λimmλ·434: A Phage with a Hybrid Immunity Region

GERALD S. WILGUS, RICHARD J. MURAL AND DAVID I. FRIEDMAN

Department of Microbiology, Medical School, The University of Michigan, Ann Arbor, Michigan 48104

AND

MICHAEL FIANDT AND WACLAW SZYBALSKI

McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706

Accepted July 10, 1973

The genomes of coliphages λ and λimm434 are identical with the exception of the immunity region, which codes for the respective repressors and corresponding operators. Although previous genetic studies failed to detect any recombinations that might have occurred within the immunity regions of these two phages, electron-micrographic heteroduplex mapping demonstrated a short interval of homology between λ and λimm434 DNA located in this otherwise heterologous region. We report the isolation of a recombinant which resulted from a cross-over event between λ and λimm434 within the immunity region. This phage, denoted λimmλ·434, carries the leftward promoter-operator as well as gene repressor of λ and the rightward promoter-operator as well as gene cro of phage 434. Since the recombination occurred within the cl gene, phage λimmλ·434 must carry a hybrid repressor gene.

INTRODUCTION

Coliphage λ, like other temperate phage, can establish and maintain a state of lysogenicity because, among other things, it can express a phage-specific repressor (reviewed by Ptashne, 1971). The λ repressor encoded for by the cl gene binds only to λ DNA, which contains λ-specific operators. This specificity was shown in experiments using a hybrid phage, λimm434, constructed by crossing λ and the closely related temperate coliphage 434 (Kaiser and Jacob, 1957). This hybrid phage derives only a small region, called the immunity region, from 434, with the rest of the phage genome being derived from λ (see Fig. 1). In addition to the cl gene, the immunity region includes: the two operators which bind repressor (Ptashne, 1971), the two promoters from which early major transcription initiates (Thomas, 1971), a regulatory function, tof or cro (Eisen and Ptashne, 1971), and in the case of λ an additional gene repressor (Howard, 1967). Therefore, although λimm434 contains primarily λ genetic material, the fact that it contains the immunity region of 434 means that it both carries the genetic information for synthesis of 434-specific repressor and is repressed by the 434 repressor. In addition to the repressor, the Cro (or Tof) regulatory function is also immunity specific (Perco, 1971). This regulatory function apparently acts in three ways to control the expression of the phage genome. By binding at or, it reduces the expression of functions in the N-int operon (Sly, Rabideau, and Kolber, 1971), and also it appears to regulate expression of the clII-O-P and cl-rex genes (Echols, 1972).

The functional heterogeneity relating to the immunity regions of λ and λimm434 reflects a structural heterogeneity, the corresponding DNA sequences in this region not being homologous. This was indicated by the fact that it was not possible to demonstrate recombinations between λ and λimm434 occurring in the immunity region (Kaiser and Jacob, 1957; Thomas, 1964). Kaiser and
Jacob (1957) concluded, "Either the c_1 regions of λ and 434 fail to pair, or recombination occurs but the recombinants are inviable because of the hybrid character of their c_1 region." Indeed, more recent experimental evidence suggests that both conclusions are partially correct.

Westmoreland et al. (1969) employed electron microscopy to examine heteroduplex DNA molecules composed of the l strand of λ and the r strand of $\lambda^{imm}434$ DNA and showed that over 94% of their genomes appear identical and only the immunity regions are grossly heterologous. They also found that there is a short interval of homology (estimated to equal or be less than 0.3% of λ length) located within this otherwise heterologous imm/imm^{434} region (see Fig. 3A). This suggested that recombination might occur within this short homology interval and that such a recombinant phage with a hybrid immunity region might be found, providing that a proper selection technique could be devised.

A phage carrying a hybrid immunity region would be expected to have unique characteristics. It should have one operator as well as the homologous promoter from each phage (see Fig. 2). Since it would carry the cro gene of one phage and the σ_1 of the other it should exhibit the Cro^- phenotype. Therefore, it might be expected that a hybrid phage formed by a recombination in the immunity region would grow poorly, because λ^{cro-} phages plate at a low frequency on normal hosts (Calef et al., 1971). The poor viability of λ^{cro-} phages is due to the overproduction of the repressor and the uncontrolled expression of the N-int operon. However, if the recombination occurs within the c_1 genes, the resulting hybrid repressor would most probably be inactive. Hence, such a phage should act like a c_1 mutant. We report the isolation of a phage with these characteristics which results from a recombination within the immunity region between phages λ and $\lambda^{imm}434$.

