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The model assumes that when two high energy particles collide each behaves as a geometrical object which has a 
Gaussian density and is spherically symmetric except for the Lorentz-contraction in the incident direction. Folding 
the two spatial distribution together we obtain the slope (b) of the elastic diffraction peak in terms of the c.m. 
velocities (~i and ~j) and the sizes (A i and A/) of the two incident particles. These sizes are assumed to have the 
experimental s-dependence of o,^. ,~ nA 2 for each reaction. The combiged s-deoendence of the o.^.'s and the 

r u t  | o 2 ~ 2 " ; ~  r u t  

#'s gives the s-dependence of the elastic slope b#-(s) = ~(A~# i +Af#] ) a~ot(S)/O~ot(~*). This formula agrees with 
the experimental slope for p-p, p-p, K+-p, K--p and n ~-- p elastic scattering from 3 to 1500 GeV/c, with only 
3 parameters: A~ = 6.1, A~( = 3.3 andA~ = 10.5 (GeV/c) -z. 

Recently ISR results on elastic [1 ] and inclusive 
[2] scattering have renewed interest in geometrical 
models for high energy proton-proton scattering. 
Such model have been studied for the last 10 years 
even though they are never completely fashionable. 
Serber's [3] optical model for elastic scattering was 
probably the first geometrical model, and it was soon 
followed by the models of  Krisch [4], Van Hove [5], 
Wu and Yang [6] and others. Models with at least 
some geometrical aspects have been applied to in- 
clusive reactions by Van Hove [5], Krisch [ 7 - 9 ] ,  
Hung [10],  Yang et al. [1 1], Feynman [12] and 
others. 

A nice feature of  geometrical models is that they 
led to some predictions for very high energy cross 
sections which now seem supported by ISR data. 
Yang et al. [1 1 ] predicted that inclusive cross sections 
would approach a limit using a model that is at least 
partially geometrical. Feynman [12] predicted that 
the inclusive pion production cross section E d3o/dP 3 
would be s-independent when plotted against X and 
Pl. The variable X, which is a vital part of  Feynman's 
model, was essentially suggested earlier by Huang [10] 
using the Lorentz-contracted geometrical model [7, 8] ; 
and Feynman's model itself seems partially geometrical. 
ISR data indicate that indeed E d3o/dP 3 is s-indepen- 
dent for X > 0.1 from 12 to 1500 GeV/c 2. These 
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predictions of  geometrical models for inclusive reac- 
tions were recently discussed [9] and we will not 
stress them here. 

The Lorentz-contracted geometrical model also 
predicted that the shrinkage of  the p - p  elastic dif- 
fraction peak would disappear ar ISR energies. 
Krisch [8] suggested that the elastic cross section 
should depend only on ~2p2; therefore the slope b in 
an e bt plot should be proportional to ~2, the square 
of  the c.m. velocity of  each proton. In fact he pre- 
dicted that the pp cross section should have the 
form: 

dot  I mb 2~1 = 90 exp(_  lOfl2p~) 
dt (G~-}c) 

(1) 
+ 0.74 exp(- 3.45~2P~) + 0.0029 exp(-1.45~2p~). 

Recently Leader and Pennington [13] and others 
[14] showed that in the diffraction peak this pre- 
duction was verified by the ISR data. They also in- 
troduced a new variable n 2 that is mathematically 
equal to/32P 2 for p - p  scattering, but has a group 
theoretic rather than geometrical origin. 

2 2 Eq. (1) also predicted the large/] P± behavior of  
high energy elastic scattering. The t refers to particle 
identity effects near 90 ° which depend on the spin- 
dependence of  p---p scattering which remains to be 
studied. Some deviations [15, 16] have been found 
in the range ~2p2 = 1 ~ 4(GeV/c) 2. In fact it now 
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appears that the 2nd region of  this "onion" model may 
disappear at very high energy; recent ISR data [17] in 
this 132p 2 range appears to lie almost on the 
e x p ( -  1.45/32P 2) line. But the ISR data have large 
errors and we must await more precise data from the 
ISR and NAL to settle the large ~2p2 behavior. We 
will concentrate here on the elastic diffraction peak 
where there is precise data up to 1500 GeV/c [ 1, 18]. 
The model did not predict the newly discovered for- 
ward peak [p2 < 0.1(GeV/c)2] which may be another 
region of  the onion, tlowever as will be shown later, 
the s-dependence of  the slope is also proportional to 
/32 in this region [9]. Nevertheless we will concentrate 
on the region 0.1 < p2 < 0.5 [GeV/c] 2 where the data 
are most complete. 

