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Abstract-The small-signal response is discussed for double injection structures heavily doped with 
deep recombination centers. The discussion is based on an exact small-signal linearization of the 
nonlinear equations describing the steady state. Diffusion is neglected, but space charge, thermal 
emission, and position- and injection-level-dependent lifetimes are included. The problem is reduced 
to finding the solution of a single second order linear differential equation, which is valid at any 
injection level. Approximate general solutions are derived for high and low frequencies. Numerical 
solutions are given for Au-doped silicon p-i-n devices operating in the low injection square-law 
regime. Previously a much simpler model was used to calculate the small-signal response in this 
regime, and that model was successful in explaining the spontaneous oscillations observed there. It is 
demonstrated that the numerical solutions to the exact equation give results very similar to the 
previous model. A physical description of the space-charge recombination oscillations is given. 
This description suggests that the space charge on the traps and its phase shift with respect to the free 
carriers are the important factors giving rise to the oscillatory instabilities. 

Resume- La reponse a faible signal pour des structures a double injection fortement addition&es de 
centres profonds de recombinaison est discutte. La discussion s’appuie sur une linearisation exacte 
a faible signal des equations nonlineaires dtcrivant l’etat stationnaire. La diffusion est negligee mais 
la charge d’espace, I’emission thermique et les p&odes de vie dependant de la position et du niveau 
d’injection sont mises en ligne de compte. Le probltme se ram&e a trouver la resolution d’une seule 
equation differentielle lineaire de deuxitme ordre, qui est valable pour tout niveau d’injection. Des 
resolutions generales d’approximation sont deduites pour les hautes et les basses frequences. On offre 
des resolutions numeriques pour des des dispositifs p-i-n de silicium addition&s d’Au fonctionnant 
dans des regimes de loi carree d’injection basse. Un modele beaucoup moins complexe a ite employ6 
anterieurement pour le calcul de la reponse a faible signal darts ce regime, et ce modele pouvait 
expliquer avec succes les oscillations spontanees y observees. On demontre que les resolutions 
numeriques de l’equation axacte offrent des resultats tres semblables a ceux du modele andieur. 
Une description physique des oscillations de la recombinaison de charge d’espace est donnee. Cette 
description suggere que la charge d’espace sur les trappes et son dephasage a l’egard des porteurs de 
charges libres sont les facteurs essentiels dans l’origine des instabilites oscillatoires. 

Zusammenfassung - Das Wechselstromverhalten von Doppelinjektionstrukturen, stark dotiert mit 
tiefliegenden Rekombinationszentren, wird diskutiert. Die Diskussion basiert auf eine, fir kleine 
Signale, exakte Linearisation der nichtlinearen Gleichungen welche den Dauerzustand beschreiben. 
Diffusion wird vemachhissigt, jedoch Raumladung, thermische Emission, und position-und in- 
jekionsniveauabhangige Lebensdauer werden beriicksichtigt. Das Problem wird darauf reduziert, 
die Losung fur eine lineare Differentialgleichung zweiter Ordnung zu finden die fur jedes Injektions- 
niveau giiltig ist. Angemiherte generelle Losungen fiir hohe und niedrige Frequenzen werden ab- 
geleitet. Numerische Losungen fiir Au-dotierte Silizium p-i-n Dioden die im Bereich der bei niedriger 
lnjektion quadratischen Abhartgigkeit arbeiten werden gegeben. Ein wesentlich einfacheres Model1 
wurde friiher benutzt urn die Wechselstromverhalten in diesem Bereich zu berechnen. Dieses Model1 
erklarte erfolgreich die dort beobachteten spontanen Oszillationen. Es wird gezeigt, dass die numeris- 
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then Losungen der exakten Gleichungen Resultate ergeben die sehr ahnlich zu denen des vorherigen 
Modells sind. Eine physikalische Beschreibung der Raumladungs-Rekombinationsoszillationen wird 
gegeben. Diese Beschreibung deutet an, das die Raumladung der Rekombinationzentren und seine 
Phasenverschiebung gegeniiber den freien Ladungsthgern die 
tionsinstabilitaten fiihren. 

