PRODUCTION OF γ , Λ° , K_{s}° AND $\overline{\Lambda}^{\circ}$ IN pp COLLISIONS AT 102 GeV/ c°

J.W. CHAPMAN, J. COOPER, N. GREEN, B.P. ROE, A.A. SEIDL and J.C. VANDER VELDE

University of Michigan, Ann Arbor, Michigan, USA

and

C.M. BROMBERG, D. COHEN*, T. FERBEL** and P. SLATTERY

University of Rochester, Rochester, New York, USA

Received 29 October 1973

We have measured cross sections for γ , K_s° , Λ and $\overline{\Lambda}$ production at $102~{\rm GeV}/c$ and find: $\sigma(\gamma) = 170 \pm 16~{\rm mb.}$, $\sigma(K_s^\circ) = 4.6 \pm 0.5~{\rm mb.}$, $\sigma(\Lambda) = 3.2 \pm 0.4~{\rm mb.}$, and $\sigma(\overline{\Lambda}) = 0.23 \pm 0.10~{\rm mb.}$ Both $\langle n_{\overline{\Lambda}} \rangle$ appear to rise linearly with $n_{\underline{\Lambda}}$ while the ratio $\langle n_{K_s^\circ} \rangle / \langle n_{\overline{\Lambda}} \rangle$ is approximately independent of $n_{\underline{\Lambda}}$. The integrated invariant cross section as a function of x as well as $d\sigma/dy$ and $d\sigma/dp_{\underline{\Lambda}}^2$ are presented and compared with other data.

Using a 30 000 picture exposure of the 30-inch liquid hydrogen bubble chamber at the National Accelerator Laboratory to 102 GeV/c protons we have measured the inclusive production of $\gamma, K_s^\circ, \Lambda$ and $\overline{\Lambda}.$ In order to find all events with an associated V° (K°, Λ or $\overline{\Lambda}$) or γ , two independent scans of the film were made and all conflicts between the two scans were resolved. Within a restricted fiducial volume a total of $505 \text{ V}^{\circ}/\gamma$'s were found to be associated with beam track interactions and 488 of these events were successfully measured † 1. These events were geometrically reconstructed and kinematically fitted using the TVGP-SQUAW program. A requirement that the mass of the e^+e^- pair be less than 20 MeV/ c^2 was used to select γ candidates. The $K^{\circ}/\Lambda(\overline{\Lambda})$ ambiguities were resolved through ionization information when possible or through a selection on the decay angle of the $\pi^$ with respect to the line of flight of the K_s° in the K_s°

In table 1 we list the inclusive cross sections and the average number of particles observed per inelastic pp interaction as a function of charged multiplicity for π° , K_s° and Λ production. We have assumed that all γ 's come from π° decay and that $\sigma(\pi^{\circ}) = \frac{1}{2}\sigma(\gamma)$. These total inclusive cross sections are in general agreement with the trends reported in other high energy pp experiments [1], and lend support to the observation that the Λ production cross section changes very slowly between 69 and 303 GeV/c.

rest frame † 2 . In addition all neutral particles were restricted to be in the backward hemisphere in the pp c.m. system. After all acceptance criteria were imposed there remained 124 γ 's, 105 K_s^{o} 's, 76 Λ 's, and 6 $\bar{\Lambda}$'s with average weights (inverse detection efficiencies) of 76.6, 2.39, 2.70 and 3.4 respectively † 3 .

^{*} Research supported by the U.S. Atomic Energy Commission

^{*} Presently at Nevis Laboratories, Columbia University, Irvington, N.Y., USA.

^{**} A.P. Sloan Fellow.

^{† 1} All cross sections have been corrected for unmeasurable

^{†&}lt;sup>2</sup> All events ambiguous between K_s° and $\Lambda(\overline{\Lambda})$ interpretations were taken as $\Lambda(\overline{\Lambda})$ events if the cosine of the angle between the π^- and the direction of the K_s° , measured in the K_s° rest frame, was in the interval $-0.94 \le \cos \theta \le -0.86$ (0.88 $\le \cos \theta \le 0.92$). This selection introduces essentially no bias into the experimental spectra.

^{†3} These weights do not include the additional factor of 2 required to correct for events produced in the forward hemisphere in the pp c.m. but they do include V° neutral branching values.

