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Impact parameter variables are defined for a multiparticle production process. The equation of unitarity for 
elastic scattering is written at high energy in terms of these variables. The overall impact parameter can be ex- 
pressed in terms of the impact parameters of all the produced particles. The unitarity equation becomes an "optical 
theorem" at each impact parameter - diffractive scattering is given by beam depletion. These features allow this 
technique to give a much clearer interpretation of unitarity in any model than has therefore been possible. This 
technique can be used to study existing models, and to suggest new ones. 

Diffractive scattering at high energy is generally thought to be a rather direct consequence of  unitarity. If  a 
reasonably correct description of  the bulk of high energy processes were to exist, one could readily calculate dif- 
fraction - that is, the part of  high energy scattering described by the "Pomeron".  Only for such scattering do the 
contributions to unitarity dominantly interfere constructively. 

However, no sufficiently good description of high energy processes exists. Most of  the cross section is due to 
production processes, which are considerably less well understood than two-body processes. There are several com- 
peting models for these multiparticle production processes, none of which is in a sufficiently refined form to reali- 
ably calculate elastic (and other diffractive) scattering. 

Until now, when a calculation based on any of  these models has failed to reproduce the experimental results 
for elastic scattering (or when the calculation has succeeded in agreeing with some features of the data), it has not 
been clear whether the calculation should be taken seriously. Perhaps the failure was a consequence of some de- 
tails or perhaps a consequence of  general features of the model. It is the purpose of this work to remedy this de- 
fect in our ability to comprehend the structure of  unitarity for elastic scattering. We wish to understand which 
features of  the multiparticle amplitude are important in determining elastic scattering. 

There are two distinct types of features which might be important. First are those which are apparent in the 
data - such things as transverse momentum distributions, multiplicities, etc. These are features of  the absolute 
square of the amplitude, since they show up in the cross section. Second are features related to the phase of  the 
amplitude, and how the phase depends on the momenta of  the particles. There is no way of  deducing this phase 
directly from any multiparticle data. (In the case of particles with spin, relative phases between different ampli- 
tudes can be determined by polarization measurements. The unknown phase is the overall phase, which depends 
on the momenta of  all the produced particles.) 

In the case of two-body scattering at high energy, questions of  unitarity and phase have profitably been stud- 
ied by use of impact parameter as the relevant variable. This suggests that we attempt to understand multiparticle 
processes as well in the framework of  an impact parameter description. The impact parameter is the transverse 
position of a scattering particle, that is, it is its position in a plane perpendicular to the scattering direction. Thus 
we will introduce a transverse position, or impact parameter, for each of  the produced particles. These impact pa- 
rameters are, then, just the variables conjugate to the transverse momenta. 

As a scattering process occurs, all longitudinal positions are occupied at some time. Therefore there is no ap- 
parent advantage in replacing longitudinal momenta. We shall use the longitudinal momentum of each particle (or 
its rapidity) as the longitudinal variable. We shall see that this is a fortunate choice. In contrast, in the high energy 
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approximation in which the scattering proceeds primarily in one direction (the beam direction), only one trans- 
verse position is occupied by each particle. For this reason, impact parameter will be a useful description. 

For two-body scattering there is only one impact parameter, not one for each particle. This is a result of  the 
choice of  the origin in transverse space. The origin is chosen at one particle and the impact parameter is the posi- 
tion of  the other. We shall see that a similar phenomenon occurs for multiparticle states. In this case the arbitrari- 
ness of the choice of origin is more apparent. The choice is made to result in a slight calculational convenience; 
this choice, however, has absolutely no influence on the physics. 

So far, our discussion has lacked precision, and has been primarily motivational. For the idea to have real value 
it must be made precise, with controlled high energy approximations. Thus we next turn to the definition of im- 
pact parameter in multiparticle states, and to a calculation of  unitarity for elastic scattering. 

The impact parameter bj is defined as the variable conjugate to the transverse momentum kj. bj and kj are two 
dimensional vectors. An n-particle final state amplitude is transformed to 

The p/ 's  are longitudinal momenta, and are not transformed. 
The momentum conservation delta function makes this slightly different from an ordinary Fourier transform. 

