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Intuitive multistage inferences are typically excessive when compared 
with the optimal model, a modified form of Bayes' theorem. One explana- 
tion for this excessiveness is that the S primarily attends to the implications 
of the probable event described by the first-stage inference, neglecting 
the implications of less likely events. If a S follows this strategy, called 
a "best guess" strategy, then a testable implication is that his probability 
revision at the upper level should be insensitive: to variations in the distri- 
bution of probabilities across all but the most likely event described by 
the first-stage inference. The results of the present experiment support this 
hypothesis. 

M u l t i s t a g e  inference consists  of a series of s ing le-s tage  inferences  

where  the  o u t p u t  of each prev ious  s tage becomes the  i npu t  to  the  next  
stage.  I n  a s ing le-s tage  inference men reason from d a t a  or u n a m b i g u o u s l y  
observed  evidence to a set of hypotheses .  M u l t i s t a g e  inference s t a r t s  
wi th  the  same u n a m b i g u o u s  d a t a  or ev idence  in the  first  s tage ;  however ,  
the  i npu t  for t he  nex t  s tage  is the  o u t p u t  of the  p rev ious  stage. The  next  
s tage of inference  is the re fo re  based  on the  p robab i l i t i e s  of events ,  r a the r  

t h a n  upon  def ini te  knowledge  t h a t  a p a r t i c u l a r  event  is t rue  (Ge t ty s  & 
Wi l lke ,  196,9). 

F o r  example ,  suppose  you  wan ted  to  p red ic t  the  success or fa i lu re  of a 
large  garden  p a r t y .  Assume t h a t  the  p a r t y  is less l i ke ly  to be success-  
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ful if it is crowded indoors because of rain. Your datum is the presence of 
a dark cloud on the horizon. The first stage of inference would relate the 
dark cloud to the presence or absence of rain during the party. Suppose 
you estimated that the probability of rain was .70. This estimate would 
become the input to the next stage of inference. If you knew with cer- 
tainty that it would rain, then you could infer the probability that the 
party would be a success. But you are not entirely sure that it will rain; 
the data that yoti have indicates rain with a probability of .70, so how 
should you proceed? 

Modified Bayes Theorem (MBT) provides an optimal model for such 
multistage inferences (Gettys & Willke, 1969; Dodson, 1961). A number 
of studies have shown that intuitive performance in a multi-stage task 
results in m o r e  certainty being extracted from the data than is predicted 
by the MBT model. For example, in an odds estimation task the Ss' 
odds are typically larger than those calculated by MBT. This result is 
quite surprising because evidence indicates human performance in a 
single-stage inf~erence task is almost always conservative; i.e., humans 
extract less certainty than warranted by the data (e.g., Edwards, 1966). 
The paradox, of course, is that a multistage inference is a series of single- 
stage inferences. If people extract less certainty than the data warrant 
in single-stage inferences, then in the multistage situation one might 
expect the Ss to become more and more conservative with each succeed- 
ing stage since their departures from nonoptimality should accumulate 
from stage to stage. In fact the reverse is true; Ss are more certain at 
the end of two stages of inference than is warranted by the optimal 
model (MBT). This suggests that some process occurs at the "interface" 
of the single stage tasks which is so excessive that any single-stage 
conservatism is overcome. 

T'he single-stage inference task is always based upon data which are 
known with certainty. However, even though a multistage task starts 
with certain data, succeeding stages of inference deal with uncertain 
data. Several models have been formulated to explain how having to 
deal with the probabilities of data instead of certain data might create 
excessive certainW in multistage inference. One nonoptimal model having 
the property of predicting excessive certainty is the "As-If" model 
(Gettys and Willke, 1969; Howell, Gettys, and Martin, 1971). This 
model, designed for situations where people have the option to collect 
more data if they feel it is needed, assumes that data collection continues 
in the first stage', of inference until the decision maker is sufficiently sure 
of the state of the world. Once his certainty exceeds some threshold 
value, he then proceeds to the next stage of inference, acting "as-if '  
he were entirely certain of the input to the next stage. To return to the 
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garden party example, the decision maker, after seeing the dark cloud, 
might get a current weather report. Suppose a severe storm warning were 
forecast. His certainty for rain probably now would exceed his threshold 
value, and he would proceed to the second stage of inference acting "as- 
if" he were certain of rain. The result of the second stage of inference 
would be his estimate of the probabilities of success or failure based on 
his "as-if '  assumption of rain. His assessed probability for failure should 
now exceed the veridical (MBT) probability for failure because by mak- 
ing the "as-if" assumption of rain he is ignoring the possibility that it 
might not rain. If, in fact, his "as-if" assumption is incorrect and it 
doesn't rain, then the party probably will be a success. The optimal 
model considers both possibilities, rain and no rain, in assigning prob- 
abilities to success or failure. The "as-if" model considers only the 
possibility of rain, and for this reason leads to excessive certainty that 
the party will be a failure. 

