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PREFACE

This is the forty-second in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presently in process
of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being in
good agreement with experiment. It is believed that by and large this aim
has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to include
not only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and
phenomena connected with ionized media.

Associated with the theoretical work is an experimental program
which embraces (a) measurement of antennas and radar scatterers in order
to verify data determined theoretically; (b) investigation of antenna behavior
and cross section problems not amenable to theoretical solution; (c) problems
associated with the design and development of microwave absorbers; and (d) low

and high density ionization phenomena.

K. M. Siegel
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SUMMARY

Microwave Bremsstrahlung from, and free-free absorption in, a cool,
partially-ionized plasma are treated. Electron-ion encounters are treated by
the Born approximation and the classical impulse approximation, a Debye-
shielded potential being used. Bremsstrahlung from electron-neutral collisions
is treated by the Born approximation. The potential here is obtained by fitting
a shielded Coulomb form to the Thomas-Fermi potential for distances less
than about 7 atomic radii.

For the plasma parameters chosen (T = 50000K, n, = 1013/cm3, Z =8)
and microwave frequencies of the order of 50 KMc, it would appear that at the
correspondingly low degree of ionization, the neutrals are most significant.

An effective Z for the oxygen atoms is determined by matching the free-free

absorption to Kramers' law. Its value, Z =.17, compares reasonably with the

results of previous investigators.
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I. Introduction

Among the classes of problems studied in the Radiation Laboratory
have been those dealing with plasmas as either a source or absorber of radiation.
One of the specific radiation mechanisms considered has been Bremsstrahlung,
while its inverse, free-free absorption, contributes to propagation losses in
the plasma.

Bremsstrahlung is a process in which a free electron is scattered by
a potential into a free state of lower energy, the energy difference appearing as
a radiated photon. In the inverse process, free-free absorption, a free electron
in a potential absorbs a photon and makes a transition to a free state of higher
energy.

Most treatments of these effects have been for a fully ionized gas, in
which the Coulomb potential of the positive ions was the potential of interest.
Since we at the Radiation Laboratory are more frequently interested in plasmas
of aerodynamic than of thermonuclear origin, the assumption of complete ioni-
zation is not useful for us, and we must consider the effect of electron en-
counters with neutral atoms too. (Since the orbital electron distribution of the
atom is extended in space, a free plasma electron may penetrate it and thus
""see' an incompletely shielded nuclear charge.) For comparison with other work,

we choose the neutrals to be oxygen atoms.



THE UNIVERSITY OF MICHIGAN
2764-3-T

Since the work reported here is partially, but certainly not entirely,
original in approach and technique, a brief review of the literature and its
relation to the present work seems in order.

An exact non-relativistic Bremsstrahlung cross section for pure
Coulomb fields was given by Sommerfeld (Ref. 1). The result is in terms of
hypergeometric functions, the numerical approximation of which in various cases
has been discussed by many authors. Since we will consider the effect of Debye
shielding on the Coulomb fields of the ions, and the atomic fields are also
shielded, we cannot use the Sommerfeld result. The Born approximation has
been applied to the shielded Coulomb potential by Dewitt (Refs. 2, 3), who discusses
its limits of validity quite carefully. We follow him in its use for the faster part
of the electron velocity distribution in electron-ion scattering. For the slower
electrons we use a classical impulse approximation with the shielded potential;
this has been used for the pure Coulomb potential by, for example, Roberts (Ref. 4).
Bremsstrahlung from neutrals is here treated by matching a Thomas-Fermi
potential roughly to a screened Coulomb form, and using the Born approximation
for the faster electrons, neglecting the slower ones. This result compares
reasonably with the "effective Z' obtained by Breen and Nardone (Ref. 5) for free-
free absorption by oxygen atoms, using machine wave functions. Finally, the
idea of using detailed balance to obtain the free-free absorption coefficient from
the Bremsstrahlung cross section is hardly original (see, e.g., Reference 3);

only the use of our cross sections and the detailed evaluation is new.

3
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II. Electron-Ion Bremsstrahlung from the Faster Electrons

Since the potential here, because of Debye screening, will depend on
electron density n, and temperature T, we must pick specific values of these
parameters. Such values, fairly realistic for an aerodynamic plasma of

possible practical interest, are
ne = 1013/ cm

T =5x10° K .

3

We take, as an example, the plasma to be composed of oxygen atoms, O+ ions,
and electrons. The validity of many of the approximations will depend on the
choice of radiation frequency investigated. We are most interested in micro-
wave frequencies near the plasma frequency, which is roughly 28 KMc. The
computations will therefore be performed at

v = 50 KMc
They will subsequently be extended to 15, 35, and 125 KMc, to obtain some
idea of frequency variation in this region.