In our earlier papers [8] we did not satisfactorially 
treat the case of unlike particles. We did plot the rrp 
elastic cross section against t32p 2 and found a good 
fit; however we were arbitrary [19] in using the 13cm 
of the pion rather than the proton. Moreover, we sug- 
gested the the s-dependence of  Otot(p--p) was respon- 
sible for the anti-shrinkage of  the ~--p slope; but we 
ignored the non-negligible s-dependence of  Otot(rr-p) 
in fitting the rr-p elastic slope. 

In this paper we attempt to properly treat non- 
identical particles and the s-dependence of  Oto t. We 
now assume that when two high energy particles i and 
j approach each other the "interaction probability 
density" p~/for elastic scattering is proportional to the 
product of  the densities of  " s tu f f '  in each of  the two 
particles. This p# is analogous to a potential, but is 
formally defined by the fact that its Fourier trans- 
form is the elastic scattering amplitude: 

-d-iJ/-d-//o = I f ¢ i 2  : Ifd3e exp{iP" R}O0"(R)I2 (2) 

In our earlier papers we considered only pC. itself and 
did not try to relate it to the densities of  the individual 
particles. However, Yang et al. [20] have proposed that 
strong interactions are proportional to the product of 
the "stuff" of the two incident particles. We find such 
a product relation quite necessary to study the case 
of unlike particles. We therefore define a structure 
function ~ot(R' ) which describes the distribution of 
stuff in each particle as a function of  R '  the distance 
from the center of  the particle. 

The interaction probability density depends on R, 

the distance between the two incident particles at the 
instant they scatter. Note that the perpendicular 
component of  R is R± the impact parameter. To obtain 
the proper dependenc of  p on R we must fold together 
~t(R') and ~0/(R');not just multiply them. Thus pv(R) 
is the convolution of  the two functions 

O¢.(R) : f d3R'~i(R ' -½R) ~o/(R' +½R) . (3) 

Now we consider the functions 'Pi which describe 
the particles. When i and /approach  each other, each 
appears to be squashed down by the Lorentz-contrac- 
tion when viewed from the c.m. frame. However the 
less massive particle will be squashed down more be- 
cause of  its larger 7-factor. 

"[i~i = Pcm/Mi ; 7]~/ = e m / m / . .  (4) 

The particles might also have different characteristic 
sizes A i and A]. We assume that the particles are 
spherically symmetric except for the Lorentz-contrac- 
tion. Finally we assume ¢i is Gaussian in R ' ;  while 
this is independent of the other assumptions it simpli- 
fies calculations and apparently agrees with experiment. 
Thus we have assumed that 

7i - exp{---~2(X'2+y'2+Z'2"~2)~ (5) 
3'2 t A i 

The normalization was chosen so that 

fd3R ' % ( R ' )  = 1 . (6) 

This results in dimensionless cross sections and thus 
only give information about the slope, which is what 
we want. 

We obtain the interaction probability density by 
substituting eq. (5) for the structure functions ~o into 
eq. (3): 

p¢.(R)- 7i7] f dX'dY'dZ' 
(rcA iA/) 3 a (7) 

×exp{-~[(X ' - -X)2+(Y ' - -Y)2+"[2CZ' - -Z)2]}  

[ A/ 

This integral can be done exactly and the result is 
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exp{_[X:tV  + z_: 
PO "(R) = 3/2 2 2 2 2 2 2 3/2 7"( (A i +A/ XAi /7i +A/ /"['] ) 

