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Abstract--The economies of scale of waste water treatment plants favor regional systems. 
This paper presents a mathematical formulation of this problem, and suggests an algorithm 
for solution. Several case examples are shown. 

INTRODUCTION 

WItH the demand of the public for a cleaner environment the cost of water pollution 
control will increase. In the U.S. alone, the former Federal Water Pollution Control 
Administration (1969) has estimated that in the next 5 years capital outlays for 
municipal treatment plants should be close to $8 billion, and about $6 billion for 
sanitary sewer construction. These large expenditures will have to compete with 
expenditures for other public needs and it is only reasonable to expect that these 
funds should be used in an economic and efficient way. 

In general, no great breakthrough in sewage treatment technology can be expected, 
at least not cost-wise. One of the hopes of  lowering the costs is the joining of indust- 
ries and municipalities in common treatment facilities to take advantage of the 
economies of  scale in waste water treatment. 

It is the purpose of  this paper to show how the methods of  operations research 
and systems analysis may be used to plan for more efficient new water pollution 
control facilities or how to upgrade existing systems. The major question investi- 
gated is this: Given a number of  communities and/or industries in a geographical 
area, where should treatment plants be built, how many, at what time, and which 
intercepting sewers are necessary to connect the municipalities and industries to these 
plants, such that the total cost of  waste water collection and treatment is a minimum. 

There are many other advantages to regional systems which are not easily expressed 
in economic terms. Among them are that there is a central authority with complete 
responsibility for systems expansion and operation, which eliminates the many 
problems of adequately staffing and training the operators of small treatment plants. 
This should lead to better qualified personnel, better management of the plants, and 
top performance of the treatment plants. Studies by WESTON (1971) indicate, for 
example, that there is a high correlation between the size of the treatment plant and the 
percentage of  time during which the plant fails to perform according to design 
standards. The larger the treatment plant, the more reliable it is. An important eco- 
nomic aspect is that larger authorities will generally receive higher bond ratings and 
thus may borrow at lesser cost. But none of  these considerations are explicitly con- 
sidered in this study. 

In the first part of  the paper general cost data of  the various parts of  pollution 
control works are presented. This is followed by typical example situations. The 
mathematical formulation of  the problems is then presented and an approach for a 
solution is indicated. 
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Cost of  waste water treatment and conreyance 

The cost of waste water treatment is composed of  the amortization of the construc- 
tion costs and the annual operation and maintenance costs. 

For the U,S. a recent study by S,~IITH (1968) provides good data, They show that the 
construction costs of  activated sludge plants can be expressed approximately as 

Cc = 0.56 x QO.Ts, (1) 

where : 

Cc = construction cost in million dollars 
Q = design flow in MGD. 

The operation and maintenance costs follow similar economies of scale. Based on 
the assumption that the plant is financed by bonds bearing 4.5 per cent interest over a 
period of 25 yr, the total annual costs may be expressed by the following formula: 

C, = 67 × QO.VS (2) 

C, ------ annual costs in thousands of dollars 
Q = design flow in MGD. 
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F[o. I. R¢lativ¢ construction costs of activated sludge plants. 

For other types of  treatment plants similar economies of scale exist. What should 
be noted, is that the total cost of  waste water treatment in a community of 10,000 
people (corresponding to a plant size of  1 MGD) is roughly 18.4 cents per 1000 gal 
treated. In a city of  1 million people the cost falls to 6.6 cents, or roughly one-third 
of  the cost of  treatment in the smaller community. 

That these large economies of  scale are not only typical for the U.S., but also for 
other countries, has been shown in a study by D~ININGm~ (1969). FIGtrI~S 1 and 2 
show the relative construction, and operation and maintenance costs, for activated 
sludge plants in the U.S., England and Germany. Since it is quite ditfieult to compare 
absolute costs in this world of  changing monetary systems, the construction cost and 
operation costper capita in a city of  10,000 was arbitrarily set equal to one. It should 
be noted that these graphs also show that the per capita costs of  waste treatment are 
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FIG. 2. Relative operation costs of activated sludge plants. 

three times higher in a small town of  I000 compared to the per capita costs in a city 
of  100,000. 

