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I. Introduction

In a relatively cool plasma, the major source of Bremsstrahlung is
expected to be electron encounters with neutrals, the low degree of ionization
compensating for the disparity in cross section between this and electron-ion
Bremsstrahlung. Since the nuclear charge is screened by atomic electrons,

a major problem in obtaining the cross section or radiated power is determin-
ing the effective value of Z, tke atomic number, for the neutrals. Likewise,
Debye shielding is operative with the ions. In plasmas with low degree of
ionization, the Debye length is sufficiently great that such shielding may be
neglected for the neutrals, of course, whose own screened fields drop off
much more rapidly.

Some previous work along these lines exists. For example, Breen and
Nardone (Ref. 1), working with O atoms at 8000°‘K, find the free-free absorption
cross section to be given by the classical Kramers' law, with an effective
Z =0.31 at 10, 000 g and Z =0.27 at 2C, 000 g . Their matrix element, involving
only S and P partial waves, is the result of machine computation. Now
Kramers' law is the high-frequency limit of the exact Sommerfeld cross section
for a pure Coulomb potential and, as can be shown by putting in a few numbers,

would in the absence of screening describe the contribution from most of the






velocity distribution at the temperatures and frequencies they use. However,
for microwaves the cross section is not necessarily of the same form, and
since the importance of screening is a function of electron velocity for a given
radiation frequency, the effective Z for microwave radiation is not necessarily
the same as theirs, and is moreover different for different parts of the electron
velocity distribution, over which they have averaged.

Rather than using machine wave functions, we base our work on a
screened Coulomb potential, with the screening radius taken as the Debye
length for ion Bremsstrahlung and obtained from a Thomas-Fermi model for
neutrals. Since the Schrodinger equation cannot be solved exactly for this
potential, approximate solutions must be used. The range of validity of these
approximations depends on the microwave frequency, Debye shielding length,
and electron velocity. Thus, for the sake of concreteness, we specify these

by choosing v, electron density, and T

T = 5x10° °C.



II. Electron-Ion Bremsstrahlung from the Faster Electrons

In this section we refer extensively to the work of Dewitt (Refs. 2, 3),
who has applied the Born approximation to the Debye-screened Coulomb
potential to treat Bremsstrahlung in a fully-ionized gas. He has investigated
the validity of this approximation in detail. Let us refer to incident and

scattered quantities by the subscripts 1 and 2. It is useful to talk in terms of

Ze2
hvl ’2

For the pure Coulomb field the Sommerfeld exact Bremsstrah -

Dy,2 =
lung cross section may be expanded in powers of n, -n,; the first term of this
expansion is the Born approximation result. Thus for the pure Coulomb field,
the Born approximation describes well the situation of low-frequency radiation
(v ~ vy) from not-too-slow electrons. That is, n, >> 1 is permissable as
long as n, -n; << 1. For a screened potential, although there is no exact
solution to compare it with, the Born approximation is shown by Dewitt to be

even better for the low-frequency part of the spectrum, i.e. it is valid tor

smaller v;. Since we note that for v; ={ KT and v =50 KMc, n;~9, and
m
-4 . . R
n; - n; ~ 10 , we shall use it down to this value of v; . For faster electrons
it is of course even better, but we restrict ourselves to non-relativistic

electrons, naturally.

In what follows we use the following notation:

P = momentum in energy units = mve
K = photon energy = hv
Moo= m02
= e2/ me?
r, =e‘/me



@ = e2/ he?

16 . ,2 2 2,2
o, = 3) a7 ro/.t/P1
Y = he/a
A, the Debye length = fk_li
47rnee

In terms of these, the Born differential Bremsstrahlung cross section may be

written
2 2
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in which, of course, P, is to be eliminated by conservation of energy,

P12 - P22 - 2K,u (2.2)

Since the power is obtained by multiplying the cross section by the incident
flux and photon energy, and integrating over the electron velocity distribution,
the contribution from this velocity range to the power/ unit volume/ circular

frequency interval may be written,where Z = 1 for the ions always,

2
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It is not possible to introduce approximations to the bracketed term valid over
the whole range of integration. P; >> 7 is always valid, and thus (P;+P3) >> 7.