The elastic scat ter ing ampl i tude  is the Four ier  trans- 
form of  P0" as s ta ted  in eq. (2). Taking the Four ie r  
t ransform of  eq. (8) gives 

exp 

Now for elastic scat ter ing conservat ion of  m o m e n t u m  
implies that  

p2 = p2 2 
II cm - Pi " (10)  

Therefore  f#{P) can be rewri t ten as 

f , (P)=exp{ -¼[{A2(  1 - 7 ~ . 2 ) + A 2 (  1 -~/2/}P~ 

+{A 2, 2 + A 2 ,  2~p2 "1 il'ri s/v) ~ emJj' (11) 
To simplify this we define the parameters 
(A/3eff) ~ = ½ [A2(I  - l/"y 2) + A2(I--'),2)] = 

2 2  2 2  
= ½ [ A i ~ i + A  s #  ] , 

(A/3,eff)~ = ½ [A2/T 2 + A2h'2] . (12) 

Then the elastic scat ter ing ampl i tude  is 

(AtL,~)~e,2+ f # ( e ) = e x p [ - ½ [  ~,,O" ~ ( A ' ~ 2 p 2  ] 
\~-~'ffJ# cmj }" (13)  

Since Pcm = TfiMi = "f/[J/Mj the second term in the 
exponen t  is equal to 

A" ,2p2  = [A2G2M2+A2B2M21 . 
/~'eff)(~ " cm • i"i i j r,j j ,  (14)  

In the high energy l imit  this approaches  the constant  
[A~M~+A/M~Ibut in any case this term cer ta inly  
has no angular dependence  so it can be absorbed* into  
do/dt)o. Then the different ia l  elastic cross sect ion is 

• This A2/32M ~ term may cone from the fact that our model 
is 3-dimensional; in ref. [81 we used a 4-dimensional model 
and the T term exactly cancelled the A2/32M a term. itow- 
ever, as stated above, we are only studying the s-dependence 
of the slope of the cross section and ignoring the s-depen- 
dence of its magnitude, so we will not stress this point. 

do "" do~# 2 ~-[~=~t-joeXp(--½[A2fj2+A/~2] P± ). (15)  

Notice that  for p - p  scat ter ing Ai~ i = Aj~j so that  
eq. (15)  reduces to 

do\~ do\$ :  )0exp(A2 2P ), <,6) 
which was so successful in f i t t ing the ISR data. 

Next  we consider  the effect  of  the s-dependence of  
Oto t on the elastic slope. Since elastic scat ter ing is the 
dif f ract ion scat ter ing caused by  the inelast ic scattering,  
both  types of  scat ter ing must  occur  in a Gaussian region 
of  a f ixed size** and shape. Therefore  any s-dependence 
in Oto t may  indicate  an s -dependence  in the size of  the 
scat ter ing region which will cause an equivalent  s-de- 
pendence in the slope b. The slope and oto t are both  
p ropor t iona l  to the A~:  

~otfs)  = K#nIA2(s)+A2(s)I, 

t, , . (s )  : [A  + l . 7) 

We assume that  K#, the opaci ty  factor ,  is independent.. 
of  energy;  this implies that  the decrease in O~o t comes 
from a decrease in A i and A/, which seems reasonable 
in a geometr ical  model .  The s-dependence of  the 
sum of  A2(s)  and A?(s) is clearly 

4(s) +#(s): (4 +,q) Ofot(S)/Ofo,( ) 
where A 2 and A?  are the sizes at s = oo. However we 
need the s-dependence of  A2(s)  and A2(s) separately 
and we obta in  this by the simplest  assumpt ion:  both  
have the same s -dependence*** 

Ofot(S) A2(S) = A 2 ~ t  (s) 

Subs t i tu t ing  this into eqs. (17)  we obtain the overall 
s -dependence of  b~ 

** The characteristic sizes may be different by x/Tfor 
elastic and inelastic scattering, but the shapes will be the 
same and the x/2- is s-independent. 