Table 1							
Cross sections for pp \rightarrow neutral + n charged + anything							

n charged	σ(π°) (mb.)	⟨ <i>n</i> _π ∘⟩	$\sigma(K_{\S}^{\circ})$ (mb.)	⟨n _K °⟩	σ(Λ) (mb.)	$\langle n_{\Lambda} \rangle$
2	7.0 ± 2.6	1.5 ± 0.6	0.36 ± 0.13	0.07 ± 0.03	0.33 ± 0.13	0.07 ± 0.03
4	14.7 ± 3.8	1.9 ± 0.5	0.76 ± 0.18	0.10 ± 0.02	1.15 ± 0.22	0.15 ± 0.03
6	28.0 ± 5.3	3.7 ± 0.7	1.26 ± 0.23	0.17 ± 0.03	0.71 ± 0.17	0.09 ± 0.03
8	14.1 ± 3.8	2.4 ± 0.6	1.02 ± 0.21	0.17 ± 0.03	0.57 ± 0.17	0.09 ± 0.03
10	11.1 ± 3.3	2.9 ± 0.9	0.68 ± 0.18	0.18 ± 0.04	0.41 ± 0.14	0.11 ± 0.04
12	6.2 ± 2.5	3.7 ± 1.5	0.36 ± 0.13	0.21 ± 0.07	0.05 ± 0.05	0.03 ± 0.03
4	1.4 ± 1.2	2.1 ± 1.8	0.04 ± 0.04	0.06 ± 0.06	_	_
6	1.1 ± 1.1	5.0 ± 5.0	0.05 ± 0.05	0.24 ± 0.24	***	-
18	1.5 ± 1.5	27.3 ± 27.3	0.04 ± 0.04	0.77 ± 0.77	_	_
otal	85.0 ± 8.1	2.62 ± 0.25	4.58 ± 0.46	0.141 ± 0.014	3.22 ± 0.37	0.099 ± 0.012

In fig. 1 we plot the average number of neutrals observed per inelastic pp interaction as a function of charged topology. The ratio $\sigma(K_s^\circ)/\sigma(\pi^\circ) \sim 0.05$ is approximately independent of the associated charged multiplicity. The approximate linear rise of $\langle n_{\pi^\circ} \rangle$ is observed in all experiments at or above 69 GeV/c, in contrast to lower energy pp data [2] where $\langle n_{\pi^\circ} \rangle$ is approximately constant as a function of n_c . The dashed

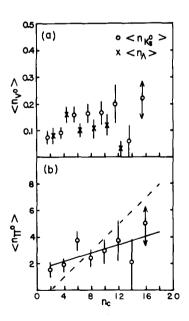


Fig. 1. (a) Average number of K_S° (circles) and Λ (crosses) per inelastic pp interaction and (b) average number of π° per inelastic pp interaction as a function of charged multiplicity. The curves are described in the text.

curve in fig. 1b is given by $\langle n_{\pi^{\circ}} \rangle = n_{-}$, a form to which high energy data has been compared. A better parameterization of the data at 102 GeV/c is

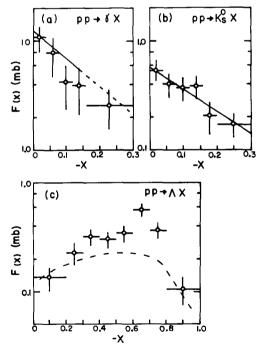


Fig. 2. Invariant cross sections $F(x) = (2/\pi\sqrt{s}) \int E \times (d^2\sigma/dx dp_T^2) dp_T^2$ as a function of x for (a) $pp \to \gamma X$, (b) $pp \to K_s^\circ X$, and (c) $pp \to \Lambda X$. E, p_L , and p_T are the energy, the longitudinal momentum, and transverse momentum of the particle in the pp center of mass system and $x = 2p_L/\sqrt{s}$. The curves are described in the text.

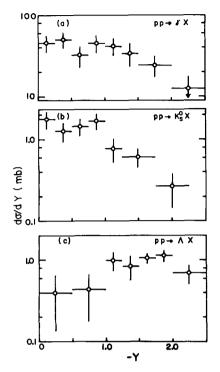


Fig. 3. The cross section $d\sigma/dy$ versus $y = (1/2) \ln \left[(E + p_L)/(E - p_L) \right]$ for (a) pp $\rightarrow \gamma X$, (b) pp $\rightarrow K_s^{\circ} X$, and (c) pp $\rightarrow \Lambda X$.