/1~ is, as a result, only a function of  differences of  b's. A small amount of algebra establishes the inverse transforma- 
tion: 

M(kj,pj) = (2rm)2fj~ 1 [d2bj exp( - ik i .  Oi) ] M(bj,pj) 6 2 by -B  . (2) 

B o is completely arbitrary; since (transverse) momentum is conserved, there is an invariance under translations 
t 

bj -+ bj + (B o -Bo)/n. In what follows we will choose B o = 0 for simplicity. With this choice it is not  necessary to 
make explicit the dependence of  the matrix element only on differences on b's; that is 

1 ~ Oz., . (3) bj--bj-  J' 

We wish to compute the imaginary part of elastic scattering at all values of the impact parameter, or equivalent- 
ly at all momentum transfers for which t ~ s. In order to do this, we introduce a set of  high-energy approxima- 
tions, paralleling the usual high energy approximations for two-body impact parameter. We use the rapidity 1 
yj = ~- In (/~. +p/)/E I. - pj) as the longitudinal variable. With this choice, if a particle is fast, its energy is almost in- 
dependent of  its transverse momentum, E / ~  p/ ( fas t  particle). If, on the other hand, it is slow, it contributes little 
to the energy and longitudinal momentum conservation conditions (i.e. to delta functions in the unitarity equa- 
tion), except in an average sense if there are many slow particles. Thus we assume Y.E/= x/~- and E p / =  0 can be ap- 
proximately written in terms of  only the yj's. Related approximations are involved in the rotation o f  the multi- 
particle state by an angle which rotates the initial state of  elastic scattering to the final state. This rotation is given 
by p~ ~ p! - k/" Alp and k / ~  k~ + p]A/p where A is the momentum transfer in elastic scattering, t ~ - A2 and p 
is the incident center of mass momentum s ~ 4p 2, and we have assumed A 2 ,¢p2.  We make the approximations 
that the matrix element does not vary under the small shift in p/, and that the p~ in the shift o fk j  can be taken in- 
dependent of  variations in ki, either because p~ is large compared to k! and is approximately independent of  k/, or 
it is small and the variations of the term p/A/p as kj is varied are small compared to a typical k/. The set of  approx- 
imations we make can be shown to be good by numerical example. (Unless, for some entirely unknown reason, 
phases vary much more rapidly than magnitudes of  amplitudes.) 

These approximations allow the transverse kinematics to be separated from the longitudinal kinematics. Unita,:- 
ity for the elastic amplitude can be written 
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ImMel(A)=½(27r)4 Sf '~,  [ d2k/ d Y ] l M * ( P [ , k } ) M ( P ] , k ] ) 6 2 ( ~ - I k / ) 6 ( ~ I P ] ) 5 ( ~ E f - N / ~ )  • (4) 
n /=1 L(21r) 2 47rJ 1 

t 

Our approximations allow us to replace p} by p/. We then transform M* and M to impact parameters b~ and b~ 
respectively. 

We have the Fourier exponentials exp ( - i k / ' b / )  and exp [+i (k/+ Pf4/P)" b} ]. By virtue of our approxima, 
tions, the only k~ dependence is in these exponentials and in the transverse momentum conservations. Thus we 

t 
can do the k~ integrals explicitly, yielding delta functions of b / -  b/, and we can integrate the b] 's using these del- 
ta functions. Thus M* and M are finally evaluated for the same set of  coordinates. Carrying out this algebra in de- 
tail, with due regard for all the delta functions, we obtain 

, n [ dyj] 6 ()._~j p/) ~5 ()..~ X/~) (5, 
Im Mel (A) = ~ 7 (2704 (27rn)2fr-[ d2bj 47r ] E / -  

n ~/'=1 

Note again that this only depends on IM 12, rigorously, given our high energy approximations. Finally we transform 
this to the impact parameter of the elastic scattering 

1 n [  d Y l ] 6 ( ~ p l ) 5 ( ~ _ J E l _ X / ~ )  (6, Im Mel (b) = ~ ]  7 (2704 (27rn)2f [-I d2b i an ] 
n 1=1 

n 

This is the basic formula of our approach. (In the case with spin, the amplitudes must be taken to be s-channel 
helicity amplitudes, as they are in the ordinary two particle impact parameter representation.) 

