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Entringer and Erdos introduced the concept of a unique subgraph of a given 
graph G and obtained a lower bound for the maximum number of unique 
subgraphs in any n-point graph, which we now improve. 

1. A BOUND ON THE MAXIMUM NUMBER OF UNIQUE SUBGRAPHS 

We say a spanning subgraph H of a graph G with n points is unique if H 
is not isomorphic to any other subgraph of G. In other words, if 01 is an 
isomorphism mapping H onto a second subgraph H’, then H’ = H and 
01 is in fact an automorphism of H. Following [2], we write K, and K, for 
the complete n-point graph and its complement. Obviously G itself is a 
unique subgraph, and so isR, . Letf(G) be the number of unique spanning 
subgraphs in G, and let 

f(n) = max{f(G) : G has n points}. 

Entringer and ErdBs [l] used a clever device to construct an n-point graph 
G for each c > 3 d2/2 having 

j(G) >, 2n2/2-cn3’“. (1) 

This provides a lower bound for j(n). By a slight modification of their 
construction and by means of a related lemma, we are able to improve this 
bound. 

THEOREM. For each c > 2, there exists an N = N(c) such that for all 
n 3 N, 

2n2/2n-Cn <j(n) < 2~2/2-n/2e (2) 
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Proof. The upper bound for f(n) is trivial since it is simply the total 
number of possible labeled graphs on n points, as observed in [2, p. 1781. 
The lower bound is the more difficult part and, for clarity, we first examine 
a very special case. 

Special Case. 

11 = (‘:‘) + {ck) with k > 3. 

For convenience, we write 

m = (‘t’). 

We proceed to construct a graph G which will have many unique sub- 
graphs. Let A be a {&}-point identity graph having maximum degree 3. 
Such graphs are known to exist for {ck} 3 6, see [2, p. 1611. Let B be the 
complete graph K, . We form the n-point graph G by setting up a one-to- 
one correspondence between each point of B and each k-subset of V(A), 
the point set of A. We then join each point of B to its k corresponding 
points in A to obtain G. 

Now each B-point of G has degree m - 1 + k, but each A-point of G 
has degree at most 3 + km/{ck} < 3 + m/c. Now suppose H is a sub- 
graph of G obtained by removing the lines of a subgraph J of B having 
maximum degree at most m(c - 1)/c. We claim His a unique subgraph, 
for, if not, then there is an isomorphism oi mapping H onto H’ # H. Now 
all the B-points in H have degree greater than that of the A-points in G, 
and so 01 must permute the B-points. Similarly, 01 must permute the A- 
points. But A is an identity graph and all its lines are in H. Therefore, 01 
restricted to A is the identity. Moreover, each B-point is joined to a unique 
k-subset of V(A), and so each B-point is also fixed by ~11. Thus ol is the 
identity automorphism, and His an identity subgraph of G. It remains to 
estimate how many subgraphs of K, have maximum degree at most 
m(c - 1)/c. Call this number g(k, c). 

LEMMA. For every E > 0 and c > 2, there exists a k, = k,,(c, E) such 
that, for k > k, , 

2(:)(1 - E) < g(k, c) < 2(:). (4) 

Proof of lemma. Once again, the upper bound is trivially the number 
of all m-point labeled graphs. To obtain the lower bound, we use a crude 
but adequate estimate on g(k, c), the number of labeled graphs having 



158 HARARY AND SCHWENK 

maximum degree at most A = [m(c - 1)/c]. Only those graphs having 
larger maximum degree fail to contribute to g(k, c). There are m ways 
to select a point which is to have degree larger than d, then there are 
2(nz-1)(nz-2)/2 ways to add lines among the remaining 1)2 - 1 points, and 
finally, (“;‘) ways for that point to have degree i > d . We have shown that 

g(k, c) >, $2 _ m $3 *--l 

(5) 

We now proceed to simplify (5) by further estimation of these bounds. 
First, we recognize 2l+ times the sum in (5) as the probability that a 
random variable x from a binomial distribution of m - 1 trials exceeds 
A (see Lindgren and McElrath [3, p. 611). Writing this as P(x > A), 
we obtain 

g(k 3 c) >, 2(:){1 - mP(x > A)>. (6) 

But for large m this probability is accurately estimated by a normal 
distribution with mean (m - 1)/2 and standard deviation Vm - l/2, 
which can then be expressed in terms of the normal distribution 

(see [3, p. 991) to yield 

P(x > A) = P(x < m - A - (7) 

But now 

m/2 - (A + I) < m/2 - m(c - 1)/c = m(2 - c)/2c, (8) 

so since @ is monotonic we can replace the lower bound in (6) by 

g(k, c) >, 2(:){1 - m@(m(2 - c)/c d/m - 1)). 

Now, since e-t212 < 3/t4 for all t < 0, we may bound @p(x) for x < 0 by 

Q(x) = J-1 e-te/2 dt < j-1 (3/t4) dt = -11/x3, (10) 
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so that we may replace @ in (9) by the larger quantity 

to obtain 

-(c G--x-/m(2 - c))” 

g(k, c) 2 2(Y){l + 331c3(111 - 1)3/Z/(2 - c)” m”}. 

Recalling that c > 2, we find 

(11) 

g(k, c) > 2(?)(1 - c”(m - l)“l”/(c - 2)3 Hz”>. (12) 

Consequently, given any E > 0, we may choose k, so that m is large enough 
to assure that 

g(k , c) > 2(:)(1 - E) (13) 

for k 3 k, , as required. 
We now return to the proof of the theorem. By our construction, 

Recall that 

f(G) 3 g(k, c) > 2(:)(1 - E). 

m = n - {ck} and m = (y’) > p 

so log m > k log c, and hence 

man-I---ck 

>n-l- c log mJlog c 

5 n - 1 - c log n/log c. 

Thus, defining 6 by the equation 26 = 1 - E, we have 

(14) 

f(G) 2 &:)(I - E) = 2m(m--1)/2+6 

> 2(n-1-c log n/log c)(n-z-c log n/log c,/z+s 

> p/z-cn log n/log c+cp+c,1og n+c3+a (16) 

for appropriate constants c 1 , c, , and c3 . Now log c > log 2, so we observe 
that 

p2/2--en logn/logc+eIn+c~log R+Ca+6 > 2”~/2--cnlog n/log 2. (17) 
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Consequently, we have the result of the theorem 

f(G) > 2 n= 2 cnlog n/log2 = 2n=j2-en 1oga7z = 2n2/2-n/2 ’ - (18) 

It is important to keep in mind that this was accomplished under the 
assumption that n = ({“,“I) + {ck}. To handle the general case of other 
values of it, we choose k so that 

( 
{c(k - I>> k _ 1 ) + {c(k - 1)) < n d (‘c,“‘) + {ckl. (19) 

We now proceed to define G in a similar manner, only now just some of 
the ({?I) subsets of A of size k are used. The bounds that arise are con- 
siderably more intricate, but the same sorts of crude estimates again 
suffice, and, omitting these tedious details, we again obtain equation (18) 
for all n > N as specified in the theorem. 
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