primaen Faktoren sind die zu Oszilla- 

NOTATION 

d.c. quantity proportional to the ratio of the 
space charge to the recombination rate 
d.c. quantity inversely proportional to the 
recombination rate 
small-signal expansion parameters for the 
charge density 
small-signal expansion parameters for the 
recombination rates 
6.3 X IO-# cm’/sec, capture coefficient for 
electrons on positive gold centers [36] 
I .6S X IO-!’ cn?/sec, capture coefficient for 
electrons on neutral gold centers [36] 
I I .S X IO-” cm”/sec, capture coefficient for 
holes on negative gold centers [36] 
2.4 X IO-’ cm”/sec, capture coefficient for 
holes on neutral gold centers [36] 
500 set-‘, thermal emission rate for holes 
from neutral gold centers 
7.7 X lo” sect’, thermal emission rate for holes 
from positive gold centers 
0.38 set’, thermal emission rate for electrons 
from neutral gold centers 
74 set-‘, thermal emission rate for electrons 
from negative gold centers 
I .6 X IO-‘” C, electronic charge 
d.c. and time dependent electric fields, res- 
pectively 
dimensionless d.c. electric field variable 
I .04 X IO-” F/cm, dielectric constant of 
silicon 
E/E,,, dimensionless time dependent field 
d.c. and time dependent current densities, 
respectively 
electron and hole time dependent current den- 
sities, respectively 
j,,/eN,,‘( c,, + c,,) L, dimensionless current den- 
sity 
length of the i-region, typically 100 ym 
large dimensionless constant, - 2 x lo” for 
gold-doped silicon 
time dependent electron and hole number 
densities, respectively 
d.c. electron and hole number densities, res- 
pectively 
time dependent number densities of the nega- 
tive and positive gold centers, respectively 
d.c. number densities of negative and positive 
gold centers, respectively 
total number density of gold recombination 
centers 
I .4 X IO’” cm-:’ 
silicon at 300°K 

carrier density in intrinsic 

Laplace transformed time variable 
electron and hole lifetimes, respectively. 

(Their values in the low injection square-law 
regime with NN = IO”’ cm -‘I are 18.2 nsec and 
3.S3 nsec) 

e( CL. + IL,,) Ie/-WWV’,1 
e ( PL,,T,, + EL,J,A /~~/.b,P,~ ( /w-,, - 417,,) 
TUT,, ( CL. + p,J i ( PL,87,, + PL,~~,~ ) 
480 cm’/V-sec. hole mobilitv at 300°K 
1350 cm”/V-sec. electron mobility at 300°K 
d.c. voltage drop across the i-region 
coefficients in the master equation for the 
time dependent field 
position coordinate 
dimensionless quantity which effectively re- 
places x as a position variable 
values of z at the anode and cathode, res- 
pectively 
small-signal impedance function 

1. INTRODUCTION 

INSTABILITIES in double injection structures were 
first observed by Holonyak and Bevacqua in 1963 
[ 11. These structures consist of a long high resistiv- 
ity i-region with a hole injecting contact on one side 
(the anode) and an electron injecting contact on 
the other (the cathode). The i-region is a semi- 
conductor heavily doped with a deep recombina- 
tion center. When such devices are operated under 
forward bias, spontaneous oscillations in the 
current and voltage occur. Although at high 
voltages such structures exhibit a negative resist- 
ance in the d.c. characteristic, the oscillations 
generally occur at lower voltages in a positive 
resistance region. The original observations of 
Holonyak and Bevacqua were on Au-, Co-, and 
Zn-doped Si and GaAs with an unknown impurity. 
Since then similar instabilities have been observed 
in Si, Ge, and GaAs with a wide variety of im- 
purities providing the recombination centers 12-71. 
These oscillations have been found even when 
the recombination centers are formed by radiation 
damage[g]. It appears, therefore, that the instability 
is a general phenomenon not related to details of 
the transport processes or of the recombination 
mechanisms in the semiconductor. The presence 
of both electrons and holes and of relatively large 
impurity densities seem to be essential, however. 

These instabilities are remarkable in that they 
are not associated with an instability or negative 
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resistance in the d.c. characteristic. In this sense 
they are reminiscent of the instabilities associated 
with the onset of turbulence in fluid flow [9]. Most 
other known oscillatory effects in semiconductors 
which do not involve a magnetic field arise from 
a d.c. instability of some sort, e.g., the Gunn effect, 
impact ionization, Zener breakdown, or field 
dependent trapping; and in order to obtain narrow 
band oscillations from instabilities of this type 
an external resonant circuit is generally required. 
In contrast double injection devices exhibit very 
narrow band oscillations (Aflf < 10m3) without an 
external resonant circuit. 

