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The stabilizing effects of interhabitat migration and local population extinc- 
tion are established by an analysis of the variable Pi, where P, refers to the 
proportion of habitats occupied by species i. This is followed by an analysis 
of the qualitative nature of changes in regional and local factors and 
their influence on establishing stable or unstable conditions. It is seen that 
the appropriate balance between interhabitat migration and local popula- 
tion extinction is capable of stabilizing an otherwise unstable predator- 
prey interaction in a wide variety of situations. 

1. Intmduction 

The original equations of Lotka (1925) and Volterra (1926) relate predator 
density to prey density and predict structurally stable permanent oscillations. 
These solutions are unrealistic from a biological point of view because the 
trajectories are dictated by the boundary conditions. Addition of density 
dependent negative feedback to each population yields a system which 
exhibits damped oscillations. However, at least a few real cases are known 
where populations of predator and prey undergo oscillations of ever increasing 
amplitude until the system goes extinct. In fact it is this qualitative result 
which is most commonly obtained in artificially constructed laboratory 
situations of predator-prey interactions. Rozenzweig & MacArthur (1963) 
extended these basic equations by exploring the qualitative effects of adding 
positive density dependent feedback to the prey population. This results in 
unstable oscillatory conditions, as commonly observed in most laboratory 
systems. Thus, in general, mathematical models give the qualitative results 
that predator-prey systems should have damped oscillations if both predator 
and prey exhibit intraspecific negative density dependent feedback, unstable 
oscillations if the prey exhibits positive density dependent feedback. 

Lloyd (personal communication) has shown, for arthropod communities 
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occupying beach litter in England, that the process of local extinction is 
important in maintaining species diversity. This suggests that unstable 
biological conditions may exist for local geographical areas, yet extinctions 
over a larger region are not evident due to migration from neighboring areas. 
Two recent papers (Levins 8c Culver, 1971; Horn & MacArthur, 1972) 
have provided possible mechanisms for the stabilization of potentially unstable 
competitive interactions. Following the basic ideas introduced in those two 
papers, the present communication shows how an unstable predator-prey 
oscillation can be stabilized under appropriate environmental heterogeneity. 
Further comments will then be made on the effect of variable utilizations 
of the environment by the predator and the prey, and the effect that this 
might have on the stabilization of the inherently unstable system. 

2. Qualitative Results 

The model follows the procedure of Levins & Culver (1971) and Horn & 
MacArthur (1972) in considering an environment composed of discrete 
habitat units some of which are occupied by the predator, some by the prey, 
some by both, and some by neither. Let p be the proportion of the habitats 
that are occupied by the predator and q the proportion that are occupied by 
the prey; what are the circumstances which lead to p and q having positive 
stable values after the system reaches equilibrium? The conditions leading to 
stability are related to migration and extinction rates for both predator and 
prey, and the way in which migration rates are related to total habitat space. 

Given an environment of a particular size (i.e. a particular number of 
habitats), suppose that there exists an unstable predator-prey pair in each of 
the habitats. Suppose further that each of the species migrates from habitat to 
habitat at a given rate, and goes extinct locally at a particular rate. Let the 
extinction of prey populations be proportional to the proportion of habitats 
occupied by predators and the extinction of predator populations be propor- 
tional to the proportion of habitats not occupied by prey populations. 
Qualitatively such a system can be stable in the sense that a constant propor- 
tion of habitats will be occupied by both predator and prey, even though 
each individual habitat contains an unstable system. The qualitative general- 
izations are that the system will tend to become regionally stabilized (i) as the 
predator’s migration rate decreases, (ii) as the predator’s extinction rate 
increases, (iii) as the prey’s migration rate increases, and (iv) as the prey’s 
extinction rate decreases. 