In this section we refer extensively to the work of Dewitt (Refs. 2, 3), who
has applied the Born approximation to the Debye-screened Coulomb potential to
treat Bremsstrahlung in a fully-ionized gas. He has investigated the validity
of this approximation in detail. Let us refer to incident and scattered quantities
by the subscripts 1 and 2. It is useful to talk in terms of ny, 5 =‘§le,2 . For the
pure Coulomb field the Sommerfeld exact Bremsstrahlung cross section may be

expanded in powers of n, - ng; the first term of this expansion is the Born

4
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approximation result. Thus for the pure Coulomb field, the Born approximation
describes well the situation of low-frequency radiation (v; ~ v,) from not-too-
slow electrons. That is, n; >> 1 is permissable as long as n, - n; << 1. For a
screened potential, although there is no exact solution to compare it with, the
Born approximation is shown by Dewitt to be even better for the low-frequency
part of the spectrum than for the unscreened one, i.e. it is valid for smaller v;.

Since we note that for v, = \/ kn’l; and v =50 KMc, n; ~ 8, and ny - n; ~ 10—4,

we shall use it down to this value of v;. For faster electrons, it is of course
even better, but we restrict ourselves to non-relativistic electrons, naturally.
These limits of validity are quite crude, but since the Born approximation
usually works better than it should, we shall use them.
In what follows we use the following notation:
P = momentum in energy units = mvce

K = photon energy = hv

2
4 = mec
r, = e2/mc2
a = ez/hc

16 222, 2
0 =3 @ZTpu / P}

v = ‘he/x
), the Debye length = ,/—2kT
’ y gt 47 ne e

In terms of these, the Born differential Bremsstrahlung cross section may be

I

written
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2 2 2 2 PP
dK | 1 (P+P) " +7 Y Fi'e
do(K.P) = 0,7 {3 0 (5 p)24r2 - 2 7 2
1 2 KP1+ Pg) +72] [(P]__ P2) v ]
(2.1)
in which, of course, P, is to be eliminated by conservation of energy,
2 2
P; - P, = 2Ku . (2.2)

Since the power is obtained by multiplying the cross section by the incident flux
and photon energy and ion density n,, and integrating over the electron velocity
distribution, the contribution from this velocity range to the power/unit volume /

circular frequency interval may be written, where Z =1 for the ions always, so

n =n,,
e 1 2
Pdy = n° 8 725 41 m_)%/? dw > dp Pe_PI/ZukT
- e 3 € m4c5 27 kT ek
c/kTm
1 i (P1+P2)2 +’Yz 272P1P2 (2 3)
Lo - .
2 (P-PyZ + +2 [(P1+P2)2+‘y2] [(P,-P)2+v2]

It is not possible to introduce approximations to the bracketed term valid over
the whole range of integration. P; >> v is always valid, and thus (P+Py) > > .
However, P;-P, =7 at about P;; = 15¢ \kTm, and since P;-P, ~ Ku/P;,

P;-P; < v for greater P;. Since most of the contribution to this integral comes

from P; < Pye, a fair approximation to the bracket is, if one is required,
In (2P21 \ - Y 2P%
Ku/  2(Ku)2

Now for the very slowest electrons with P? > 2Ku, the microwave

radiation is the high-frequency limit of their spectrum. The Born approximation
6
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fails here for the pure Coulomb field, but the Sommerfeld solution is reproduced
excellently when the Born approximation is modified by the Elwert factor. Al-
though its use cannot clearly be justified for the screened potential, we might
hope the screening is weak enough to approximate the Coulomb case, and that

it would be correct order-of-magnitude.

The expression is

-27n
_ dk P1 1-e !
dop_p(K.Py) = 0o “p P, | _ 2™
(2. 4)
2
{ » (Py+Py)2 + 72 2v° P, P,
—_— n —
2 2 2 2 2 2 2
(Pi-Py)" + v [(P1+P2) +v ][(Pl'Pz) +y ]

The contribution from the very lowest velocities is described by the limit here

P2/P1 —0, P]_ >>'Y, or

dK
darB_E(K, P)— 20, k- (2.5)

which differs from the Kramers' result in having a factor of 2 rather than T;L—

.I..
These slowest electrons then contribute (again Z =1 for O ).

2
-P“/2ukT
232 .26 4r m_ \3/2 . (2.6)
Pdw = n, 3 Ze m3ab <27rkT> dw SPdPe

This is valid for only a very small range, since for P, =even 2c J2mK,
P,/P; = V3/2, which is certainly not the high-frequency limit.
We would like now a cross section valid for electron velocities between

the very lowest and the thermal range. The classical impulse approximation will
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be used to furnish such a result. (In general, we expect that when the incident
particle becomes too slow for a quantum-mechanical description of the scattering
by the Born approximation, a classical description, in which the particle is
regarded as having a definite orbit and is continuously subject to scattering

forces, becomes increasingly valid.)



THE UNIVERSITY OF MICHIGAN
2764-3-T

III. The Impulse Approximation

Ideally, an exact classical trajectory treatment should be used to fill
in the gap here. However, this cannot be carried out, and we are forced to
resort to the impulse approximation, which has been used elsewhere (Ref. 4) for
Bremsstrahlung in a pure Coulomb field. Since a screened field causes less
acceleration at large distances, the impulse approximation should be better for
a given electron velocity here than for the Coulomb case.