However, P; -P, =7 at about Py ¢ =15¢ YkTm, and since P, -P; ~ Ku/ P, ,



P, -P, < 7 for greater P;. Since most of the contribution to this integral

comes from P, < P, a fair approximation to the bracket is, if one is required,

/op 2 2152
2 CETD
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Now for the very slowest electrons with Plz > 2Ku, the microwave
radiation is the high-frequency limit of their spectrum. The Born approximation
fails here for the pure Coulomb field, but the Sommerfeld solution is reproduced
~xeellently when the Born approximation is modified by the Elwert factor. Al-
though its use cannot clearly be justified for the screened potential, we might
hope the screening is weak enough to approximate the Coulomb case, and that
it would be correct order-of-magnitude.

The expression is

= dK P1 1-e

(2. 4)
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The contribution from the very lowest velocities is described by the limit
here P,/ P, — 0, PI' >> 7, or
dK
d (K,Py) —> 20 — , 2.5
(o) -E 1) 0K ( )
which differs from the Kramers result in having a factor of 2 rather than % .
3
These slowest electrons then contribute (again Z = 1 for 0+.)
2
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This is valid for only a very small range, since for P; =even 2c \[2—mf ,
P,/ P, = (3/2, which is certainly not the high-frequency limit.

We would like now a cross section valid for electron velocities between
the very lowest and the thermal range. The classical impulse approximation

will be used to furnish such a result.



III. The Impulse Approximation

Ideally, an exact classical trajectory treatment should be used to fill
in the gap here. However, this cannot be carried out, and we are forced to
resort to the impulse approximation, which has been used elsewhere (Roberts,
Ref. 4) for Bremsstrahlung in a pure Coulomb field. Since a screened field
causes less acceleration at large distances, the impulse approximation should

be better for a given electron velocity here than for the Coulomb case.

Now in a classical treatment we obtain a particle trajectory which is a
function of the impact parameter s and the initial velocity A For fixed values
of these, the radiated power from one electron in dw is (Ref. 5)

dw = 8T 93 Iﬁ(w)]z dw , (3.1)

where a(w) is the Fourier transform of the vector acceleration, and lz(w)lz =
[ax(w)]2 + [ay(w)] 2. This is then multiplied by the flux N dn(vo)v, and averaged
over annuli of radius s. Finally, of course, we average over that part of the,

electron velocity spectrum for which the expression is valid.

The impulse approximation consists in taking the acceleration which would
be associated with an undeviated straight-line trajectory, i.e. acceleration but
not displacement results from the presence of the scattering center, which is
like the effect of an impulse. The geometry for the calculation is given by the

following sketch:

+Ze



Then

r2 =sz+v(2)t2 x=vot s y =8
. -r/x
2 = - =/ V(r) V(r) = -Zze? & =-ze’w[ (3.2)
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and, where the bar here indicates a Fourier transform on a, or a(w),

. m 3
- Zezv0 ® tet  ow - _ Ze2s ot el
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-00
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Since g(r) = - B_W is even in t, we have
r
2 . (o]
i
a, = ZeT Vol & tsinw’cg(r)——dt ,
7T m r
0
2 o) (3.4)
a = Ze"s S cos wt g(r) at
y ,Tm 0 r

Consider the integral in Ex, which we will call w). We change the integration

variable to r from (3.2), and integrate once by parts, obtaining
@ cos “;’_ Vrz—s2 e_r/)\

[o)
0 Vr2 - g2

Iw) = g dr (3.5)

v

and with r = s cosh t, we have finally

A4
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in which K is a modified Hankel function. Then

® -s/A cosh't
(w) = L3 g cos[i’ﬁ sinht] e dt
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We now need only