MATERIALS AND METHODS

Bacterial strains. K37 is strain 28 of Meselson; K100 is the same as N100 and is a $recA^-$ derivative of strain 28; N958 is a lysogen of strain 28 which carries a $\lambda sex3c1857x13$ prophage; all three were kindly supplied by M. Gottesman (Gottesman and Yarmolinsky, 1968).

Phage stocks. Both $\lambda susV7N53imm^{434}cIt$ and $\lambda^{imm}434c17byp$ (which was derived from $\lambda^{imm}434T$ and $\lambda N^+c17byp$ of Butler and Echols, 1970) were constructed in the laboratory of D. I. F.; $\lambda^{imm}434T$, $\lambda h50susV7N53c1857$ and λ^{++} were supplied by M. Gottesman; $\lambda r32$ was obtained from P. Brachet; $\lambda biaN2-1nin5$ from G. Kayajanian; $\lambda b519imm^{434}$ was constructed by M. F. (see Davidson and Szybalski, 1971).

Media. Tryptone broth (TB): 1% tryptone, 0.5% NaCl, 1.0 μg/ml thiamine hydrochloride, 10$^{-2}$ M MgSO$_4$ and 0.2% maltose. Tryptone agar: 1% tryptone, 0.25% NaCl, 1.0 μg/ml thiamine hydrochloride, and 1.1% agar. Tryptone top agar: 1% tryptone, 0.5% NaCl and 0.7% agar. Phosphate buffer: 0.7% Na$_2$HPO$_4$·7H$_2$O, 0.3% KH$_2$PO$_4$, 0.4% NaCl and 10$^{-2}$ M MgSO$_4$.

Construction of lysogens. The method of Gottesman and Yarmolinsky (1968) was used.

Recombination. Infected cells were sedimented and resuspended in phosphate buffer, irradiated with ultraviolet light (9000 ergs/cm2), diluted into TB, incubated 90 min at 40°C, treated with chloroform, and then plated on the appropriate bacterial lawn.

Heteroduplex mapping. For most of the heteroduplex preparations, separated strands of phage DNA were fractionated by the poly(U,G)-CsCl gradient procedure (Szybalski et al., 1971). The heteroduplexes were prepared by mixing the CsCl solutions of the l and r strands in carbonate-buffered 50% formamide, as originally described by Westmoreland, Szybalski, and Ris (1969). Grid preparation, uranium oxide shadow casting, electron microscopy, length measurements and their evaluation were described by Westmoreland et al. (1969) and Fiandt et al. (1971).

RESULTS

Basis for Selection of Phage with Hybrid Immunity Region.

The limited amount of homology observed between the immunity regions of λ and $\lambda^{imm}434$ suggests, a priori, that recombination within this heterologous region should
be a very rare event. Moreover, although such recombinant phage would have some unique features, there is no readily apparent characteristic that could be used in selecting for them, and as discussed, such a phage would be expected to exhibit the Tof- phenotype associated with a low plating efficiency. Therefore, it is not surprising that the progeny of such a recombinational event are difficult to detect (Kaiser and Jacob, 1957).

We have been able to select a phage recombinant with a hybrid immunity region (λ·434) using parental phages carrying specific mutations. In this genetic cross, the λimm434 parent carries two mutations which map outside of the immunity region, c17 and byp (Hopkins, 1970; Butler and Echols, 1970). The presence of these two mutations permit λ to grow independent of the N function, a phage function which extends transcription of the λ genome and is normally needed for λ growth (Echols, 1971). The λ parent carries two mutations which map within the immunity region, sex3 and x13 (Eisen et al., 1966; Roberts, 1969; Gottesman and Weisberg, 1971; Blattner et al., 1972). These two mutations affect the two early promoters, πL and πR, respectively, and result in a lowered expression of functions located in the operons regulated by them. While phages carrying x mutations are not viable, many phages carrying sex mutations are viable. However, studies by F. R. Blattner and P. Twose (personal communication) suggest that it is not possible to construct plaque-forming, N-requiring λ derivatives which also carry the sex3 mutation. This reduced viability is most likely due to the profound effect of the sex3 mutation in reducing transcription initiating at πL (S. Nakahishi, personal communication).