Now in a classical treatment we obtain a particle trajectory which is
a function of the impact parameter s and the initial velocity v, For fixed
values of these, the radiated power from one electron in dw is (Ref. 6)

2
3

P dw = |3w]? @ | (3.1)

8t e
S, Vo 3

¢3
where @(w) is the Fourier transform of the vector acceleration, and

lé’(w)l o [ax(w)] 2 [ay(w)] 2. This is then multiplied by nidn(vo) v, and averaged
over annuli of radius s. Finally, of course, we average over that part of the
electron velocity spectrum for which the expression is valid.

The impulse approximation consists in taking the acceleration which
would be associated with an undeviated straight-line trajectory, i.e. acceleration
but not displacement results from the presence of the scattering center, which is
like the effect of an impulse. The geometry for the calculation is given by the

following sketch:
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Then
2
r =s8 +v t x=vt |, y =8
o o
-r/A
1
g = “m V V(r) V(r) = - Ze2 = =-Ze2W
_ Zg% x W oz’ y oW
a = - —_ a = = — (3.2)
b:4 m r r y m 1r Or
and, where the bar here indicates a Fourier transform on a, or a(w),
2 . .
- Ze Vo @© telwt oW - Ze2s @ elwt oW
a = - —_— — dt, a = -——" — — dt
X 2rm _ r or y 2rm r Or
(3.3)
Since g(r) = - %W is even in t, we have
— Zez VO i o0 . dt
a = p— 0 t sin wt g(r) " s
—  ze%s @ dt (3.4)
a = ——=— cos wt gr) —
y Tm 0 r

Consider the integral in Ex’ which we will call I(w). We change the integration

variable to r from (3.2), and integrate once by parts, obtaining

o cos— Jri_g2 e-r/>t
o Vo (3.5)
I(w) = 3 Jo — dr
0 r“ -8

10
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and with r =s cosh t, we have finally

(00)

S cos [ﬁ sinh t] e_s/)L cosh t dt
0 Vo

2 2
[ 2) @) -
(o) o

in which K is a modified Hankel function. Then

2
- i Ze i17Ze w_ s Sw_
ax = 7rmv2 \/< ) . (37)

I(w) =

o<ool€

I

But
9a. 9
y oo Ze“s
o = T I(w) , (3.8)
so
2 W (0]
_ Ze s _ dt
gy = 2= [ g I(x) dx + S ar) &1 (3.9)
0 0

Now consider

W W
3w = S I(0) dx = <3 S XK [\/a2+b2 x2 ]dx . (3.10
0

o 0
‘where s S
a == T‘ > b = ‘;;
1 \la2+b2w 2
= 23 u K, (u) du
o a

= e aK(a) - \/a.2+b2 w2 K, Ja2+b2w2 . (3.11)
b2v3
o

11
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We now need only
oo} (04}
dt 1 dr
F = S glr) = = o S ) s
0 o s r2-s2

which with the substitution r =s cosh t becomes

(00

1
-a cosh t 1 a
F = 02 SO © [ cosh2t * coshtJ dt .

Consider the integral here, which is a function of a only; call it f(a). Then

@ . cosh t
fla) = -a & e & dt = -aK (a)
o
0
so that
a
fa) = - g x K (x) dx - lim  xK;(x) = aKya)
[V
and aK,(a)
F=3s
Then

2
_ _Ze 1.2 W 2 1.2 W (2
~ S e ) Kl[s\/(x)+(v)J

z

y Tmvg o o
iZezw J 1.2 W (2

— _izeTw 12  w

ax 7rmv2 KO S ()\) (Vo)

o

It should be noted that for A — o0 (no shielding), these agree with the

corresponding quantities deduced by Roberts (Ref. 4). Then we have for the

quantity , éf(w)lz, which we may call Az,

12
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2 2 2_2 wz 2
A" =¢C [é Ki($s) - - KO(SS)] (3.18)
o
with 9
Z 2 1.2 2
==, 8= )7+ ()
o o

Next we want to average over impact parameter s. We have no improvement

¢ . . -
to suggest over the usual procedure of taking the lower limit at S nin )\DeBroglie s
the distance within which the electron cannot be localized, so that it makes no

sense to talk about closer approaches to the nucleus. Then we must evaluate

the integral

o0 2

2 2.2 W 2
B = 27 sds C SK{(§8)-— K (§5s)
Se [ 1 V2 o ]
o
(00} 2 (04]
2 2 2
= 27 C [ S +Kj (t) dt——————s“évz S tK_(t) dt] (3.19)
X [o] X

in which we have used the symbol € for )\D . to eliminate confusion with
eBroglie

the screening radius, and x = § € Let the first of these integrals be de-

signated F(x), the second G(x). Now an integration by parts shows that

F(x) = x KO(X) K (x) - G(x) , (3.20)

so we can concentrate on the second integral. As may be verified by

differentiation, this is simply

13
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<= [.2 2 = [ .2 2 X2 [ 2 2
G(x) = Y [Kl (x) —Ko(x):l + lim B [Ko(x) -K; (x)] =5 [Kl (X)—KO(X)] .
X—0
(3.21)
Then
2
B = 27 ¢ [S€Ko(5€) Ky(5 9 -5 {xf(Se)-Ki(Se)}
S 2 (g ise (8.2
2ve 1 o
and
ARy (W) g, o2 dn()B——l'Q———ZzeG dn,_ (v,)
TO.__—_-?”-@C-S hj Vo AN V) ~ 3 m2v003 n; dng Vo
(3.23)
2 2 2
Wwe -
[TIK NK (1) Ky(1) - ? {Kf(n) - Kcz)(n)} - -% ({;;") {Kl(m Kom)}]’
in which
= J(—€>2+<—")—>2 a4 €= = -2
n= X Vo an - )\DeBroglie - mv,_