F = Soog(r)i‘li=L Smgu——rdr
0

which with the substitution r =s cosh t becomes

® -acosht
F = 1 e
v [

VOS

5 + & ] dt . (3.12)
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Consider the integral here, which is a function of a only; call it f(a). Then

@© -acosht
f(a) = -a S e dt = -aK,(a) (3.13)
0



so that

a
fa) = - g XK (x) dx - lim %K (x) = 2k, (a) (3.14)
(0 0) X—» Q0
and
F = “Kl(z‘) (3. 15)
Vo 8
Then 9 5
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8, — (T) +(v°) K, [s (A) +(VO)J (3.16)

5, = E%’_ K, [s \/(%)2”‘,&)2} . (3.17)
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It should be noted that for A — o (no shielding), these agree with the
corresponding quantities deduced by Roberts (Ref. 5). Then we have for the

quantity lg(w)lz, which we may call A2,

a2 = c? [s%Xss) - _:22_ K2 (5 )] (.18)
o
with
2
c =2 §7 = (e
fmvo o

Next we want to average over impact parameter s. We have no improvement
to suggest over the usual procedure of taking the lower limit at 8min = kDeB roglie’
the distance within which the electron cannot be localized, so that it makes no
sense to talk about closer approaches to the nucleus. Then we must evaluate

the integral

10
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in which we have used the symbol € for )‘DeBroglie to eliminate confusion
with the screening radius, and x = 9€. Let the first of these integrals be de-

signated F(x), the second G(x). Now an integration by parts shows that

F(x) = x Ko(x) K (x) - G(x) , (3.20)
so we can concentrate on the second integral. As may be verified by differenti-
ation, this is simply

Glx) = ’—‘23 [Klz(x) - Kg(x)] + lim -2"-2. [K2(0 - K (x)J [ %20 - K20

X—00

(3.21)
Then

2
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in which

2
n = [(2DeB)?+(“*peB)? gng A =_B_
N Vo Broglie mv,

In order to apply this result, we need a criterion for the validity of the
classical description, This can be obtained in rough form by following Bohm
(Ref. 6). We require that the size of a wave packet representing the electron
be < the impact parameter, and that the momentum uncertainty involved in
forming this packet be much smaller than that transferred during the collision.
The impulse approximation should be better for the shielded than the pure Coulomb
potential, so we will get a criterion no worse than that usually employed, which

is

5 o
287 j Fir) 4&x >>1 | (3.24)
Bv . r

which leads to an integral previously evaluated, and yields (Z = 1 for us)

2
4Ze's g (_;_>>>1 . (8.25)
Bva

Thus, a limiting impact parameter is determined as a function of n; or v; .

For v = /._Z_IS_ , (3.25) is satisfied out to 8/ XA=5 or 6, which should
threshold m

include most of the effect of the potential, while for v = /%:—. 8/A~ 2.5 is the

limit. However, computation in beth cases shows that integrating out to 8 =

is justified because of the rapid decrease of the K functions. Incidentally,

another requirement that the classical description be valid for this potential is

that the relative variation of the potential over the size of the equivalent wave

packet be small. That is,
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Since r 2 s > ADeBroglie always in this description, and *_A < ,

this will be satisfactory in general.

The contribution from the range /_2_& <vg ’ﬂ should then be
m m

given by

2¢544 m \3/2 FE —P2/2ka
v (o)

27kT PdP e
2K

m
(3.28)
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It may be noted that the ratio of the impulse approximation to the Kramers'

result at the lower limit is approximately 1/ 7. At the upper limit, the agree-
ment with the Born approximation result is much better, the ratio being ~0, 83,
Since the faster electron is deviated less from its trajectory, the superior
agreement at the upper end may be interpreted as resulting from better validity
of the impulse approximation, and is thus in agreement with expectation. It may
also be noted that Dewitt gives a '"classical low-frequency" expression (eq. 18 of

Ref. 3) valid for weak shielding. This is applicable to only a very narrow velocity
range, just about KT |, for our w. At that limit, the ratio of the impulse cross
m

section to his result is 1. 31, which is quite reasonable agreement.