The relationship between Mel (&) and Mel (b) is 

Mel (A) =fd2b exp(iA" b)~tel (b), (7) 

which differs by a factor 27r from the usual Hankel transform. 
Eq. (6) can be understood very simply. The longitudinal momentum and energy conservation delta functions 

are familiar enough. The next delta function (two dimensional) refers to the arbitrariness of the choice of origin 
in impact parameter space. It could just as well have been 82(2; b / -  Bo). It reminds us that M is really only a 
function of differences of b 's. The next two-dimensional delta function is new [ 1 ]. Many people [e.g. 2], guided 
by the multiperipheral model and their intuition have assumed either b = ZB/or  b = b 1 - b n , where 1 and n refer 
to, for example, the nucleons in pp ~ 2 nucleons + (n -2 )  pions. If the first of these is to be an approximation to 
the correct result, the B/'s must be taken to be differences of our b h 's: B/= b/, 1 - b]. In this case the B's are the 
variables conjugate to the transverse part of the multiperipheral momentum transfers: Bi *-" Q/, t~ = Q2 + longi- 
tudinal part. With this definition of B~, these two common assumptions become equivalent. They represent an ap- 
proximation to our result. Ifp 1 ~ p, Pn "~ -P, all other p's < p, then Y~(p] b//p) ~ b 1 - b n. However in the ab- 
sence of a definite leading particle, our formula for b is a much better approximation. 

Our expression for b allows a simple interpretation. It can be written as pb = Y~p/b/. Rotating by 90 °, we ob- 
tain b X p = ~b/X p/. Thus the overall impact parameter is given by angular momentum conservation. This is not 
surprising because the p//p factor arises from the rotation of the amplitude from the initial to final elastic scatter- 
ing states. Our approximations have amounted to dropping small complicated parts of the total angular momen- 
tum. 
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A very important part of our result is that it is diagonal; we only need to know the absolute square of M, not 
its phase, in order to calculate Im Mel. We have an "optical theorem" at each impact parameter. The integral over 
impact parameter gives the ordinary (observable in practice) optical theorem. Unfortunately, however, impact pa- 
rameter is not in practice accessible to experimental measurement. We need to know the phase in order to trans- 
form to transverse momentum. 

The technique presented here can be used to investigate the high energy elastic scattering predicted by any 
model for multiparticle production. This method is especially useful as a qualitative tool. The calculation is done 
in a series of three steps. First, the multiparticle amplitude is transformed to impact parameter. An uncertainty 
principle can often be invoked at this step. The transverse momentum distribution, do/dk, is experimentallyanea- 
sured, and therefore constrains the distribution in the conjugate variable, which is impact parameter. The second 
step is to use beam depletion at each impact parameter, by summing over each cross section an using angular mo- 
mentum conservation as expressed by b = Y,x/b/. At this step one does not need to worry about cancellations 
from different contributions; all cross sections are positive, so any contribution can only add to the amount of 
beam depletion. The third step is to transform the elastic amplitude to momentum space and compare with elastic 
scattering data. This third step is most conveniently done in reverse. The high energy elastic scattering amplitude 
is dominantly imaginary. Thus, the amplitude is essentially known and can be transformed to impact parameter. 
Moreover, the elastic scattering itself contributes a rather large, and known, amount to the unitarity sum building 
itself. This contribution can be subtracted, yielding the "overlap function" introduced by Van Hove [3]. This 
overlap function is the beam depletion caused by multiparticle scattering, and can be compared with the beam 
depletion of the model amplitude. 

Such a comparison, in addition to testing existing models, can suggest new models whose structure naturally 
corresponds to the overlap function. An application of this technique to the multipheral model is the subject of 
another paper [4], and new models will be proposed in future publications. 

In summary, a new way of carrying out unitarity calculations has been presented. This method involves 1) 
transforming from transverse momenta of produced particles to the conjugate variables, which are called "impact 
parameters", 2) using beam depletion and angular momentum conservation to calculate elastic scattering in im- 
pact parameter, and 3) transforming back to momentum transfer. Eqs. (1), (6) and (7) express these three steps. 
This method can be applied to multiparticle models, both existing and new. 
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