In order to apply this result, we need a criterion for the validity of
the classical description. This can be obtained in rough form by following Bohm
(Ref. 7). We require that the size of a wave packet representing the electron
be X the impact parameter, and that the momentum uncertainty involved in
forming this packet be much smaller than that transferred during the collision.
The impulse approximation should be better for the shielded than the pure
Coulomb potential, so we will combine it with the criterion of Bohm, which is

14
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2 (0]

2s dx

— >>

v S F(r) - 1 . (3. 24)
-

Inserting the impulse approximation for the trajectory into (3. 24) leads to an

integral previously evaluated, and yields (Z =1 for us)

4Zezs

¥
S K ) > 1. (3. 25)

Thus, a limiting impact parameter is determined as a function of n; or v;.

For vy . bod- /—_Z—En: , (3.25) is satisfied out to s/A=5 or 6, which should
include most of the effect of the potential, while for v = F——;T , 8/A ~ 2.5 is
the limit. However, computation in both cases shows that integrating out to

s = o is justified because of the rapid decrease of the K functions. Incidentally,
another requirement that the classical description be valid for this potential is

that the relative variation of the potential over the size of the equivalent wave

packet be small. That is,

1l
r
<
7\DeBroglie \'4 1, (3.26)
or
pil 1 1
—_ . < 1
mV, (r * x) : (3.27)
)LDeBroglie
Sincer » s )DeBroglie always in this description, and > < .01,

this will be satisfactory in general.
The contribution from the range \/2—111{1— <y £ \/—li—nT— should then be

given by
15
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\]kTu .
2 6 3/2 -P%/2ukT
Pdy = 1—36— nz %Z—‘i%- 4n (;;{T> pdpe
2Ku
e’ e’k (YK ) - < (-5)2+ 2 (A= )2 KZ(V_) —Kz(v—)
) (%g) 0 1 2 x Po 1 o
(3.28)

It may be noted that the ratio of the impulse approximation to the Kramers'
result at the lower limit is approximately 1/7. At the upper limit, the agree-
ment with the Born approximation result is much better, the ratio being ~ 0. 83.
Since the faster electron is deviated less from its trajectory, the superior
agreement at the upper end may be interpreted as resulting from better validity
of the impulse approximation, and is thus in agreement with expectation. It may
also be noted that Dewitt gives a '"classical low-frequency' expression (eq. 18 of
Ref. 3) valid for weak shielding. This is applicable to only a very narrow
velocity range, just about \[%Ij , for our w. At that limit, the ratio of the

impulse cross section to his result is 1. 31, which is quite reasonable agreement.

16
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IV. Electron-Neutral Bremsstrahlung

As stated in the introduction, we base our calculations here on a
screening radius derived from the Thomas-Fermi atom. While this is ad-
mittedly not very good for Z as small as 8, it is hoped that the model is still
more physical than that of Nedelsky's (Ref. 8) frequently-quoted paper, which

uses the potential

2 2
V(r) = Ze _ Ze , r <a
a r
(4.1)
= 0 , r > a
and must determine Z and a by recourse to experiment.
We therefore take for the potential seen by an incident electron
2
Vir) = - z: dr) (4.2)
with § a solution of
2
1/2 479
iy = g2 (4.3)
) ) 0.885 ag ) ) 9 9
in which x =r/b, b SV and a; is the Bohr radius, h”/me”.

¢(x) has been tabulated by Bush and Caldwell (Ref. 9). It may be fitted quite
-r/n . -9 .
well by e , withA=1.33b = 3.13x 10 cm for O. We give here a plot
0P x/\ 1
of V(x) =~ — and = B(x).
Again, the Born approximation cross section may be used for P > cVmKT,

but different approximations are permitted with the stronger screening here. We

write, then, for this part of the electron velocity distribution,

17
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2 2
_ P - P uK
P1+ Pz ~ 2P1 and Pl - Pz P1 n PZ Pl (4: 4:)
so that
16 6 2 4r 3/2 ® ~P%/24kT
Pdo = myneg 73 € Z° 745 \2rkT a g 4P Pe
¢ VmKT
2 2
< m 1+ ) - 2 . (4.5)
2 g% v (1+4P2/~2)

Although, because the strong screening makes this case much different
from the pure Coulomb field, we cannot justify the Born-Elwert result, we may
use it to get some indication of the contribution of the slowest electrons. We
need now the limit Py/P; —>0, P; << %, and find

P
K Syt (4. 6)

do(K) = 200 K ~

which because of the shielding is quite a small result compared to the

contribution from the thermal range.

The classical impulse approximation is found not to be valid for
neutrals, and no method has been found for treating the contribution of the inter-
mediate part of the electron velocity distribution. However, there is no physical
reason to expect any special phenomena to characterize this range, so that we
still expect the contribution to the total power to be given essentially by (4. 5); the
power rising with velocity from that given by (4. 6) to this value.