13



IV. Electron-Neutral Bremsstrahlung

As stated in the introduction, we base our calculations here on a screening
radius derived from the Thomas-Fermi atom. While this is admittedly not
very good for Z as small as 8, it is hoped that the model is still more physical

than that of Nedelsky's (Ref, 7) frequently-quoted paper, which uses the potential

2 2 h
Ze” _ Ze r<a

a r (4.1)

V(r)

=0 r> a

-~

and must determine Z and a by recourse to experiment.

We therefore take for the potential seen by an incident electron

V) = -Ze2 pin) (4.2)
r
with § a solution of
2 4% p3/2 (4.3)
dx?
0.8854a9

in which x =r/b, b = , and a, is the Bohr radius, 12/ me? .

1/3

/

p(x) has been tabulated by Bush and Caldwell (Ref. 8). It may be fitted quite
well by ot/ A With A= 1.33b = 3,13 x 10° om for 0. We glve here a plot of
o~ PX/ X

X

V(x) = - and —:‘-{— P(x) .
Again, the Born approximation cross section may be used for P> ¢ {mkT,
but different approximations are permitted with the stronger screening here.

We write, then, for this part.of the electron velocity distribution,

P1+P3’VZP1 and Pl"P" PIZ-P’ZN“K (4.4)
P+Py P

so that

14
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m-c 27k T
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2 g ¥2(1+4 P2/5%)

Although, because the strong screening makes this case much different
from the pure Coulomb field, we cannot justify the Born-Elwert result, we may
use it to get some indication of the contribution of the slowest electrons. We

need now the limit P, /P;— 0, P;<< ¥, and find

do(K) = 20, (__.L) (4.6)

which because of the shielding i8 quite a small result compared to the contribution
from the thermal range.

The impulse approximation is found not to be valid for neutrals, and no
method has been found for treating the contribution of the intermediate part ‘of
the electron velocity distribution. However, there is no physical reason to
expect any special phenomena to characterize this range, so that we still ex-
pect the contribution to the total power to be given essentially by (4.5); the power
rising with velocity from that given by (4.6) to this value. In fact, up to velocities
of the order of Jk—_T the extreme screening limit still applies, and the integrands

m

3

for power have the same form. Thus the ratio of power/cm® in equal frequency

ranges from thermal electrons to that from slow ones is thus essentially

thh2
P v - v 4 7
therm _ , Yth , 2kT _ﬂL> ~ 10 (4.7)
Pslow Vs Vs
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so the slowest electrons can be neglected with respect to those at v = ’ﬂ .
m
Likewise, the high-energy tail P;2 ¥ contributes little, and in fact, the
integrand of (4. 5) peaks near M T /—kT— , dropping off faster for v > M
m

than for v € VM but such that (4.5) does give the essential contribution.
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V. FEvaluation and Discussion of Results

The integration indicatedin (4. 5)for the Bremsstrahlung power from neutrals

may be carried out, leading to a closed form. Consider

[00)
2
1=§ PdPe—PZ/Z“kTilln(l+4Pz ) - = 2P
KT 2 5 ¥4(1+ 4 P2/¥%) (5.1)

With y = P/ 2,kT , B = 8ukT/¥% , we find

” By
I = I ukT e‘y{muwy) - dy , (5.2)
2 1+8y
Y,
and two integrations by parts yleld finally
1 -1/2 1
L= ukTEe /2 [+ 8/2)-1] -'/P (14p) Et(—%-é—)} (5. 3)
Here Ei Is the exponential integral, defined by
(00) e't
-El(-x) -—-3 — dt (5.4)
X
Numerlcally,
I, = 4.65x 107%% erg? (5.5)

and (4. 5) becomes, for the power/cm3 in dw from neutrals at 50 KMc,

— 16 2 4x m
Pdw= N ng 5 bz (

3/2 -22
)/ x4.65x10 3
235 SmT dw ergs/cm® gec

-29
= N, dw 4,45x10 ergs/sec cm3 (5. 6)
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Incidentally, we might ask what "effective Z' this corresponds to, i.e., "If Kramers'
law gave the correct cross section throughout the whole velocity distribution, what
value of Z in it would reproduce this power ?"" Now Kramers' law integrated from