The costs of main trunk sewers and interceptors depend on a number of factors. 
Among those are the costs of right-of-way, cost of  the pipes, costs of  excavation, 
prevailing soil conditions and the slopes of  the terrain. Hydraulic considerations, such 
as maximum and minimum velocities in the pipes determine the allowable flow. 
Little data is available on the general costs of trunk sewers as a function of  their 
capacity. BAUER (1962) in a study of  regional sewerage systems in the Chicago area 
reported the following equation as being typical: 

C, = 40,000 X QO.SO (3) 

Cs = costs per mile of  trunk sewer 
Q = amount of  waste water conveyed (MGD). 

This cost is based on an ENR index of about 1000. Again, its use and applicability 
for a specific case will have to be investigated, but in general it should be adequate for 
evaluating alternate solutions. 

In another study by SPENCER (1958) cost data were reported for the Buffalo area in 
New York. This data shows, that the construction cost of trunk sewers based on an 
ENR index of about 1000 could be described by 

C= = 46,000 × QO.SS (4) 

If waste water has to be transported uphill, from one community to another one, 
or if the sewers are becoming too deep, pumping stations will be necessary to lift the 
waste water. General data on the costs of such stations are very scarce, but they also 
show large economies of scale as indicated in a study by BENJES (1960). 

In certain cases pressure mains may be required. A study by Lt~rAWEAVL~ and CLAgK 
(1968) indicates that the cost of water transmission in mains can be expressed as 

C,, = 1865 x QO.~, (5) 
where 

C,~ = annual cost per mile 
Q = daily flow in MGD. 
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Again, this formula is based on various assumptions regarding interest rate. 
power costs, efficiencies, roughness coefficient, and an ENR index of 877. Its applic- 
ability to a local problem has to be evaluated carefully, but again the economies of 
scale should not change significantly and the data are reasonably representative for 
initial planning purposes. 

EXAMPLES AND PROBLEM FORMULATION 

The general location problem of treatment plants can not be viewed as one with an 
infinite solution space; that is plants may not be located at will on the plane. The 
number of  possible sites is usually rather restricted due to zoning regulations, the 
location of a body of water into which discharge is permissible, and other considera- 
tions. And thus the problem is one of selecting from a finite number of  candidate 
sites the ones which will be most economical. 

Example 1 

Consider, for example, the case of  two communities each with 10,000 people 
located along a major river as shown in FiG. 3. Assume furthermore, that there are 
only two sites available for treatment plants close to the cities. The question is there- 
fore should each community build its individual treatment plant, or is a joint treat- 
ment plant more economical ? 

SEPARATE COM BINED 

PLANT COST $ i34,000 PLANT COST $115,200 

TRUNK SEWER 5.SMILES SEWER $ 18,000 
TOTAL AN NUAL COST $134p00 TOTAL ANNUAL COST $134,0C0 

I0000 

~ )  5.8 MILES 
E> 

_ 
< 

FIG. 3. Cost comparison of two communities. 

Based on equation (2) the annual cost of waste treatment for a city of 10,000 is 
about $67,000. This assumes a per capita flow of about  100 gal day -1. I f  the wastes 
of both communities would be treated at a central plant, the total annual cost would 
be $67,000 × 2 °'vs = $115,200. 
The annual savings due to joint treatment would be about $(2 × 67,000 - -  155,200), 
or roughly $18,800. 

Based on equation (3) the construction cost of  a trunk sewer to carry 1 M G D  is 
$40,000. Using a 4.5 per cent interest rate and a 25-yr amortization period, and adding 
20 per cent of  the amortization costs as an estimate of  the maintenance cost, the 
annual cost of  a trunk sewer is about  $3240 mile -1. And thus if the distance between 
the two communities is less than 5.8 miles, a joint treatment plant is more economical. 
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Example 2 
Consider now the case with more than two communities along a river as shown in 

FIG. 4. First consider only downstream transfer of wastes. 
The problem here is locating m treatment plants (1 ~< m ~< n) at the n locations. 