18
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In fact, the extreme screening limit P, - P, << v of the Born
approximation holds up to velocities of the order of \/—% . Since in this limit
. . dK 4
the Born approximation has the same form, 9K 4P/v)", as the Born-Elwert

limit, differing only by the factor of 2, it seems plausible that a correct cross
Lo . . . 2K KT _ . . .

section in this velocity region m <v < o might have this form. In this

case the ratio of power/ cm3 in equal frequency ranges from thermal electrons

to that from slow ones is essentially
2
mvth 4
Ptherm =~ Vth = "7t El_l__> S>> 1 (4.7)
Vsl

Pslow Vsl
so the slowest electrons can be neglected with respect to those at v = \/% .
Likewise, the high-energy tail P; > v contributes little, and in fact, the
integrand of (4.5) peaks near VMo \/% , dropping off faster for v > Y than

for v € Var? but such that (4. 5) does give the essential contribution.

20
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V. Evaluation of Results, Extension to Other Frequencies

The integration indicated in (4. 5) for the Bremsstrahlung power from

neutrals may be carried out, leading to a closed form. Consider

2
I, = > PdPe—P [2HKT L 1n(1+4P2 ) - 2p”
: 2 ¥ 1T A1+4P2/+2)
ukT
(5.1)
. 2 2 .
With y =P"/2ukT, B =8ukT/v , we find
©
-y
I, = — kT e din(1+By) - LL L ay | (5.2)
2 1+ By
Y
and two integrations by parts yield finally
=1l -1/2 1/8 11
L =5 WkTJe [ma+B/2-1] -e (1+) Ei(-5 -5 ).
(5.3)
Here Ei is the exponential integral, defined by
© e—t
-Ei(-x) = S —t— dt . (5. 4)
X
Numerically, 99 9
I, = 4.65x10 erg (5.5)
and (4. 5) becomes, for the power/ cm3 in dw from neutrals at 50 KMc,
3/2
_ 16 6_2 4r m -22 3
Pdw = nn e Z 45 (27rkT) x 4.65 x 10 ““dw ergs/cm” sec
-29 3 . . . -3
= n, dw 4.45x 10 ergs/sec cm” , n being given in cm , (5.6)

and dw in sec_l. Z =8 has been taken.
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For the ion Bremsstrahlung, the higher velocity electrons yielded

the power expression (with n, = ne)

216 .26 4r m \ 3/2
Pdw =n,73 Ze b <27rkT> dw

@ -P%/2kT 2 2 2
2P 7P
TRT r r

The integral I, appearing here may also be evaluated in closed form, and
2

(5.7)

yields, with § =(4kT/K) and € =%— ,
-1 € -
I, = upkT [e /2 5 In 5/2—3—2"} -Ei (-—;— )J = 3.01 x 10 1Serg2 ,
(5.8)
. 13 3
so that, with Z =1 of course, and n_ =10 [em™ ,
_ ~14 3
Pdo = 4.5%x10 "~ dw erg/ecm” sec . (5.9)
The integral arising from the impulse approximation must be evaluated
numerically. We find for it
I, = 1.24x 10718 erg2 , (5. 10)
so that the slower electrons contribute to the ion Bremsstrahlung
_ ~-14 3
Pdy = 1.83x10 ~~ dw erg/cm"” sec . (5.11)

Let us now try to extend these results to a few other frequencies.

This will require investigation of the approximations upon which the validity of
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integrals, I1 s 12 and 13 is based, as well as those entering directly into the
forms of their integrands.

First of all, it seems reasonable to take the Born approximation as
valid for ny-n; ~ 10_2. Then, if we use the same lower limit on P in I, and
I, as before, we can use the Born approximation for ions and neutrals at
frequencies such as 15 KMc and 35 KMc. Of course it is fine for higher
frequencies, such as 125 KMec.

The criterion 3. 25 for validity of a classical description (in the
impulse approximation), is better satisfied at the low velocity end for lower
frequencies, since the lowest v~ m , and we have the 1/v variation in
3.25. For 125 KMc, it is still satisfied well enough. The variation of potential
argument 3. 27 is likewise still reasonably good. Then the Born and impulse
approximations will be used in the same velocity ranges as previously, for
convenience in computation. (It is clear that new ranges of validity could be
determined if desired, corresponding to the choices of v .)

Now the changes in form of the integrals must be investigated. The

impulse approximation integral I, is explicitly frequency-dependent and need

3
simply be recomputed for the new values of w. The manner in which the Born

approximation has been approximated must, however, be examined.