P =J2ku to o yields

_ 16 6,2 4rm m 3/2 T -K/kT
Pdw= Np;ng 3 e’Z 1.5 (27rkT) de_ykTe / (5.7)

so we find

1/2
n5 61
L 7'] (5.8)

This is in reasonable agreement with the results of Breen and Nardone (Ref, 1), since
our longer wavelength radiation may come from more distant collisions, classically
speaking, and greater shielding.

For the ion Bremsstrahlung, the higher velocity electrons ylelded the power

expression

_I_’d(.)ﬂ'—'nz'l?i3 726 4T (3 )S/Zdw

m4c® 2 xkT

[00)
PdPe_PZ/ZukT {.111 ( ZPZ )- KZPZ g
kp 2(Kp)e

ukT
The integral I, appearing here may also be evaluated in closed form, and ylelds,
2
with d = (4kT/K) and € =%z-#§- 5

I, = ukT Ea‘l/z {19 §/2-3 %} - El (—ﬂn 3.01x10718 grg2 | (5. 10)

so that

18



Pdw = 4.5 x 10714 dwerg/cm3 sec (5.11)

The integral arising from the impulse approximation must be evaluated numerically.
We find for it
18 2

I, * 1.24x 10  erg , (5.12)

so that the slower electrons contribute to the ion Bremsstrahlung

14

Pdw = 1.83x10 erg/cm3 sec. (5.13)

Finally, now that the power integrals have been investigated in detail, it is
possible to go back and ask whether the replacement of the Thomas-Fermi potential
by the screened Coulomb form is consistent. The question arises sinoe they agree
well only for small x , differing by more than an order of magnitude for r > 7b,
when the exponential begins to drop off more rapidly. However, it is clear that the
range of r for which the potential must be given accurately is determined by the way
in which it enters into the Born approximation cross—section. This in turn need
only be given well for that range of momentum transfer ]1;? —Y’;I&om which a
significant contribution to the power arises in the integral over electron velocity

distribution.
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Since the potential V(r) is spherically symmetric, it enters the Born approx-

imation cross section only in the radial integral

®
Iax dr r V(r) sm[r?;—iﬂ r/hc (5.15)
0

Further, integrating I only up to P = /10ukT ylelds 900/0 of the total power. We

must then Investigate the Integrand of (5. 15) for P <10 ukT . The minimum period

of the sine is clearly hc/ IP! P,l ~Ac -+ 2r/2Py ., Which 18 37,2b. There-

fore the range of x within which the potential must be given well is that within which

JA #(x) sin (

integrand behaves like x@(x), the integral of which must be examined, In the case of

) dx ylelds iis essential contribution. For much larger periods, the

the minimum period, we find it satisfactory to fit the potential for smaller x, say
x<8 . Unfortunately, for larger periods (l.e., smaller-angle scattering), we need
the potential much farther out, where we have fitted it poorly with the exponential,
This should lead to an underestimate of the scattered power from neutrals, However,
since, as stated, we would expect a smaller effective Z for microwave than for infra-
red radiation, and yet a factor of only roughly 2 exists between our result and that

of Ref, 1 for Z effective, it would seem that the underestimate has not been a gross
one, so that the power given by equation (5. 6) should be valid within an order of
magnitude, This may perhaps be due to the fact that for large periods T , sin 2rx %
behaves like 27x/T for small x , where the potential is appreciable, and the integral
(5. 15) 1s thus much smaller than it s for larger-angle scattering. That is, the po-
tentlal drops off so rapidly that distant small-angle scattering does not comtribute

greatly to the cross-section, as it would for am unshielded Coulomb potential.
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