A further set of qualitative conclusions has to do with changing migration 
and extinction rates as functions of generalized environmental factors. We 
can imagine two sorts of factors which might operate-regional factors and 
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local factors. Since extinction rates have to do with the dynamics of the 
predator-prey interaction as it exists within individual habitats, we conceive 
of local factors as affecting extinction rates. Similarly we conceive of regional 
factors as affecting migration rates. 

First consider factors which might operate at a regional level, such as an 
increase in the effective distance between habitats or barriers introduced 
between habitats. Beginning with an initially unstable system, the regional 
factor might operate either to stabilize an unstable system or destabilize a 
stable system. Stabilization of an unstable system will occur if the predator’s 
migration rate decreases more rapidly than does that of the prey, or if the 
prey’s rate of migration increases more rapidly than does that of the predator. 
As the prey’s migration rate becomes large relative to that of the predator, the 
system tends to be stabilized. 

Next consider the effect of changing local conditions. The way in which 
organisms move among the habitats remains constant, but within each 
habitat something happens to change the local extinction rates. Again 
beginning with an unstable system, increase in the predator extinction rate 
or decrease in the prey extinction rate tends to stabilize the system. 

3. Details of the Model 

Consider the following system of equations : 

dp 
z = kP(l -Pl-P1(l--4)P, 

dq 
z = Ml -4)-PLzP4, 

where p refers to the proportion of habitats occupied by the predator, 
q refers to the proportion of habitats occupied by the prey (note that p +q is 
not necessarily equal to one), 1, is equal to the migration rate of the predator, 
1, is equal to the migration rate of the prey, ,ur is equal to the extinction rate 
of the predator and p2 is equal to the extinction rate of the prey. The first 
term in both of the above equations simply stipulates the way in which the 
environment becomes saturated, given a constant interhabitat migrating 
propensity. The second term in the first equation gives the proportion of 
those habitats occupied by predators that are likely to be rendered predator- 
less, ~~(1 -q). The second term in the second equation gives the proportion 
of those habitats occupied by the prey which are likely to be rendered 
preyless, p2p. Setting the derivatives equal to zero and cancelling constant 
multipliers we obtain 
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Note in the above equations that whenp = 0, q = 1 for equation (2) and when 
4 = 1, p = 1 for equation (1). Given these constraints on the system it can 
be seen that there are two possible outcomes, both illustrated in Fig. 1. 
In case 1 we have a system which oscillates, the oscillations damping ultimately 
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FIG. 1. The two possible solutions for the basic equations. 

to an equilibrium point. In case 2 we have an unstable system where the 
system degenerates to zero prey populations. The condition under which 
case 1 (stability) is obtained is given as 

1 < ‘22 + !!! 
P2 4’ 

(3) 

while reversal of the inequality stipulates the condition for case 2. The 
qualitative results as described in the previous section are easily derived 
from relation 3 or Fig. 1. Relation 3 is graphed in Figs 2 and 3 (note that 
whenever 1, > p2 the system is stable). The shaded area in Fig. 2 represents 
those combinations of I, and A2 for which the system as a whole will be 
stable and the shaded area in Fig. 3 represents those combinations of pr 
and p2 for which that system will be stable. 

We now consider the effects of regional changes in the system. That is, 
suppose the p’s remain constant and the I’s change as a function of some 
regional factor. In Fig. 4 are pictured all possible cases. If both predator and 
prey have their migration rates decreased by the same factor, we go from 
point A toward point B in Fig. 4, and the system will tend to destabilize. 
Note that this is usually the case even if both 1, and LZ decrease at exactly 
the same rate, a consequence of the fact that the function which separates 
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FIG. 2. Graph of relation (3) in A,, la space. 

FIG. 3. Graph of relation (3) in ,k, ~2 space. 

the stable from the unstable space is concave. If the predator’s rate decreases 
much faster than the prey’s we go from point B to point C, from an unstable 
system to a stable system. On the other hand, beginning with the unstable 
system at point B, if the predator’s rate decreases less rapidly than the prey’s, 
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FIG. 4. Changes from stable to unstable as a function of regional factors. 

we go from point B to point C and the system will never become stabilized. 
Thus, particular adjustments of regional factors can either destabilize a 
stable system or stabilize an unstable system. It should be recalled that 
stable or unstable in this context refers to regional stability, all systems in 
this model being locally unstable. 