How did this cross permit selection of a phage with a hybrid immunity region? To answer this question we must look to the nature of the recombinants formed by a cross-over in the immunity region between λsex3c1857x13 and λimm434c17byp. Figure 2 shows the two possible recombinants formed by a single recombinational event. Recombinant “A,” which has the left-hand immunity region (IL) from λ, including the sex3 mutation, and the right-hand immunity region (IR) from λimm434, also carries the c17 and byp mutations. We expected such a phage to be viable for the following reasons: First, the sex3 mutation should compensate for the Tof− phenotype by reducing the unregulated transcription to the left of the immunity region. Second, the combination of the c17 and byp mutations should help overcome any undersupply of N product caused by the sex3 mutation by permitting N-independent transcription to the right of the immunity region. The product of the reciprocal recombinational event, recombinant “B,” carries the right-hand immunity region (IR) from λ, which includes, in this case, the x13 mutation. Like the λsex3x13 parent, this recombinant should be nonviable. The problem of selection resolves itself into finding conditions which will permit recombinant “A” to be distinguished from the viable parent, λimm434c17byp.

One possible method to distinguish between the recombinant and parent phage is through the use of a 434 lysogen. The basis for such a selection is the observation that, although phage carrying both the c17 and byp mutations are not virulent, i.e., cannot grow on a lysogen carrying a homoimmune prophage, the addition of a cI mutation results in the phage becoming virulent (Hopkins, 1970; Sly et al., 1971). Since the recombination should occur in the cI gene (Westmoreland et al., 1969), we would expect a phage with a hybrid repressor gene to act like a cI− mutant and, therefore, recombinant “A” could be expected to be virulent and thus form plaques on the 434 lysogen. The virulence of recombinant “A” should be still further enhanced by its constitutive N expression in the lysogens with 434 immunity, since its λ-derived oL operator is insensitive to the 434 repressor (This N expression would not be affected by Cro repression, although it would be reduced due to the sex3 mutation). On the other hand, the λimm434-c17byp parent, which is cI+ and has oL of 434 specificity, is not virulent and does not form plaques on the 434 lysogen (Table 1).

Formation of Recombinants

In order to implement our strategy for selecting a phage with a hybrid immunity region, bacteria lysogenic for the defective prophage λsex3c1857x13 were infected with
TABLE 1

<table>
<thead>
<tr>
<th>Growth of λA-4 on Various Bacterial Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>λimm434</td>
</tr>
<tr>
<td>λA-4</td>
</tr>
<tr>
<td>λimm434c17byp</td>
</tr>
</tbody>
</table>

* Bacteria were grown overnight in TB. Lawns of each bacteria were poured onto tryptone using top agar. Dilutions of each phage were then placed on each lawn. Plates were incubated overnight at 32°C. If obvious phage growth occurred, it was scored as +; if no phage growth occurred, it was scored as −; symbol 0 means that no experiments were done. The genotype of λA-4 is λsex3imm434λ13c17byp. All Rec+ lysogens were derived from K37 and all Rec− lysogens were derived from K100. K124 and K68 carry a λ+ prophage, K150 and K354 carry a λimm434T prophage, and K350 carries both λ+ and λimm434T prophages. Identical results were obtained with K350 and K259, which carries λsusN7imm434λ13c17byp prophages.

λimm434c17byp and phages that made plaques on a lysogen carrying a 434 prophage were isolated. Two classes of recombinant phage could be distinguished by testing their ability to grow on various bacteria. One class, thought to be λsex3cI857c13c17byp, will be discussed in another paper (Friedman, Jolly, Mural, and Wilgus, manuscript in preparation). The other class of recombinant phage, exemplified by a phage called λA-4, showed growth characteristics (Table 1) which suggested that it carried a hybrid immunity region. This was inferred from the observation that although λA-4 grows in either a lysogen with immunity to λ or one with immunity to 434, it was unable to grow in a lysogen with immunity to both phages. Thus, λA-4 is affected by both the 434 and λ repressors, a fact which strongly suggests that this phage has a mixed or hybrid immunity region.