We have the form

1 (Py+Py) 2+ 42 2v2 P, P,

co< — In - (5.12)

2 (P~ Py)2 + 72 [(P1+P5)2 +v2] [ (P,-P;)2+ 42 ]
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to approximate. Here

2 2 ’ 2 2
Pl - P2 = ZKM B Pz = Pl - ZKM 5 (P1+P2)2 = 2P1 - 2KH

2 2 2 2
2 K 1 K 2 K
+2P] (1 -25 - = =4 ) wypf -4k, -
and
2 2
2 K
(P - P,)° ~ =5
Py
. 2« he o 1-4 VKu » -2
For ions, P, ——_—)\c kT 4x 10 s P, 4.67 x 10
at 125 KMc and the same Pszin’ varying as Vv 1/ 2_ Inserting the
expansions into (5. 11), we have
2 2
2 9 2.2 Ku 1 Ku
9 2 P;(1- - )
1 4P?—4K/.L-K_P‘?Li—+7 'Yop2 2 pf
o< — -
oy n 2,2 22 oTK22 + 2 (5.13)
+ + v [4P1—4Ku—"""§‘—+'y :”:—-2”— v :l
P Pj P1
2 2
Ku 1 Kpy2 1 7,2 1 2, _Ku_1 Ky
1-28 -2 O+ ) ;v -t S
Pl Pl Pl Pl Pl
_l_ln -
2
1 Ku.2 1 v .2 Ku 1 Ku.2 2/| 2 2, Ku.
- (55) + = () 1-—5 -~ (5) +v (v +(Z5))
4 "Pj 4 'p, P% 4 P? vy Pt
(5.14)

24



THE UNIVERSITY OF MICHIGAN
2764~-3-T

In view of the magnitudes of the parameters, as given, it is required

to use a more detailed expansion than before, namely

4
4p 1
occlln 21 3 3 ——;——-———2 s (5.15)
(Ku)“+v° PS 1+( B

vP,
which reduces only at higher frequencies and lower P, values to the old form,

which was 9
2P1 1
o «< In (?u—) -3 (

Kn ) . (5. 16)

The integral I, must be recomputed with this form for the new
frequencies.
Now let us look at I;, the Born approximation integral for the

neutrals. Now 7 is very large, because of the severe screening. We have

P -
('71")2 ~ 5.5x10° at the lowest P,

% < 6.5x lO—6 , the value at v =125 KMe.

This leads to

4P12 4pZ /2 ]

1
o — | In (1+ ) -
2 [ Y2 14 4p2/? (5. 17)

P, 2
However, more care must be exercised before accepting this. Since (—,;,L)

is small, the bracketed quantity may be expanded as
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Z 4 2 2 4
4P% " P, ) 4p? 1 4P ) . Pl) 15
72 v 2 % "85 .18

so that lowest-order terms vanish, leaving those of order (p,/ 7)4. Then we
must be sure that terms in Ku/ 72 have not been neglected; they are of the
same order. We then write

2 2. K
Py (1-=5)

1 4:P12 - 4:K/,t+ ’Yz Pl
o — In 5 - 2 (5. 19)
0% [1+4( 452&]

Y

1 P, 2 K P, K P, 4 K
— — l:ln <1+ 4(50)" - 4—;‘5) - 4(7)2 <1_—;§i-4(71) +4;-’2=‘—):’ (5. 20)

— 4 ,:4(7) —4%— - 8(7) - 4(—) " 4—-‘5 + 16(=") - 16 P; —Ii—%
(5.21)

p, 4 , as in (5.18).

Thus, the terms in Ku/ 72 cancel when those leading to them are
kept, and by luck we may use the expansion (5.17), as previously. Therefore,

the power for neutrals is frequency-independent in this range of v .
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The results of the re-computations are:

15 KMc 35 KMc 50 KMc

18 18

3.04x10"18 3.02x10" 3.00x10"

1.48x10718 1.33x10~18 1.25x10718

125 KMec

2.81x10~18

1.05x10-18

Incidentally, the forms previously given for the contribution of the

slowest electrons (the Born-Elwert limit) remain unaltered for both ion and

electron Bremsstrahlung. Thus, finally, we conclude that with our approx-

imations the ion Bremsstrahlung power varies only very slowly with frequency,

and that from neutrals is frequency-independent, in the microwave range

covered here.
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VI. Use of Detailed Balance to Obtain Free-Free Absorption Coefficients
from Bremsstrahlung Cross Sections

In order to assess the importance of Bremsstrahlung at frequencies
above the plasma frequencies, a knowledge of the free-free absorption
coefficient is required, since radiation is absorbed in the plasma by this process.

Now in Bremsstrahlung an electron of momentum P; (in Heitler's
units) releases a photon of energy K (in range dK), and itself ends up with
momentum P, (range u/P,dK) such that P? - P22 =2Ku, where u = mcz. In
free-free absorption, we can consider an electron of momentum P, to absorb a
photon of energy K to K + dK, so the electron ends up with P; to P; + u/P; dK.
Thus these two processes are inverse to each other. We have obtained Brems-
strahlung cross sections previously and want the free-free absorption coefficients.
The idea immediately presents itself to use the detailed balance theorem of
statistical mechanics to relate these two quantities.