How might a person behave if his certainty about the input to the 
second stage of inference were less than the threshold value required 
for an "As-If" assumption and there were no hope of increasing his 
certainty with more data? One possible hypothesis that is consistent 
with the excessive certainty found in previous studies is that he will 
first make an "As-If" assumption that is a£ best a guess. This model, 
termed the "Best Guess" model, is in effect a qualified "As-If" model 
and shares with the "As-If" model the idea that the decision maker will 
either ignore or tend to ignore the implications of the other less-likely 
events in the second stage of inference by concentrating almost exclu- 
sively on the most likely event. In terms of the example, if the only 
information you have is the dark cloud on the horizon, you might not be 
willing to make an unqualified "As-If" assumption, but you might first 
assume that  it is going to rain and arrive at subiective odds for suc- 
cess based on this assumption. Then because you are not entirely certain 
that it will rain, you might reduce your subiective odds somewhat to 
take this into account. These subiective odds might well be different 
from those calculated with MBT, primarily because you have not ex- 
plicitly considered the implications of no rain. 

Snapper and Fryback (1971) reported results which are consistent 
with the above explanation in an experiment concerned with data reli- 
ability. However, their procedure did not permit a direct test of the 
Best Guess Model; that is the purpose of the present experiment. 

METHOD 

The goal of the experiment required at least three levels of variables 
constructed ]n such a manner that the intermediate level variable con- 
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rained more than two events. I t  further required a manipulation of the 
probability distribution across all but the most likely of the inter- 
mediate events--a manipulation that would have a resulting impact on 
the magnitude of .optimal probability revision at the upper level as the 
result of the occurrence of an event at the lower level. 

Consequently, the three levels took the following form. The upper- 
level variable v/as comprised of two bags labeled I and II, respectively. 
Each bag served as a container that was filled with smaller containers 
which represented intermediate-level events. Specifically, each bag con- 
tained 18 small cans (35 ram. film cans) and each can was labeled with 
either A, B, C, or D. Finally, each can contained 100 small colored discs; 
each disc was either red, green, yellow or blue. 

The composition of each container is described in Table 1. Part  A 
of the table describes the bag composition with respect to cans and Part  
B of the table descri.bes the can composition with respect to disks. For 
example, 8 cans labeled A are in Bag I whereas only 1 can labeled A is in 
Bag II. As sho~vn in Part B, 80 discs are in Can A, 1 in Can B, i in Can 
C, and 18 in Can D. 

The experiment proceeded as follows. One of the two bags was selected 
at random, a can was sampled at random from that bag, and a disc was 
sampled at random from that can. Thus, the draw of a red disc provides 

T A B L E  1 
NUMERICAL COMPOSITION OF BAG AND FILM CAN COMPONENTS 

CAN 
LETTERS 

RED 

GREEN 
DOT 

COLORS YELLOW 

BLUE 

A 

B 

C 

D 

BOOKBAG COMPOSITION 

BOOKBAG I BOOKBAGII 

8 I 

.'3 6 

6 3 

I 8 

FILM CAN COMPOSITION 

CAN A CAN B CAN C CAN D 

80  I I 18 

I 8 0  18 I 

18 I 80 I 

I 18 I 80 
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evidence in favor of Can A, which in turn provides evidence in favor 
of Bag I. Notice that it is only the bottom level e~ent, a disc, that is 
directly observed. That  observation provides only partial evidence with 
regard to the intermediate-level event, the can, which in turn provides 
partial evidence about which upper level event was selected. Thus, the 
first stage of inference relates disc color to can letter and the second stage 
of inference relates can letter to bag number. 

The strategy of acting as if the most likely event is true at one level 
will lead to probability distributions that are extreme at the next 
higher level. Thus, this strategy is consistent with the empirical result 
that people revise upper-level probabilities excessively at a multistage 
task. 