*** Notice that for two different reactions such as n - p  and 
K - p  A ~(s) will have two different s-dependences given 
by o~0tP(s) and oKt-P(s),~,, but its value at ~, A 2 = 
10.5[GeV/c] -2, will be the same for both. P 
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Fig. 1. The slope b plot.ted against s for p -p  elastic scattering. 
The different data points are identified [ 1,18, 21 I. Because 
of the forward peak the data are divided into two t-regions 
and two curves are shown: solid b = 10.5/3 ;~ [ t < O. 1 {GeV/c) 2 ] 
and dashed b = 12,{32 [0.l < t < 0.5(GeV/c) 2 I. For the large t 
region eq. (22) is shown as the dotted line which is very 
similar to b = 10.5# 2 since Oto t is rather s-independent. 

b ¢ . ( s ) = ½  2 2 2 2 . . . .  [A; p, +A/~j I O[o,(S)/O[o,(~). (20) 
This formula is our central result and gives the s,de- 
pendence of  the slope of  the elastic diffraction peak 

for all reactions. 
Using the experimental  [21] values of Ot~ot(S) and 

3 parameters 

A 2 = 6 . 1  A2K=3.3 and A 2 = 1 0 . 5 [ G e V / c ]  - 2  
" ' P ( 2 1 )  

Eq. (20) gives the s-dependence of  the slope for p - p ,  

P - P ,  K±P, K - - - p ,  and 7r ± - p  elastic scattering: 
+_ 

bp_*p = 1 0 . 5 ~  0P°?(S)38.8 

b K._p = (~..65p~ + 5.25p~) - -  
G p ( s )  

17.5 ' 
+ 

t,~_p : (3 .o5~  + 5.25p~) ° U '  ]~.~- 

(22) 

Notice we assumed that Otot (~ )  is the same for particle 
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Fig. 2. Slope b plotted against Po(lab) for ~ -p  elastic scatter- 
ing. The data points are shown 121]. Eq. (22) is shown along 
with the curve 10.5~ 2 to show the importance of Otot(~) for 
~-p. • 
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Fig. 3. Slope b plotted against Po(Lab) for K ± - p  elastic scat- 
tering. The data points are shown [ 21 ]. Eq. (22) is shown for 
the two cases. The entire difference is due to the differences 
in (Ttot for K*-p and K--.p. 

and antiparticle scattering. These curves are plot ted 
in fig. 1 through 4 along with the experimental  values 
of be. taken from various compilat ions [21 ].  The 
fit seems very good. It is especially impressive that 
there are only 3 parameters and that there are no free 
parameters to distinguish p--p from ~ - p  or K + - p  
from K - - p .  The experimental  differences in Oto t 
thus seem to account  for the differences in these 
slopes. Below 3 GeV/c the fit is not  good and this is 
because at low energies the scattering is no longer 
diffractive, and geometrical models are less useful. 
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Fig. 4. Slope b plotted against Po(Lab) for n - - p  elastic scat- 
tering. The data points are sho2wn [21 ]~, Eq. (22) (thick line) 
is shown along with b = 3.05# n + 5.25#p (thin line) to show 
the effect of Otot(S). The Leader and Pennington fit [ 13 ] is 
shown as a dotted line and their fit modified by Otot(S)/Otot (*o) 
is shown as a dashed line. 

For n - ~ p  scattering the n 2 fit o f  Leader and Pen- 

nington is shown as a do t ted  line in fig. 4. Their  fit is 

somewhat  improved  by mul t ip ly ing  by Otot/O'tot(°°) 
as shown by the dashed line. However  the fit is still 

marginal and the use o f  Otot/Otot(~°) is not  very natural 
in a grou~ theoret ical  model .  For  p - p  scattering 

2 2 ~ 2 o n =/3 P±; and n and eqs. ( 2 , )  are rather similar for 

K + - p  scattering. However  for K - - p  and O--p scat- 

tering the geometr ical  model  seems to give a be t ter  fit. 

In summary  this Lorentz  cont rac ted  geometr ical  

model  seems to fit the s-dependence o f  the slope o f  the 

elastic diffract ion peak for many reactions with only 

3 parameters  and the exper imenta l  Oto r 

l would  like to thank Professor M.H. Ross for many 

discussions and Dr. R. Diebold  for his comments .  
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