The detailed balance theorem requires that in equilibrium the probability
of a transition from state 1 — state 2 of a closed system is equal to that from
state 2 —> state 1. (Note that this is detailed balance, a stronger statement
than constancy of population of a state; the accounts balance between all pairs of
states, not only in total income and outgo of population of each state.) Then,

basically, the detailed balance principle requires that
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probability of Bremsstrahlung with P; — (Py, P2+§ dK), photon with (K, K+dK) emitted
2

number of electron states in _PIL dK at P, x number of photon states in dK at K
2

probability of free-free absorption of photon (K, K+dK), electron has P29(P1,P1+_1ﬁ)_ dK)
= 1

number of electron states in —1/;‘— dK at P,
1
(6.1)

The denominators arise from the assumption that all degenerate states
are equally probable within an energy level. The degeneracy exists because
electron energy is a function of IP l , not f’-’ and is taken independent of spin,
while photon direction of propagation and polarization do not affect the photon
energy. Then, since the probability of entering any state varies inversely with
the number of co-degenerate ones available to be entered, these numbers appear
in the denominator. The quantities u/P dK are the ranges dP corresponding to
dK, obtained from conservation of energy, P? - Pg =2uK.

Let us consider all process to take place in a volume V, which will

cancel as it should in the final result. Then

Number of electron states at P; in dP; =— dK is 3~ p KV (6.2)
P, (hc) P,
Number of electron states at P, in dP, =$ dK is P dK Vv (6. 3)
2 (he)3 2
87 KAdK
Number of photon states at K in dK is —-—-3——(}7:0) V. (6. 4)
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Next we want to relate the probabilities involved to the cross section
of interest. There is a general relation between these two descriptions of a
process. For consider a volume V in which there is a volume density n, of
target systems, capable of making the transition 1—»2 when struck by another
type of particle, the latter being present in density N Let o(1, 2) be the cross
section for the transition, and P(1, 2) be the probability/unit time of the process.

By the definition of cross section, we say

events/unit time/target system
. - . — (6.5)
incident particles/unit area /unit time

o(1,2) =

(1, 2) x Number of target systems in V
_ s Number of target systems in V ©.6)

"R 'R

_B(L.2) 6.7)
NR/VVR

where there are NR incident particles in V. So

NRVRO’(]., 2)

v (6.8)

P(1,2) =

Finally, choose V such that NR =1l or V= (nR)"1 (all results will be
independent of V in the end). Then P(1,2) = YR o(1,2) /V, which is the usual

relation.
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Then, for the Bremsstrahlung process P;—P; ,

Vl O'Br (Pl B K) dK

(the dK occurs because o(K, P;) obtained previously is a "cross section density"

such that o(K, P,)dK is really the cross section for emission by an electron

with P; of a Bremsstrahlung photon in K to K + dK). But in the case of
Bremsstrahlung it is the electrons which are the target systems, v; still being
the relative velocity, while the ions are the bombarding particles. So we must

choose V =1/ n, as the volume within which our conceptual processes occur, and
P(Pl—"Pz) = Vl ni O'B (K, Pl) dK . (6. 10)

For the free-free transitions, correspondingly,

v

Inserting all of these relations into the statement of detailed balance,

we obtain
O'B(Klpl) dKnlvl _ (¢] O'ff(Pz, K) dK (6 12)
2 2 - 2 ’ :
87fP2 8 87TP
4 7 K dK L
V'('};)'g— P, K V—_(hc)3 V x VW P, dK
whence
cB(K, P,y) n, vl(hc)3 P,
o, (P, K)dK = ( ) (6.13)
£ 87 K¢ P,
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in which o; P,,K)dK is, as with Bremsstrahlung, to be interpreted as the

o
absorption cross section. (We will use the symbol ¢ for true absorption
cross section from now on, dropping the dK).
. 2 -1
We may write O'B(K, P) = o, _15‘?_ K " F(K, P;,)N for those cases
in which the Born approximation is valid, in which F is the quantity which ap-

peared in brackets previously and was approximated in various ways. Then,

with o= 16/3 72 o ri as before,

o MDn,
OIJ

© 3 3
P, (w) (27)" F(K, PN . (6.14)

We may multiply by the electron velocity distribution dne(Pz) and integrate

over P, to obtain the absorption coefficient

-PZ/s?

[0)
_ 6 .2 2 2\ ,c¢3 4y  PadPje
a (w) —neni<3 Z a/ro7r> (w) So = 3 F(w, Py, Py)
(6.15)
2
where s =2u kT.
When the Born approximation is valid,
2
1 (P +Py) 2+ o2 27" P, P,
F = |- In - s (6.16)
2 (P,-Py)° +7° BP+P)2+ 2] 2. 2
1~ P2) v 1Py +v (Py-Py)“+ v

and in the integration, P, is to be expressed as a function of P, by conservation
2 2
of energy, P; =Py + 2utw.

32



THE UNIVERSITY OF MICHIGAN
2764-3-T

This is precisely the result obtained by Dewitt in Reference 3; thus
this conclusion is not original. However, it was felt desirable for the sake of
clarity to include a detailed derivation of (6. 15) in this report.