In order to confirm the position of each partial immunity region in the λA-4 hybrid, we took advantage of the fact that λ will only grow on a recA− bacterial host if, in addition to all the functions normally needed for vegetative growth, either of two normally nonessential functions, Red and Gam (Zissler, Signer, and Schaefer, 1971) are expressed. The genes encoding for these functions lie in the N-int operon, which is controlled by the oL operator, the repressor binding site (Fig. 1). If the left-hand side (iL) of the immunity region of λA-4 is derived from λ, then the phages will have the oL operator from λ (Fig. 2) and, therefore, in the presence of λ repressor will be unable to express functions encoded for by the N-int operon. Thus, the observations that λA-4 grows both in a recA− λ free bacterium as well as in a recA+(λ) lysogen, but not in a recA−(λ) lysogen, indicates that the λ repressor keeps the N-int operon from being expressed (Table 1). This implies that the λ segment of the hybrid immunity region lies on the left-hand side of the λA-4 immunity region. Furthermore, λA-4 must then be able to overcome repression of λ function since it forms plaques on recA+(λ) lysogens. Therefore, if λA-4 carries the right hand immunity region of 434, it also must have inherited the c17 and byp mutations from the λimm434 parent, which render it λ-independent.

Heteroduplex Mapping of the Immunity Region of λA-4

Heteroduplex mapping of the DNA isolated from λA-4 confirmed our initial impression that the phage carries a hybrid immunity region. When λA-4 DNA was denatured and renatured with λ DNA, electron microscopic examination revealed that there was homology in the left hand immunity region, but not in the right-hand immunity region. Schematic diagrams of representative electron micrographs are shown in Fig. 3. In Fig. 3A, the heteroduplex structure formed between λ and λimm434 DNA strands is shown. The two regions of nonhomology, iL and iR, are clearly identifiable. On the other hand, the heteroduplex structure formed between λ and λA-4 DNA strands shows only one region of nonhomology (region iR; Fig. 3B). In order to orient and measure the DNA molecules, the λ DNA used carried an insertion of foreign DNA, r32 (Brachet, Eisen and Rambach, 1970) which is located immedi-
Fig. 1. Genetic map of λ and the enlargement of its immunity region. For gene designation see Davidson and Szybalski (1971).

Fig. 2. Reciprocal products of recombination between $\lambda imm434c17byp$ and $\lambda sex3c1857z13$ within the short homology interval in immunity region. DNA of λ is represented by heavy lines and the heterologous 434 DNA by the chain-like lines.

ately to the right of the immunity region (Blattner et al., 1972; Fiandt and Szybalski, 1973). The single region of nonhomology found in λ and the $\lambda A-4$ heteroduplex is region iR, since it is located immediately adjacent to the r32 insertion. On the other hand, in the heteroduplex between $\lambda b519imm434$ and $\lambda A-4$, the nonhomology corresponds to the region iL, as based on its size and position in respect to the b519 deletion and to the right the m' end of the λ molecule (Fig. 3C). These results definitely prove that in the $\lambda A-4$ hybrid, the left-hand region iL of immunity is derived from λ and the right-hand region iR is that of phage 434. Moreover, the measurements of the heteroduplex between $\lambda bioN2-1nin5$ and $\lambda A-4$ DNA, together with the earlier data of Fiandt and Szybalski (1973), permit us to place the right end of the $\lambda-434$ homology interval between the iL and iR regions at 77.7% from the left terminus of the mature λ DNA molecule (see Fig. 3). As measured in the $\lambda/\lambda imm434$ heteroduplexes, the length of this $\lambda-434$ homology interval, which is variable, approached 0.3% λ. The measured distances from the ends of the homology interval to the corresponding left and right termini of the $imm434$ region (3.9 and 1.4% λ, respectively) agree well with the analogous but single-strand measurements (3.9 and 1.3% λ, respectively) of Westmoreland et al. (1969).