It is interesting to pursue the special case in which both migration coeffi- 
cients decrease at the same rate as a function of the regional factor. This is 
equivalent to supposing that the migration rates correspond to the equation, 
I, = a+&, where a is constant referring to the value that A1 will have when 
A2 is equal to 0. The constant a can be positive or negative. We thus seek those 
values of a for which all combinations of A, and & which satisfy this linear 
relationship fall within the area of stability. Substituting the linear relation- 
ship, 2, = a+&, into equation (3) we obtain 

12 = ~(a-C12>+t-Ja2+2~2a+p~-401,C12). 

The value of 1, which gives equal roots to the above equation stipulates the 
limiting value of a which separates the linear relationships which are always 
stable from those which are sometimes stable and sometimes unstable. 
Applying the quadratic equation we see that this value is given by, 

The larger of these two values corresponds to the root of A2 which obtains 
when 1, is greater than 0. Thus we see that if the predator’s migration rate 
has a value less than 2dp1pL2 -pZ when the prey’s migration rate is zero, 
the system cannot be stabilized by a regional factor which affects both pred- 
ator and prey migration rates in the same way. If the value of the predator 
migration rate when the prey’s migration rate is zero is greater than that 
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value but less than pL1, an unstable system can be stabilized, either by in- 
creasing or decreasing migration rate. Furthermore by consistent changes 
in the migration coefficients, a stable system can be pushed first into an 
unstable system and further pushed into a stable system. These relationships 
are presented in Fig. 5. 

Fro. 5. Regions of AI, &, space in which a regional factor can or cannot destabilize the 
system (see text for explanation). 

Considering now the changes which might be effected by the application 
of a local factor changing in the system, we see that the results are perfectly 
analogous with the results of changing the regional factor. In Fig. 6 those 
results are presented. As we go from point A to point B we go from a stable 
to an unstable system, from point B to C from an unstable to a stable system 
and from B to D from an unstable system to an unstable system. Any local 
factor which operates in such a way that the extinction coefficients go from 
point B to point D in Fig. 3 is a factor which cannot stabilize the system. 

FIG . 6. Changes from stable to unstable as a function of local factors. 
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Similar to the previous analysis we can investigate the consequences of a 
local factor which operates to change the extinction rate for the predator in 
the same way that the extinction rate for the prey is changed. The results 
are analogous to the same analysis for the migration coefficients, and are 
presented graphically in Fig. 7. 

FIG. 7. Regions of pL, pea space in which a local factor can or cannot destabilize the system 
(see text for explanation). 

4. Hidden Asmmptiom of the Model 

The model presented in this paper as well as the similar model presented 
by Levins & Culver (1971) and Horn & MacArthur (1972) makes certain 
tacit assumptions about the manner in which migrations occur. In order to 
see these assumptions we consider the following simple probability model. 
Let p,(t) equal the probability that the ith habitat will be occupied by the 
predator at time t, and q*(t) be the probability that the ith habitat will be 
occupied by the prey at time t. Then we can write the following recursion 
equations to describe the process of predation in a system of H habitats 
pi(t) = pXt-At)qX1-At)+[l-pi(t-At)] 

X,~~~i,P~(1-A?)-lr;pXf-Az)[l-qi(r-Af)I, 
qi(t) = qi(t-At)[l-pi(t-A~)]+[l-qi(t-At)] 