In the case of electron-neutral Bremsstrahlung and absorption, it
is clear that the only change in the formulation is to replace n, by n the
density of neutrals. When the impulse approximation is used for electron-ion

Bremsstrahlung, the quantity F is replaced by

2 2 1 2 2 2
F = \/(-i—) + (-”lfﬁT) K D) K() -~ [(-:—) +2( ) ][Kl(«—)—Ko(rﬂ

(6.17)
which occurred in (3. 28).
For practical purposes, we must again determine the range in P,
of validity of various approximations, for a given choice of K or w. For the
neutrals, we find that the Born approximation which was used before for

P? > uKkT, correspondingly is used for Pg > ukT - 2Ku. It may be written

(Pz + VP2 + 2Ku) +y? 2P, (P2 + 2Ku

1
) 2 2 2 2
+ + v -
(\/1;2 +2Ku - P,() (@ )%+ v ][< Py + 7% ]
(6.18)
and again, in this range, approximated as
2 2
F A= [m 1+ 2F2 AP2 ] (6. 19)
2 7?2 v%(1+4pP2/v2) '
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so that for the contribution of this part of the electron velocity spectrum to the

absorption coefficient from neutrals we have

3/2
16 2 2 2 c.3 4u 1 1
= — o — —
(W) nnne<3 Z &r,m ) ) w Gar) X2 AT
2
( 1_tw, -
“2 7 kT 8 Uk T 2 2
KT 8uhw 1 Tw Y
e 14 KT 1| - e ARNERY S U R
[ln( +2 —ﬁ—) :l e (1+8ukT)El( 5 YT —_SMkT)

(6. 20)
We note that, since hw/ KT <1 and Tw €7 2/ 8u for the microwave

frequencies we consider, the quantity in the large bracket is essentially
frequency-independent and simplifies to the form used previously, and we do
obtain in this range a Kramers-type absorption coefficient, ~ 1 /ws. The
contribution of the lower part of the velocity spectrum would appear to be much
smaller; in any case neglecting it yields a lower bound on « (w), which is of
practical importance.

Now if Kramers' law really held for all P,, we would have F = 7/|3.
We may define an effective Z by equating our @ (w) with Z =8 to that obtained
from Kramers' law, in which the "effective Z' is assumed to appear. We had,

evaluating (6. 20)
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2 16 2 2 ¢.3 4u 4.65x10 22
QW) = nn Z — ar g (—) (6.21)
ne 3 o w7 (2ukT)3/2

in which the numerical factor arising from the integration, containing ukT, has

been explicitly evaluated rather than left as in (6. 20). Now Kramers' law yields

(o) 2

-P"/2ukT

(W =nn Z2’]:'3-6 Q’rz 71'2 (_0)3 4y 1 3/2 J—%PdPe

ne (o] w \/? (2/.tkT) 0

(6.22)

Equating these two, regarding the Z in Kramers' law as Z effective, we

obtain

Z effective = 0.17 . (6.23)

This compares reasonably with the result of Breen and Nardone, Z ~ .31 at
10,000 £ and 15,000 & , for T =8000°K. The higher frequency radiation they
consider should result from electrons which see a greater Z.

Incidentally, the reasonable agreement of the effective Z with that of
previous investigators may be regarded as a practical justification of the fitting
of the potential for small r only. Although a formal analysis of the effect of
underestimating the potential for r >7b , roughly, is difficult, it would appear
that the potential has dropped off sufficiently by this radius so that, with the given
velocity distribution, there are simply not enough scatterings giving rise to
microwave Bremsstrahlung from large r to affect the power significantly. That
is, since our effective Z differs from theirs by a factor of roughly 2, but should
differ by some factor presumedly between 1 and 2, it would seem that a large

error has not been made.
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Now, for the ion contribution to free-free absorption, let us first

look at the Born-approximation part. Here, where again P, runs from
In 4P§1 - L
(Kw2+7v2Ps 2 1+K2u2/P2+2

\/ukT - 2Ku to o, we find that F =—; is
the correct approximation, and a new integration is required, the integral being
a function of frequency.

For the classical part, since the function corresponding to F contains
only a single momentum (classical scattering being a continuous process rather
than a transition between states), we simply label this momentum P,. Rather
than trying to derive a lower lower limit of integration, we note that the
integrand drops off rapidly enough so that we ignore any contribution for smaller
P. (That is, the integrand has dropped off so much by \/ﬁ that any extension
to P = 0 makes negligible difference.) Then this result stands unchanged, and
must be integrated numerically as before.

In view of the fairly smooth match when the Born and impulse
approximations were joined at P = \/—pk_T, little error is incurred by continuing
to join them there, rather than at\/m which procedure saves a new
computation.

We then obtain, combining the previous numerical results, for the

free-free absorption coefficient of electrons in the field of ions,

4.52 15 kme

-18 4,35 35 kme

@) = 16 , 2,23 4ux10 4.26 at 50 kme

w) = neni 3 rom w \/'TF(ZukT)3/2 3.86 125 kme
(6.21)
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For that due to electrons in the field of neutrals, we had

3
216 .2 2. 4y 22

I 3 o o \/'17(2/.sz)3/2 x 4.65x 10 (6.22)

for all these frequencies. In both these results, all quantities are in cgs
units, @ in cm—

For the low degree of ionization corresponding to T = 50000K in air,
the absorption due to neutrals should dominate strongly that due to ions. While
we need not concern ourselves with a specific value of nn and ni , which would
point too directly to a specific aerodynamic situation, we may comment that

this free-free absorption may be extremely severe at the frequencies discussed,

for reasonable practical values of nn.
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