DISCUSSION

The experiments outlined in this paper demonstrate that we have isolated a phage with a hybrid immunity region, the left-hand side (iL) derived from λ and the right-hand side (iR) from 434. The heteroduplex studies confirm the conclusion that the recombination event which generated the $\lambda imm\lambda-434$ hybrid phage occurred within the interval of demonstrated $\lambda-434$ homology shared by the immunity regions of λ and
HYBRID IMMUNITY λ-434 PHAGE

![Diagram of heteroduplex λ DNA molecules](image)

Fig. 3. Schematic representation of heteroduplex λ DNA molecules obtained by annealing l and r strands of the corresponding phage DNAs, indicated at the right margin. Drawing B is a composite of two heteroduplexes: bioN2-1immX.434 and $\lambda r32/\text{immX.434}$. The size of intervals and the positions on the λ map, as measured from the left terminus of the mature λ DNA, are given in the percentage of λpapa genome length (Westmoreland et al., 1969). For absolute measurements of the end points of bioN2-1 and imm434 substitutions (corrected to 73.05 and 73.5 % of genome length, respectively, according to the most recent data of M. Fiandt, E. H. Szybalski, and W. S.), $r32$ insertion and $b516$ deletion, see Fiandt and Szybalski (1973) and Davidson and Szybalski (1971).

immX.434 Such a recombination event, then, defines an upper limit to the minimum number of nucleotides needed in a region of homology in order for recombination to occur between otherwise heterologous regions. Westmoreland, Szybalski, and Ris (1969) estimated the size of this short interval of homology to be at most 0.3 % of the λ DNA molecule. This corresponds to about 140 nucleotides (Davidson and Szybalski, 1971). However, this length appears to be an upper limit and the interval of homology might be shorter or consist of only partially homologous nucleotide sequences.

The properties of $\lambda A-4$, the genotype of which is $\lambda \text{sex3immX.434c17byp}$, were already discussed and are summarized in Table 1. The ability of $\lambda A-4$ to plate on the 434 lysogen might attest to the nonfunctionality or failure of synthesis of the hybrid repressor, but the constitutive expression of the N function also has to be considered when making comparison with the growth characteristics of $\lambda \text{imm434c17byp}$ in a lysogen immune to phage 434. If $\lambda A-4$ is truly virulent due to its cI-c17 phenotype, it should form plaques even if both its o_{α} and o_{κ} operators are repressed, which is possible only in the $(\lambda, 434)$ double lysogen. However, $\lambda A-4$ does not form plaques on this double lysogen. This might be caused by the sex3 mutation, which lowers the N expression, by the unexpected activity of the hybrid immX.434 repressor, or by the relatively high dose of λ or 434 repressors in the lysogens with double $(\lambda, 434)$ immunity. Since $\lambda cIc17$ virulence depends on the titration of repressor (Packman and Sly, 1968), it might be that the hybrid phage cannot titrate sufficient repressor to permit phage growth, especially since immX.434 carries only a single dose of each operator. Indeed, $\lambda cIc17$ is not virulent in multiple λ lysogens (Merrill and Gottesman, personal communication), and the sex3 mutation might be expected to lower still further the virulence of the $cIc17$ phages, if the derepression is incomplete and they partially depend on the N product.

It should be possible to answer some of these questions after crossing out the sex, $c17$ and byp mutations from the $\lambda A-4$. The sex mutation might be obligatory for tempering the lethality of the uncontrolled leftward transcription because of the Tof- pha-
not p(l of X:1-4? since thci Tof function of phagc 431 cannot control thr oL nprrator of X (P era, 1971). That cl7 alld bylj mutations might also be obligatory since λser3 mutants do not plate.

Assessment of properties of the hybrid λ·434 repressor protein would be quite interesting in view of the functionality of other hybrid gene products of λ hybrid phages: the putative hybrid O product of φ80hy42 (Szpirer, 1972), hybrid exo product of φ80hy1 (Szpirer et al., 1969) and the eII product of λimm21hy1 (Liedke-Kulke and Kaiser, 1967).

ACKNOWLEDGMENTS

The authors thank W. Folk for his suggestions in the preparation of this manuscript.

Experiments done in the Laboratory at the University of Michigan were supported by a Grant from the National Science Foundation (GB-29595), funds from the University of Michigan Cancer Institute and a faculty research grant from the Horace Rackham Graduate School. Experiments carried on in the McArdle Laboratory for Cancer Research, University of Wisconsin, were supported by Grants from the National Science Foundation (GB-209G), and the National Cancer Institute (CA-07175).

REFERENCES

HYBRID IMMUNITY λ-381 PHAGE