 $\langle n_{\pi^{\circ}} \rangle = (1.8 \pm 0.5) + (0.31 \pm 0.17) \, n_{-}$ (solid curve). The rise of $\langle n_{\pi^{\circ}} \rangle$ with n_{-} is not in agreement with the predictions of multiperipheral models in which single pions are independently emitted [3]. The total π° production cross section at $102 \, \text{GeV/c}$, $\sigma(\pi^{\circ}) = 85 \pm 8 \, \text{mb.}$, is comparable to the total π^{-} production cross section, $\sigma(\pi^{-}) = 66.9 \pm 1.3 \, \text{mb.}$

In fig. 2 we plot the invariant cross section integrated over p_T^2 .

$$F(x) = \frac{2}{\pi\sqrt{s}} \int E \, \frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \, \mathrm{d}p_{\mathrm{T}}^2} \, \mathrm{d}p_{\mathrm{T}}^2$$

for γ , K_s° and Λ production. The curve in fig. 2a is an integral over p_T^2 of an interpolation formula suggested by Neuhofer et al. [4] as a possible parametrization of γ production data at equivalent lab momenta of 500 GeV/c, 1100 GeV/c, and 1500 GeV/c. The small systematic difference observed in the applicable range of the formula (solid line) may indicate that the invariant cross section for γ production does not scale in this x region.

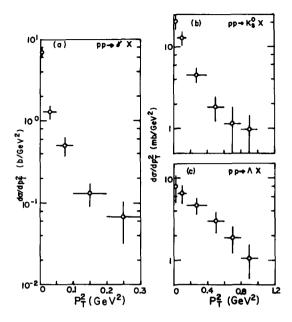


Fig. 4. The cross section $d\sigma/dp_T^2$ versus p_T^2 for (a) $pp \to \gamma X$, (b) $pp \to K_S^\circ X$, and (c) $pp \to \Lambda X$. The p_T^2 distributions have been normalized to account for events from both the forward and the backward hemispheres in the pp c.m. system.

The invariant cross section for K_s° production, displayed in fig. 2b, shows an exponential fall off, typical of meson distributions, with a slope of 4.7 ± 2.0 (solid curve). This slope is compatible with that observed at 205 GeV/c and 303 GeV/c. The data on F(x) for Λ production is similar in all experiments above 69 GeV/c, however, when compared to the 24 GeV/c data of Muck et al. [5] (dashed curve) a rise is seen in the proton fragmentation region ($-x \lesssim 0.6$).

In fig. 3 we plot $d\sigma/dy$ as a function of y (c.m. rapidity) for the above three reactions. Both γ and K_s° production are characterized by a plateau whose half

Table 2 Transverse momenta for particles produced in pp collisions at 102 GeV/c.*

Particle	$\langle p_{\text{T}} \rangle \text{ (GeV/}c)$	$\langle p_{\mathrm{T}}^2 \rangle \left(\mathrm{GeV}/c \right)^2$	
γ	0.175 ± 0.020	0.050 ± 0.009	
K°s Λ	0.424 ± 0.043	0.246 ± 0.038	
۸	0.541 ± 0.060	0.364 ± 0.052	
π^-	0.339 ± 0.010	0.171 ± 0.010	

^{*} Data are given for $p_T < 1.5 \text{ GeV/}c$.

width is approximately one unit in y. Distributions in transverse momentum are shown in fig. 4 where we plot $d\sigma/dp_T^2$ as a function of p_T^2 . A typical rapid fall off is observed for all particle production with the steepness being a function of the mass of the produced particle.

In table 2 we summarize the parameters of the p_T spectra for γ , K_s° , Λ and π^- production at 102 GeV/c [6].

We thank the staff of the 30-inch bubble chamber and the physicists from the National Accelerator Neutrino Lab for their considerable aid in obtaining this exposure.

References

- [1] G. Charlton et al., Phys. Rev. Lett. 29 (1972) 1759;
 - G. Charlton et al., Phys. Rev. Lett. 30 (1973) 574;

F.T. Dao et al., Phys. Rev. Lett. 30 (1973) 1151; France-Soviet Union Collaboration, Photon production in 69 GeV pp interactions, paper submitted at Conf. on New results from experiments on high energy particle collisions, Nashville (1973);

France-Soviet Union Collaboration, Inclusive neutral kaon and lambda production in 69 GeV pp interactions, paper submitted at Conf. on New results from experiments in high energy particle collisions, Nashville (1973).

- [2] H. Bøggild et al., Nucl. Phys. B27 (1971) 285.
- [3] L. Caneschi and A. Schwimmer, Phys. Letters 33B (1970)
- [4] G. Neuhofer et al., Phys. Lett. 38B (1972) 51.
- [5] H.J. Mück et al., Inclusive particle production in pp interactions at 12 and 24 GeV/c (parts I and II), internal report DESY-F1-72/1 (1972).
- [6] For the π data see C. Bromberg et al., Pion production in pp collisions at 102 GeV/c, University of Michigan Bubble Chamber report 73-19, University of Rochester report 460, to be published.