The first attempt to explain the origin of these 
oscillations was by Konstantinov and PerelI 10, 1 l] 
who discussed a model in which they included the 
effects of diffusion but neglected space charge. 
They found instabilities referred to as ‘recombina- 
tion waves’ in an infinite medium, but they in- 
correctly applied the boundary conditions for 
a finite length device. Antognetti et ul. [ 12, 131 
recently extended their model and correctly in- 
cluded the influence of the boundaries on the 
threshold conditions. From a theoretical point of 
view we have two criticisms of the recombination 
wave model in its present form. The first is that all 
the d.c. quantities and their spatial dependences 
have been approximated in a very crude fashion, 
and no attempt has been made to demonstrate the 
validity of these approximations. The second, 
which is much more severe, is that the space- 
charge terms which have been neglected in the 
small-signal equations are, in fact, much larger 
for a typical device than the diffusion terms which 
have been kept. We will establish this point later 
using a simple dimensional analysis. In addition 
to the above theoretical shortcomings of the 
model, it also does not appear to satisfactorily 
explain the experimental results. Holonyak and 
co-workers[2,3, 141 have established that for 
a given material the voltage at which oscillations 
first occur is proportional to the device length 
squared, while the frequency at threshold has no 
length dependence. The threshold frequency and 
voltage can also have strong temperature depend- 
ences, and the oscillation frequency changes as 
the voltage is increased above threshold. Of these 
results, the independence of the threshold fre- 
quency on the device length is apparently the only 
one given by the recombination wave model. 

There have been several other more qualitative 

attempts to explain the observed oscillations, but 
none have led to meaningful predictions. The most 
prominent of these is a space-charge relaxation 
mechanism predicting oscillations with a period 
given by the electron lifetime[ 14, 151. Although 
this model is consistent with the dependence of 
the oscillation frequency on the gold density 
observed by Moore [ 141 in Au-doped silicon 
p-i-n diodes, it fails to explain how such a relaxa- 
tion mechanism can give narrow band sinusoidal 
oscillations. In addition we have observed in 
Au-doped silicon diodes that the oscillation period 
can be much different from the electron lifetime 
even though each of these quantities scales roughly 
in the same way with the impurity density. 

The small-signal response of double injection 
structures has been discussed by Baron, Marsh, 
and Mayer[l6] and others[l7-211 for devices 
biased in the high injection regimes, i.e., the 
regimes above the negative resistance in heavily 
doped semiconductors. The response in the low 
injection regime, however, has been treated only 
under the limited assumption of quasineutrality 
[22]. None of these treatments has predicted 
spontaneous oscillations. 

In this paper we discuss the small-signal 
response for long double injection structures oper- 
ating in the low injection square-law regime, which 
occurs below the negative resistance region. We 
include space-charge effects, but neglect diffusion. 
We will have in mind the particular example of 
high purity silicon doped with gold, and specific 
results will be given only for that case. The method 
of discussion, however, is general. In an earlier 
paper we gave an approximate discussion of this 
problem in which we neglected the spatial variation 
of the d.c. variables[23]. There we showed that 
spontaneous oscillations occur whose threshold 
properties are consistent with experimental 
observations. Here we will give a more rigorous 
treatment of the problem, using the correct d.c. 
solution. The results we obtain are very similar. 

In Section 2 we formulate the problem and 
reduce it to the problem of solving a single second 
order differential equation for the time dependent 
electric field. This equation is the exact small- 
signal linearization of the nonlinear steady-state 
problem; it involves no additional approximations. 
In Section 3 we construct several approximate 
solutions and discuss the resulting impedance 
function for each of these. In Section 4 we describe 
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a method for finding exact numerical solutions. 
Computer results are given for Au-doped silicon 
p-i-n diodes operating in the low-injection 
square-law regime. A physical picture of the space- 
charge recombination waves is also presented in 
Section 4. 

2. FORMULATION OF THE PROBLEM 

2.1 Steady state equations 

Our starting point is a brief review of the steady- 
state solution for long double injection structures 
(diffusion is neglected) based on the original model 
of Lampert and Rose[24] and Lampert[25] and 
extended to the case of deep traps by Ashley[26] 
and others[27-3 11. Our notation will follow 
closely that in Ref. [28]. 