There is another testable hypothesis that can be derived from the 
best-guess strategy. If a person acts as if the most likely event is true 
at any intermediate level, he then ignores the probability distribution 
across all other events at this level. His probability revision at the upper 
level should therefore be insensitive to variations in the distribution of 
probabilities across all but the most likely event at the intermediate 
level. The present experiment was designed to test that hypothesis. 

Experimental Design 

Three inference tasks of the type shown in Table 1 were constructed. 
The frequencies shown in Part  A were used in all three tasks. The 
matrix shown in Part  B was used in one task; in the other two tasks the 
value of 80 in the lower matrix was changed to either 70 or 90, and the 
value of 18 was changed to either 28 or 8, respectively. For purposes 
of later discussion these three tasks will be designated as the 70-28, the 
8,0-18, or the 9'0-8 task. In all three tasks the Ss estimated the odds 
of the bags given the color of a single disc drawn from the can. 

Subjects 

The 25 Ss were University of Michigan students who had previously 
served in another multistage inference experiment lasting about two 
hours. In the previous experiment Ss had been trained in the response 
mode required, and had made an extensive series of odds estimates 
in a multistage inference task. However, the optimal model was never 
discussed, nor was any type of feedback used. 

Instructions to Ss 

The instructions were brief because of the previous experience of the 
Ss. The details of the task were explained. The Ss were asked to imagine 
that a bag had been randomly selected on the basis of a toss of a fair 
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coin, tha t  a caa was then randomly drawn from the bag, and that  a 
paper disc was randomly drawn from the can. Then they were asked 
to assume that  a disc of a particular color was, in fact, drawn according 
to this random, process, and were asked to estimate the odds of the 
bags on the basis of the color of the disc. 

Procedure 

Following the instructions, the Ss estimated the odds of the bags in 
all three tasks. Matrices like those in Fig. 1 were used to inform the 
Ss of the relative frequencies of the cans and the discs. The tasks were 
presented in a random order for each group of 4 to 6 Ss. Within each task 
each of the 4 possible colors was used in random order. The Ss estimated 
the odds of the bags for all possible colors before moving to the next 
task. When the Ss had completed the twelve estimates (4 colors per 
task × 3 tasks),  the three tasks were then repeated using different ran- 
dom orders for a total  of 24 judgments, two for each color in each task. 

RESULTS A N D  DISCUSSION 

An inspection of the data showed an extreme bimodality in the Ss' 
odds responses. For  some Ss the theoretical difference between the blue 
and red dots, and the difference between the yellow and green dots, 
caused no difference in the odds estimates. Other Ss were more extreme 
in their odds estimates with a blue dot than they were with a red dot, 
and more extreme with a yellow dot than with a green dot. These latter 
Ss were consistent with M B T  in at least an ordinal sense. I t  appeared 
that  some subjects were "unaware" of the blue-red and the yellow- 
green differences, while other Ss were "aware" to the extent tha t  they 
were responding in at  least the right direction. With this thought in 
mind, all Ss who responded with at  least one odds estimate for blue tha t  
was at least 2% greater than the odds estimate for red, or an estimate 
for yellow that  was at  least 2% greater than green, were classified as 
"aware" Ss. These Ss were at least marginally "aware" because for one 
or more judgments their odds estimates changed in the blue-red pair and 
the yellow-green pair in the direction that  M B T  dictates. Ten Ss of the 
25 were classified as "aware" Ss by this conservative criterion. 

The other 15 Ss) the "unaware" Ss, showed no tendency to, respond 
differently to changes in the probabilities of the less likely events. They  
literally ignored the implications of the less likely cans. Their  responses 
are consistent with an extreme form of the "Best-Guess" model. The 
medians of the responses of the "unaware" Ss are shown in Fig. 1. 
Because the bag tha t  the odds favor is formally irrelevant, the data are 
plotted on an absolute log odds scale. The median log odds responses 
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FIG. 1. Best-guess, as-if, and MBT models as predictors of performance of. 
"unaware" ~s. 

to the red and the blue discs are connected by a solid line in the upper 
part of the figure for the three levels of data uncertainty, and the 
medians Yor yellow and green discs are similarly jointed in the lower 
part of the figure. Also shown in Fig. 1 are predictions for MBT (the line 
on the positive diagonal), predictions for the "As-If" model (the two 
horizontal lines) and predictions for a version of the "Best Guess" 
model, termed Model I in the figures. 