This can be done in 

(:-11), 

N-TREATMENT PLANT LINEAR SYSTEM 

A(n) A(n+l) A(n+2} A(nl-FzK 

A(n+2)=3A(n+l)- A(n) 
A(n) = 2 I - ~  (( 3 +¢5 )n-(3-~5 } n ) 

FIa. 4. A linear system of N treatment plants. 

ways. This follows from the fact that one treatment plant must be located at the furthest 
downstream community and that there are 

ways in which to locate m-I treatment plants at n-I locations. Since we do not know 
a priori how many treatment plants should be built, we have to investigate all combina- 
tions for m = l, 2, 3 ..... n-I plants. Thus the total number of combinations to be 

investigated is 

n - - I  

° ,  

b! (K -- b)!" 
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It can be shown that this summation is equal to 2 ~-~. To show the order of magnitude 
of the number of  combinations to be investigated, a table of  A(n) vs. n follows. 

Number of communities Number of combinations 
In) (Ain)) 

2 2 
4 8 
6 32 
8 128 

10 512 
15 16,854 
20 524,288 

For a small number of  plants a straight forward combinatorial approach is feasible 
with present day computing systems, however, for large n an evaluation of all com- 
binations is not feasible. In the latter case a dynamic programming formulation is 
possible which will lead to the optimal solution without evaluating all combinations. 
This approach has been reported previously by DEININGER (1966). 

Consider now that also upstream transfer of  the wastes is considered. Due to econo- 
mies of  scale it is known that it would not be economical to "spli t" the waste flow 
of one city, that is, one would not simultaneously transfer the wastes upstream and 
downstream. An interesting question is how many economical solutions exist? 
The only variables in the problem formulation are the interconnections between cities. 
Assume a zero for no transport  within cities, a 1 for upstream transport  for wastes, 
and a 2 for downstream transport  of  wastes. For n cities there are n - -  1 branches 
between the cities, each of  which may take on three different values. 

So the total number of  economical solutions would be 3 ~"-1~ were it not the re- 
quirement that a city may not simultaneously transport  wastes upstream and down- 
stream. For three cities the total number of  solutions may be represented as: 

00 
01 
02 
10 
12 
20 
21" 
22. 

The eighth solution here is ruled out, since we do not allow transport  of  water from 
city 2 simultaneous to 1 and 3. Thus the total number  of  economical solutions will 
be A (3) = 8. How many economical solutions are there for n cities ? 

Let A(n "-k 2) stand for the number of  solutions for n + 2 cities, A(n q- I) for the 
solution to n --[- 1 cities, and A(n) for the solutions for n cities. 

Then, the following recursive relation can be established: 

A(n -k 2) = 3 A(n --k 1) - -  A(n). 
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This relation may be deduced by the following reasoning. Given the value of A(n ÷ 1), 
the adding of  one city increases the number of solutions to 3 A(n 4- 1) since the new 
branch may assume the values of 0, 1, or 2. However, of these total numbers there 
are some which are not economical, namely, all those which end in a 2 1 sequence. 
But the number of  those is exactly A(n). 

Upon generating the number of solutions for varying n the similarity of  the series 
to the Fibonacci number series was noted: 

n 1 2 3 4 5 6 
A(n) 1 3 8 21 55 144 

And thus it was concluded that the total number of economical solutions for n cities 
is 

A(n) = F2,, 

where Fk stands for the kth Fibonacci number. This still does not indicate which of 
the F2, solutions is the most economical one, but places an upper bound on the total 
number of  solutions, and allows to calculate the number of  solutions based on Moivre's 
formula as 

1 
A(n) = - -  [(3 + a/5)" -- (3 -- x/5)"] 

2" V'5 

Example 3 

Consider now the sample problem shown on FIG. 5. Seven Communities are 
located along a main river and its tributary. Seven sites are available for building a 
treatment plant. The objective is to find the number and location of treatment plants 
such that the total costs are minimized. 

~ ClTY I 

E] WAST E TREAT- 
MENT PLANT 

--CONNECTING 
SEWERS 

FIG. 5. A branched system. 

FtctrRE 6 shows the abstraction of  this problem into a general network problem. 
The branches connecting the individual cities represent the interconnecting sewers, 
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~ 4  

×4 

7q 

FtG. 6. The abstract network. 

while the branches connected to the unnumbered node represent the possible treat- 
ment plants. Flows are entering the network at nodes I-7, and the objective is to 
find the least cost paths for these flows to the effluent node. 

