		
1278	1282		W. (CO)	1276	1269		$CH_2(CD_2)$ wag		
1242	1254		$W_1(CD_2)$			1260	$T_4(NH)$		
1201	1202		W.(CO)	1238					
	1186		CDCH. stretch	1220	1221		$W_1(\mathbf{NH})$		
		1179	$T_{4}(CD_{2})$			1212	CH ₂ (CD ₂) twist		
1149		1145	T ₄ (CO)	1191					
1137				1178	1178		CH ₂ CD ₂ stretch		
1110	1097		NH-CH. stretch			1178	T ₆ (NH)		
	1044		CHCH_(CD_)	1144			-		
			stretch		1103		N-CH _a stretch		
1033	1030		CHCH.(CO) stretch	1070	1062		(NH)CH ₂ CH ₂		
	984		NCD bend ip				stretch		
	957		CCD bend ip	1060	1049		(NHCH ₂)CH ₂ CH ₂		
937		948	$R_{\bullet}(\hat{CD}_{\bullet})$				stretch		
928	916		CH.—CO stretch	1010	1001		CD ₂ bend		
905		915	R.(CO)			993	$R_{5}(\rm NH)$		
		886	NCD bend op	926		921	CD ₂ twist		
	1	740	$B_{1}(CO)$	916	899		CO-CD ₂ stretch		
741	{	737	$B_1(CD_1)$	875	859		CD ₂ wag		
	736		Amide IV			848	CH ₂ (CD ₂) rock		
	1	697	Amide V			798	$R_{s}(NH)$		
684	{	663	CCD hand on	726		722	$R_1(NH)$		
	(580	Amide VI	688		718	Amide V		
	217	000			717		Amide IV		
	380			662		653	CD _g rock		
	254	}	Skeletal bend		535		Skeletal bend		
	316					507	Amide VI		
	910	100	Amide VIT		391	}	01 1 / 1 1 1		
	181	100	Skeletel bend		302 91 F	1	Skeletal bend		
		199)	Sacrotal Sona		910		A		
		108	Skeletel torsion		101	207	Allia VII		
		71	NEOLONN VOIBIOIL		101	1071	OKCICIAI DOILO		
	61	•••	Skeletel bond			105	Shalatal tomion		
		44)	SACIONAL DOLLA			74	NACIONAL UURION		
		99	Skeletal torsion		50	/=/	Skelatal hand		
		~~}				491	PROMOTIN DOUG		
						22)	Skeletal torsion		

Table 4. Experimental and calculated frequencies of C-deuterated nylon 66

Fig. 3(b)

Fig. 3(d)

1238, 1191 and 1144 cm⁻¹ observed bands, no close calculated counterparts can be found, and to assign them 20-30 cm⁻¹ errors would have to be admitted. The situation that introducing CD₂ groups worsens the agreement between calculated and experimental frequencies is known, e.g. from n-paraffins. In our case, the selective worsening after deuteration on the carbonyl side may indicate that further improvement of the force field on the carbonyl side may be possible provided some new data (e.g. from diamides) are available. This indication is also supported by the previously noted greater deviation in some CH₂(CO) wagging frequencies in diamides and in the CH₂(CO) bending frequency in the γ form of nylon 6.

Dispersion curves of nylon 6 and nylon 66

Dispersion curves of the α forms of nylon 6 and nylon 66 were calculated and are presented in Fig. 3. Above 700 cm⁻¹ no extrema are observed in these curves, and most of them follow the simple $a + b \cos \phi$ function at least approximately. In the low frequency region the curves appear complicated at first sight. But their course may be easily understood if in first approximation we replace the CO and NH groups by CH₂ groups. Dispersion curves for polyethylene, with phase difference multiplied by 7 (in nylon 6) or 14 (in nylon 66), then result. The similarity to these curves is striking, and the deviations near $\phi = 0^{\circ}$ and $\phi = 180^{\circ}$ and where two branches cross should be assigned to the change from the CH₂—CH₂ to the CO—NH group.

CONCLUSIONS

Normal coordinate analyses of about 15 molecules containing the amide group were performed. Most features of their infrared spectra were explained, and an almost complete assignment of their infrared bands was established. The differences between calculated and experimental frequencies generally lie within 10 cm⁻¹. Some greater differences occurred especially in the CO vicinal C deuterated nylon 66, and also in some frequencies involving motion of the COCH₂ group in other molecules. This may indicate the possibility of further improvement of the force field on the carbonyl side provided some new experimental data are available. The polarized infrared and Raman spectra of a more complete set of diamides would be most suited for this purpose.

Acknowledgment-This research was supported by a grant from the National Science Foundation.