The model I predictions are obtained by multiplying the probability 
of the most likely event by the posterior odds obtained if that event 
were true. Suppose a red disc were drawn in the 8.0-18 task. The prob- 
ability of Can A is .80 and the odds are 8:1 if in fact the dot came from 
A. The Model I prediction would then be 0.8 × 8/1 = 6.4 or odds of 
6.4:1. The "As-If" model predicts odds of 8:1 for the blue and red discs 
and 6:3 for the yellow and green dots p~ovided that the threshold cer- 
tainty for can type is exceeded. For MBT the optimal odds for a red 
dot are 2.86:1, and may be calculated according to the following 
formula for the posterior odds (adapted from formula 5 in Gettys and 
Willke, 1969) : 

P(BIlcolor) _ P(BI) 
P(BIIleolor) P(BII) 

• P(color!ean0 P(Can~IBI 0 
_ _ X  i 

~ P(eolor!canO P(CanilBI) 
, [1] 
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where B stands for bag, and the other entries are calculated from condi- 
tional probabilities such as shown in Table 1. 

The data in Fig. 1 are clearly not fitted by either the "As-If" or the 
MBT predictions. The Ss responses are less extreme than the "As-If" 
predictions for the upper blue-red pairs, where the "As-If" prediction 
is 8:1 odds, and are similarly less extreme than the 6:3 odds prediction 
in the lower part of the figure. However, the extreme version of the "Best 
Guess" Model, Model I, fits the Fig. 1 medians very well. The horizon- 
tal dashed lines in Fig. 1 are the Model I predictions. For all tasks, the 
Model I predictions are to the right of the MBT diagonal for the yellow 
dots in the lower part of Fig. 1. The "As-If" model and Model I do not 
necessarily predict odds estimates that are more extreme than MBT odds. 
These points arise, for example, in t.he 80-8 task when Can C is most 
likely (P= .80) and can A (P= .18) is less likely. The most likely 
event gives 6:3 odds for Bag I if true and the less likely event gives 
odds of 8:1 for Bag I. In this ease, any model which ignores the 8:1 ratio 
furnished by the less likely event will be conservative in respect to 
MBT. 

If it is assumed that Ss will not adopt a nonoptimal model if it deviates 
too much from their subjective feeling o.f certainty, then perhaps the 
important result is that Ss used Model I because they saw nothing 
wrong with it. The magnitude of their odds response was determined 
by Model I but in another situation they might, use some other combina- 
tion rule. More importantly, the fact that Model I predictions do fit the 
data suggests that Ss tended to concentrate on the most likely alternative, 
and ignored the implications of the less likely alternatives. 

The data for the 10 "aware" Ss are presented in Fig. 2. As in Fig. 1, 
the predictions of the "As-If" and the MBT models are shown in the 
figure, but the Model I predictions are omitted because they dearly do 
not fit the data. 

In general, the "aware" Ss seem to respond to the same variables as 
MBT, but the quantitative fit of the MBT model is poor. Ss are char- 
acteristieally more certain than the MBT model, as has been found 
in previous reset~reh. Like MBT, the Ss are less certain than implied 'by 
the "As-If" model for the blue and the red discs. Also, as in MBT, 
their judgments to the yellow disc exceeds the "As-If" prediction. This, 
of course, occurs because the most likely event has odds of 6:3 and 
the less likely event has odds of 8:1. If  the Ss are aware of the nuances 
of the multistage situation, they should realize that the odds nmst be 
greater than 6:3. The only exception to. this general picture is the loca- 
tion of the 80-18 data for the yellow and green discs. The posterior based 
on yellow odds should increase as the probability of the most likely 
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£IG. 2. Performance of aware Ss compared to MBT and as-if. 

event decreases, while the odds based on green should decrease as 
the probability increases. The responses in the 80:18 condition do not 
follow this pattern. In general, the "aware" Ss seem to be using a 
combination rule tha t  is somewhat like MBT,  but  which is somewhat 
excessive in respect to MBT.  

The hypothesis of a "Best-Guess" tendency in multistage inference 
is clearly supported by the "unaware" Ss. Evidently,  perhaps because 
of the complexity of the situation, some Ss tend to concentrate almost 
exclusively on the most likely event in subsequent stages in inference. 
The Best Guess effect in multistage inference, like conservatism in 
single-stage inference (Edwards, 1966), seems to be another example of a 
general inability to combine complicated information. As much of 
human information processing is multistaged and pro babilistie in nature, 
it would seem that  the next appropriate step for application of Bayes'  
theorem is to find ways of preventing people from making the mistake 
of ignoring all but the most likely of the intermediate-level events. 
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