M A T H E M A T I C A L  F O R M U L A T I O N  

All of the examples presented previously are network problems. Mathematically, 
they can be stated in the following general form: 

minimize: ~ f t j ( x t j )  

t J 

subject to: x l j  - -  x .  - ~  ( x t j  - -  x y i )  ~--- a t  
/ 

J J d 

Xtj ~ O; / ,  at 0 

1 

where: 

xtj ----- amount of wastes transported from node i to node j 
f~j(x~j) ----- costs of transporting x u units of waste from node i to node i 
a, > 0 implies an input node 
a~ ---- 0 implies a transhipment node 
at < 0 implies an output node. 
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SOLUTION APPROACHES 

A general solution of the problems formulated poses considerable dii~culty, since 
all the cost functions are concave and the objective is to minimize. Previous work by 
GRAVES 0969) and YOUNG et al. 0970) lead only to local optima. 

In some earlier work by DEININGER (1966) the nonlinear functions were approxi- 
mated by a linear one and the resultant linear optimization problem was solved. 
Based on the solution of the problem a new linear approximation was obtained and 
the network problem was solved again. This process was repeated until the new 
solution would not differ from the previous one. This approach again leads to a local 
optimal solution. Choosing different starting points leads to different local optima, 
of which the best was selected. Procedure was not very satisfactory, and alternate 
approaches were explored. 

Among those a method proposed by CABOT and FRANCIS 0970) appeared to be 
promising. Since the original method dealt only with a quadratic cost function, it 
was extended and generalized. Briefly, the method proceeds as follows: 

Define as problem Pl : 

n 

f(x) = > i  fJ (x i) minimize 

J = l  

A X =  b 

O<<.x<~B, 

where A is a given matrix of  order m × n, b is a given vector of order n -k- 1, B is a 
given vector of  order n x 1, and x is a vector of  variables of  order n × 1. Note that 
a l l f j  (xj) in P1 are of the form 

fj(xj) = cjxflJ, j = 1,2 . . . .  ,n 

where 0 ~< dj ~< 1, and cj, dj are given constants. 

Now let ,7 be the set of  feasible solutions of PI,  and let f *  be the optimal value of  
P1. It is well known that (i) the summation of  the concave functions fj(xs) is still 
a concave function, (ii) if S is nonempty, and f(x) is concave, then the optimal solu- 
tion of P1 occurs at the extreme point of  the convex set S. Because there possibly 
exist several local minima for PI,  any ordinary convex programming algorithms 
usually lead to a stationary point which is not necessarily a global minimum. The 
procedure is therefore to formulate a related linear program for PI and then to apply 
MURTY'S (1968) ranking extreme point approach to it to obtain an optimal solution 
to the original problem. This procedure may be described as follows: 

Each of the functionsfj  (xj) may be rewritten as 

f j  (xA = (cj /x?-",)xj .  

Now let uj -- rain (cj/xjl=d~), subject to x e S, then a related linear programming 
problem can be formulated: 
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P2: 

n 

g(x) = > i  u~ x~ minimize 
j = i  

subject to x e S. 

Since all the variable xj are bounded, the problem of minimizing (c/xj  t -a9 is trivial. 
Every xj is set equal to Bj; that is 

uj = c /B / - "J .  
Now it can be shown that 

(i) For any x ~ S, g(x) <~ f(x);  
(ii) if x ° is an optimal solution to P2, then f l  = g(x °) is a lower bound on f* ,  and 

f ,  = f ( x  °) is an upper bound on f * ;  
(iii) given any upper bound f ,  on f* ,  let .'~ be the set of all extreme points of P2, 

such that g(:d) ~< f , ,  then PI has an optimal solution x*, such that x* ~{xk}. 

The algorithm starts with an initial basic feasible solution of PI, namely the optimal 
solution of P2, and then generates continuously upper and lower bound solutions 
until both bounds converge or the number of iterations exceeds prespecified limits. 