The equations describing the d.c. solution are 
the electron and hole continuity equations and 
Poisson’s equation: 

f &h,“(X) = - f $A” (x) = r,,(x) , (1) 

E d-&(x) -~=P”(x)--“(x)+P,,(x) e dx 
-N,(x) + Nd+ - N,-, (2) 

where e is the electronic charge; j,,(, and j,,(, are the 
electron and hole current densities; r0 is the net 
recombination rate; E, is the electric field strength; 
l is the dielectric constant; n,, and p0 are the 
electron and hole number densities; No and PO are 
the trapped negative and positive charge number 
densities; Nd+ and N,- are the number densities 
of the shallow ionized donors and acceptors; 
and x is the position variable measured from the 
anode (x = 0). These equations are to be solved 
subject to the boundary conditions: 

E”(0) = E,,(L) = 0. (3) 

where L is the device length. 
We first introduce a dimensionless d.c. electric 

field 8 defined by 

y(x) = f%&Nfl ,, 
Jo(CLn+PJ 

6, b) 3 (4) 

where p,, and pLp are the electron and hole mobil- 
ities, NR is the deep impurity density, and j, is the 
d.c. current density. Next we introduce a dimen- 

sionless quantity z, which is a measure of the 
relative fraction of the current carried by each 
carrier type: 

(5) 

Since z increases monotonically from the anode to 
the cathode, it effectively replaces x as the position 
variable in the problem. The total current 

is constant, thus we can express the carrier 
densities in terms of z and g: 

From the continuity equations (1) it follows that 

dz 2e -= 
dx 

:r;,. 
JO 

For a particular set of trap levels r,, is determined 
as a function of n, and p,, from the Shockley- 
Read-Hall[32,33] formalism for the recombina- 
tion kinetics. Using (6) thus allows one to express 
r,) as a function of z and 8. 

Now we divide (2) by (7), and the result is a first 
order nonlinear differential equation for W (2) : 

Note that the right side of (8) can be expressed as 
a function of z and 8 by using the recombination 
kinetics and (6). 

To complete the d.c. solution one must deter- 
mine solutions g”(z) to equation (8). In practice 
this must be done numerically as was done in Ref. 
[28]. Each such solution will vanish at some pair 
of points z. and zL, the values of z at the anode and 
cathode, respectively; and the corresponding 
current and voltage for each are determined by 
evaluating the integrals: 

j,, = 2eL 



(10) 
combination rates, we have the further relation: 

s(P-N) = rp--r,,. (17) 
In the discussion of the d.c. solution it was con- 
venient to express the right hand sides of equations The total time dependent current 
(7) and (8) in terms of two dimensionless functions 
B(z, 8) and A (z, 8), defined by the relations: j=j,,+j,+seE (18) 

(12) 
From the recombination kinetics the quantities 

P, N, r,,, and r, can all be expanded as linear 
combinations of n and p. We can therefore write 

where J is a dimensionless current density, and 
M is a large dimensionless constant. For the case n-ptN-P=aan-bp, (19) 
of Au-doped silicon we have taken 

s(n+p) +r,+r,= (c,+~,)N~(an+pp), (20) 

J= h M= et-hh 
eNR2(c,+cp)L’ E(/J,+hJ (c,+cp) ’ 

where a, b, a, and /3 are dimensionless expansion 

(13) 
parameters. Explicit expressions for these para- 
meters, which are rather cumbersome functions 

(11) 
is constant as can be seen by adding the time 
derivative of equation (16) to the difference of 
equations (14) and (15) and then using (17). 

where c, and c, are the capture coefficients for 
of the d.c. solution, are given in the Appendix. 

electrons and holes, respectively, onto neutral The time varying parts of the electron and hole 

gold atoms. For an arbitrary set of trap levels any 
current densities are 

representative choice of capture coefficients could 
be used in place of c, + c,, in the definitions (13). jn=e~,,(noE+EOn), j,= epL,(pOE+&p). (21) 

Note that for a given d.c. solution 8(z) is deter- 
mined, and thus B and A are functions of z alone. 

Using equation (16) with (18), (19), and (21), 
we can express the carrier densities in terms of 

2.2 Small-signal equations the time-dependent field: 

To discuss the small-signal problem we linearize 
about the d.c. solution. That is, we take the time P= 

tuEo(dEldx) + a( j-j,EIE,--seE) 

dependent quantities to be equal to their d.c. eE0 ( pnb + Fpa) 
(22) 

values plus a small part varying in time as exp (st) , 
e.g., n(x, t) = no(x) + n(x) exp (st). The small- 

n=-~p~Eg(dE/dx)+b(j-joE/Eo-s~E) 

signal analogues of equations (1) and (2) become 
eEO ( p,b + pLpa) 

