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The modified two-stream approximation is derived from the radiative transfer 
equation using a two-point gaussian quadrature and neglecting terms of order 
2 > 3 in the Legendre expansion of the phase function. The results are compared 
with the Eddington approximation and with exact results for the special cases of 
perfect absorption, perfect scattering, and a semi-infinite layer with isotropic 
scattering. 

The modified two-stream approximation 
developed by Sagan and Pollack (1967) is 
useful for problems involving the trans- 
mission of diffuse radiation through scat- 
tering and absorbing layers, or for evaluat- 
ing the spherical albedo of such layers for 
direct radiation. It has been used, for 
example, by Rasool and Schneider (1971) 
in calculating the effect of aerosols on the 
global climate. 

The purpose of this note is to clarify 
some points in the derivation of this 
approximation and to compare it with the 
Eddington approximation. The results of 
both approximations are then numerically 
compared with exact results in the three 
special cases of perfect absorption, perfect 
scattering, and a semi-infinite layer with 
isotropic scattering. 

Sagan and Pollack’s derivation begins 
with the transfer equation, which may be 
written as follows: 

where I(T, p) is the specific intensity and 
p(t.~, p’) is the scattering phase function, 
both averaged over azimuthal angles. T is 
the optical depth and p is the cosine of the 
angle between the direction of propagation 
and the vertical. 

From this equation, Sagan and Pollack 
immediately write down the two-stream 
equations as follows : 

-1 dI_ 
1/3x = -I- + I-&( 1 - j3) + I, &JI 

where G, is the single-scattering albedo and 
/I is a measure of the fraction of radiation 
singly scattered into the backward hemis- 
phere of the incident radiation. I+ and I- 
are identified as the average specific 
intensity in the positive and negative p 
hemispheres, respectively. The factor l/1/3 
is explained as an appropriate average 
value of p in the two-stream approxi- 
mation (this value is derived from Gauss’s 
quadrature formula, as shown by Chandra- 
sekhar, 1960). 

Using these equations with the boundary 
condition of zero radiation incident on the 
bottom of the layer, Sagan and Pollack 
derived the following expressions for the 
reflectivity, transmissivity, and absorp- 
tivity of the layer : 

,@= (u + l)(u - 1) [exp(Teff) - exp(--7efp)I 
(u + 1Yexp keff) - (u - 1j2 exp (-T,~‘) 

(3) 
y= _~~ - -~ __ -- “----_-- 

(u + 1)’ exp beff) - (?h - 1J2 exp (-T,~~) 
(4) 
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d=l-L?J-~ (5) 

where 

u2 _ 1 - 80 + V&o 

1 - Go (6) 

Teff = [3(1 - a,) (1 - Go + 2/%,)]“%,. (7) 

By comparing these results with those 
of Piotrowski (1956) in the case 6, = 1 
and pi % 1, Sagan and Pollack arrived at 
the following expression for /I : 

/3= &(l - +G,) (8) 

where ij, is the first-order coefficient in the 
Legendre expansion of the phase function. 

The two-stream equations (2) and the 
correct expression for ,5 follow directly 
from the transfer equation if I+ and I- 
are identified instead as the values of 
the specific intensity at 

p=*L 
d3 

(the first-order gaussian quadrature points, 
or the zeros of P2). Substituting these 
values of p into the transfer equation, and 
setting 

we obtain 

1 dI+ 

~‘3 dT 

-1 dl- 

1’3 dT -1-t; s I -1 

-1 
I(T,P’)P 73>~’ W. (11) ( 1 

Using the two-point gaussian quadrature 
formula (Chandrasekhar, 1960, p. 61) these 
integrals may be written 

If the phase function is expanded in a 
series of Legendre polynomials with co- 
efficients 8,, we have from the addition 
theorem of spherical harmonics (Chandra- 
sekhar, 1960, p. 150) 

1)(/-h P’) = [i04 PI(P) Pl(P’). (13) 

Dropping terms of order I> 3, we then have 

P(*&‘&)=8,*g~, (14) 

p(*$$)=8,fj~~. (15) 

The two-stream equations (2) then follow 
directly from (lo), (1 l), and (12), with 

(16) 

which is the correct expression in the case 
Lb,< 1. 

To reiterate, the important points in the 
derivation of the two-stream equations 
are (1) the use of the two-point gaussian 
quadrature for the evaluation of the 
integral term in the transfer equation, and 
(2) the neglect of the terms of order 1> 3 
in the Legendre expansion of the phase 
function. 

In deriving the expressions for the 
transmissivity and reflectivity from the 
two-stream equations, the further assump- 
tion is made that the hemispheric flux in the 
upward and downward directions is pro- 
portional to the intensity at 

p=*-$. 
This is essentially the application of the 
two-point gaussian quadrature to the flux 
integral. 

In the Eddington approximation, the 
specific intensity is expanded in a series of 
Legendre polynomials which is truncated 
after the first two terms. That is, 

I(T, CL) = I,(T) + I,(T) P- (17) 

The equations which result from the 
substitution of this expression into the 
transfer equation (Shettle and Weinman, 
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1970) are equivalent to the two-stream 
equations under the change of variable 

These equations may be solved, with the 
boundary condition of zero upward flux 
at the lower boundary, to yield the reflec- 
tivity and transmissivity as in the case of 
the two-stream approximation. The results 
of the Eddington approximation may be 
written in the same form as the two- 
stream approximation, except with 

&3l- ij, + q38, 
4 l-&a . (19) 

These results are plotted and compared 
with exact results in Figs. l-3 for the three 
special cases 8, = 0, &, = 1, and 7i = co. 

In the case ~5, = 0, the two-stream and 
Eddington approximations give nearly 
indistinguishable values of the trans- 
missivity, although the expressions are 
different. In this case the transfer equation 
can be solved exactly (the integral term 
vanishes), with the result 

r = 2Ej(T,), WV 
which is also plotted in Fig. 1. 

For CZ,, = 1, the two-stream approxi- 
mation gives slightly greater values of the 
reflectivity than the Eddington approxi- 
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FIG. 1. Transmissivity of a perfectly absorbing 
layer of optical thickness -rl. 
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FIG. 2. Reflectivity of a perfectly scattering 
layer of optical thickness TV, with BI = 36&g. 

mation. The former is in somewhat better 
agreement with the exact results computed 
by Hansen (1969) for small TV, while the 
opposite is true for large T,. 

For a semi-infinite layer with isotropic 
scattering (71 = CC, ~55, = 0) the two-stream 
approximation gives decidedly better re- 
sults than the Eddington approximation, 
as compared with the exact results com- 
puted by Chandrasekhar (1960, p. 125). 
The Eddington approximation, in fact, 
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FIG. 3. Reflectivity of a semi-infinite scattering 
and absorbing layer, with isotropic scattering 
(a, = 0). 
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yields a negative reflectivity when u < 1, or 

(21) 
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