The advantage of the algorithm is that once the procedure terminates the true 
optimum is obtained. The disadvantage of this algorithm is that the optimal solution 
may not be obtained until all the extreme points of S have been enumerated by the 
ranking algorithm. 

In general, there is no way to estimate the number of extreme points which have to 
be ranked. However, in the author's experience the worst case amounted to about 40 
per cent of the possible extreme points. 

A N U M E R I C A L  E X A M P L E  

To show a numerical example, the network shown in FIG. 6 will be used. 
It is assumed that the construction costs of waste treatment plants are adequately 

described by equation (1), and that the costs of conveying the waste water may be 
described by equation (3). In the branches where upstream transfer is possible, an 
arbitrary 20 per cent will be added to the costs. Since the algorithm requires that each 
variable be bounded, an upper bound Bj will be set equal to the maximum possible 
flow in each arc. The waste inputs from every city, the distances between cities, the 
cost functions, and the upper bounds are all summarized in TABLE 1. 

FIGURE 7 shows the optimal solution. For this particular example, the optimal 
solution is to build only one treatment plant at city 6 and to convey all the wastes to 
that plant. 

Based on a computer code written in FORTRAN IV for an IBM 360/67 the optimal 
solution was reached in 233 iterations. Over 900 extreme points were generated and 
the computation time was about 5 s. 

C A P A C I T Y  E X P A N S I O N  A N D  O T H E R  A S P E C T S  

The problems and formulations described up to now consider the regional waste 
treatment as independent of time. That is, the inputs to the network are not varying 
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FIG. 7. Abstract  ne twork  and opt imal  solut ion.  

with time. I f  one considers the growth of  communities and the resulting increase in 
waste water flow, then the question of an optimal capacity expansion of the network 
arises. 

These considerations may be dealt with by establishing a finite planning horizon, 
which is subdivided into m individual time spans. The magnitude of these time spans 
should be such that the increase in waste water flow within the time span is measur- 
able. The problem may then be stated formally as: 

22 222 minimize f l j  (Kl~) + fuk (AKuk) 

l J i j k 

subject to : 

~ (xil,, --  xjtk) = ark = 1, . . . .  n i 2 

J 

~ al~ = 0 j =  1,2 . . . .  n 

XUk <= Kij -]- ~ . .  AKtjo k = 1.2 . . . .  m 

p = l  

w here: 

xu,  = amount  of  waste water moved from node i to n o d e j  in time span k 
a~k = amount of  waste water entering node i at time span k 
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K~j = original capacity connecting node i to n o d e j  
AKIj~ = increase in capacity between node i and j during time span k 
f~j(K~j) = cost of  providing capacity K~j 
f~jk(AK~jk) = cost of  providing additional capacity during span k. 

This problem is in its structure similar to the previous ones and the same algorithms 
for a solution apply. The number of  variables has increased significantly, and the 
computation times will increase, but should in general pose no difficulty for large 
computer systems. The same formulations, of  course, also applies to the expansion 
of  existing systems. 

One other aspect of  regional systems deserves consideration. In the models des- 
cribed previously the degree of treatment was considered as fixed and no considera- 
tion was given to the impact of  the waste discharges on the water course. As long as 
the possible discharge points to a river are close to each other (say within 10 miles), 
the degree of treatment is determined by the required water quality in this reach of 
stream. However, if the possible discharge points are distributed over a considerable 
length of the river, the natural self-purification of  the river may come into play and 
the quality in the stream depends then on the location of the waste water discharge. 
The water quality of  a stream at any one point can be described as a linear function 
of  all upstream waste discharges. I f  certain water quality standards are imposed, one 
may write linear inequalities for a number of  control points, and add those to the 
models described previously. However, the current trend to install everywhere second- 
ary and possibly tertiary treatment makes these considerations less important.  

SUMMARY AND CONCLUSION 

The large economies of  scale in waste water treatment and transport  indicate that 
regional solutions for pollution control may be more economical than individual 
solutions. This paper describes a general formulation of  the problems and an approach 
for solving the resulting minimization problems with concave objective functions. 
Based on the experience with the computer code written it appears that small to medium 
sized problems can be solved in reasonable time. The bottleneck for the implementa- 
tion of  such regional plans will be the political and institutional arrangements. 
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