X ~ 9~jqj(t-At)--I.L;qi(t-At)pi(t-At), 
j=i 

where p is analogous to p in the previous equation (the exact relationship 
will be shown momentarily) and gu and si, refer to the probability of migra- 
ting from habitat j to habitat i. If we presume that pi = pi, that is, the pro- 
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bability of a habitat being occupied by a predator is the same over all habi- 
tats, and likewise, qr = qj, and subtractingpi(t-At) from both sides of the 
first equation and q&t-At) from both sides of the second equation, 

pi(t)-pi(t-At) = 

(&)p&-At)[l -piCt--At)]-(1 +pL;)pi(t-Af)[l -q(f-At)], 
q,(t) - qitt - A0 = 

Cg’qi(t-A~)[l-qq(t-A~)]-(l+~L;)pi(t-At)qi(t-At), 
and letting At become very small we can write, 

dp 
2; = &PU -P)-w(I -4). 

dq 
2; = Ml -4)--P24P, 

where II, = cg, I, = cg’, cc, = I +&, and p2 = 1 + ~12, Thus, we obtain the 
original set of differential equations. However, by making the assumption 
that pi = pi and qi = qj, certain assumptions about the way in which the 
gi/ behave have been made. We must either presume that the gij are equal 
over all j, or that the values of the g’s are randomly allocated amongst 
habitat pairs at each A time unit. That is, in order for us to presume that the 
probability of finding individuals in any one habitat is the same over all 
habitats we must also presume that the probability of migrating from any 
one habitat to any other habitat is equal, or that the probabilities of migrating 
from habitat to habitat are drawn at random from some population, the 
mean of which is equal to the /I of the original differential equations. 

5. Discussion 

A model has been presented for the exploration of conditions which provide 
for the stabilization of locally unstable predator-prey situations. Beginning 
with a series of local predator-prey associations, each of which is unstable, 
equations are derived involving rates of migration from habitat to habitat 
and local extinction rates. Summarizing the qualitative results of the model, 
as the predator rate of migration becomes small in comparison with the rate of 
migration of the prey, the system tends to be regionally stable, and as the 
extinction rate of the predator becomes large relative to the extinction rate 
of the prey, the system becomes stable. 

The consequences of introducing potential stabilizing factors into the system 
are variable. For example, a potentially stabilizing factor which acts in such 
a way that the extinction rate of the predator is increased faster than that of 
the prey, results in the stabilization of a basically unstable system. This is 
exactly what was observed by Gause (1934) in the system where a flocculent 
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material was added to the bottoms of test tubes which contained a Para- 
mecium-Didinium unstable system. The flocculent material provided refugia 
for the Paramecium, thus decreasing its population extinction rate. As 
predicted by the model, that system tended to be stable. To the extent that 
the extinction rates tend toward zero we may be concerned with a locally 
stable situation and the consequences as presented in this paper are not 
particularly applicable. As hiding places are introduced for the prey such 
that predation intensity is less at low prey densities than it is at high densities, 
the extinction rate of the prey will go down in any local habitat. This will 
result in the stabilization of the system. 

Considering the effect of a potential stabilizing factor on the migration 
rates, we note that if the migration rate of the predator decreases faster than 
that of the prey, the system becomes stabilized. For example, the construc- 
tion of predator barriers between habitats, such that the predators have 
their migration rates decreased, is likely to stabilize the system. This is 
precisely the consequence that was observed in the experiments of Huffaker 
(1958) in which the predacious mite Typhlodromus occidentalis was not able 
to cross Vaseline trails as easily as the herbivorous prey species, Eotetranychus 
sexmaculatus. This system seemed to be more or less stabilized, whereas it 
had been shown previously that the system was unstable in any local area. 

The model presented in this paper has the rather stringent assumption 
that migration rates are either randomly dispersed over habitat pairs or 
constant over habitat pairs. Exactly what effect a different pattern of migra- 
tion will have on the qualitative consequences presented herein is not known. 
Currently investigations are underway to simulate such a system. It is thought 
that even though the basic differential equations are not truly applicable, 
various different patterns of migration can be accounted for by varying the 
rates of migration. 
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and to the ecology group at the University of Michigan who permitted my use of 
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