We next form the sum of equations (14) and (15): 
1 dj, --=sn+r,, 
edx 

i$(_in-jP) = s(n+p) +r,+r,. (23) 

1 dj, _ --- 
e dx - sP+rP, (15) For the right side of equation (23) we substitute 

(20) and (22), while for the left side we use (21) 

zg=p-n+P-N, and (22). The result is a single differential equation 
for E(x). This equation can be simplified by 
introducing a dimensionless time dependent field 

where r, and r, are the small-signal electron and 
hole recombination rates. Since the time rate of F = E/E, 
change of the trapped charge must equal the 
difference between the hole and electron re- and replacing (d/dx) by (JLB)-‘(dldz) as in the d.c. 
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solution. The motivation for this last step is the 
fact that many of the expressions relating to the 
steady-state solution can be evaluated easily as 
functions of z, while their dependence on x can only 
be determined by integrating (11). We obtain for 
the final result: 

where 

and we have used equations (4), (5), and (13). This 
is an inhomogeneous, second order, linear equation 
for F(z) . It must be solved subject to the boundary 
conditions that the time dependent electric field 
vanish at the ends of the device. Since E,,(z) 
satisfies these boundary conditions, this requires 
only that F(z) be regular at z. and z,.. 

Equation (24) is the master equation for deter- 
mining the small-signal response of a double 
injection diode in any regime of operation. For 
a particular value of s we must determine a 
solution F(z) to (24). With this solution we 
evaluate the small-signal impedance given by 

dzB(z)E,,(z)F(z), 

(26) 

or, using the results from the steady state solution, 

(2,) 

where R,, = V,,/j,, is the d.c. resistance, Knowing 
this impedance as a function of s we can apply 
Nyquist’s criterion to answer the question of 
stability: Zeros or poles of Z(s) which occur in 
the right half s plane correspond to spontaneous 
oscillations of current at constant voltage or 

voltage at constant current, respectively. 
It is a general property of the system of equations 

describing the steady state that if the device length 
is changed the current scales as L and the voltage 
as L”. For a given V,,/L”, the solutions for any 

device length will have exactly the same spatial 
variations. This result also carries over to the 
small-signal problem. This means that if we find 
poles or zeros in Z(s) which move with voltage, 
crossing into the right half s plane at some thres- 
hold values, then the threshold voltage will scale 
as L” and the threshold frequency will be indepen- 

dent of L. 
The primary simplification we have made in our 

discussion is the neglect of diffusion effects. This 
approach is motivated by the results from the 
steady state in which diffusion was shown to be 
unimportant for devices long compared with the 
ambipolar diffusion length[21]. The alternative 
treatment of this problem, used in the recombina- 
tion wave model, neglects space-charge effects and 
includes diffusion in the small-signal equations. 
Necessary conditions for the validity of the two 
methods can be derived by a simple dimensional 
analysis. We introduce the diffusion terms into 
the small-signal currents (2l), replace all deriva- 
tives with respect to x by L-l, and insert average 
values for all steady state variables. The resulting 
master equation will have three kinds of terms: 
those involving diffusion, those involving space 
charge, and those involving neither, which we call 
the drift terms. If we normalize all terms with 
respect to one of the drift terms, then we can 
identify dimensionless quantities characterizing 
the relative magnitudes of those remaining. For 
the diffusion terms the appropriate quantity is 
(AT/c&L), and for a typical device (Au-doped Si. 
N,, = IO’” cm-:‘, L = 100 pm, T = 3OO”K, P’,, = XV) 

its magnitude is roughly IO-“. The neglect of 
diffusion thus appears to be a reasonable approx- 
imation. The corresponding quantity for the 
important space-charge terms is (~p,,E,,‘/trj,,L), 
which is simply the ratio of the first to the third 
terms in the numerator of equation (22). For the 
same typical device[28] this quantity is of order 
unity. The conclusion is that space charge must be 
included in any accurate treatment of these devices. 
Diffusion may indeed be more important than the 
above argument suggests, but its effect can only 
be determined by a detailed treatment which 
properly takes the contact regions into account. 
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3. APPROXIMATE SOLUTIONS 

3.1 General remarks 

Before attempting to obtain any approximate 
solutions we want to first discuss the general 
properties of equation (24). This requires a 
description of its singular points, and for this 
purpose we rewrite it in the more conventional 
form: 

U(z) = - 2(P.,+cLP) 29 
/A& + ppu MB ’ (29) 

V(z) = z-2 

(30) 

+ ( 1+ ST,&) T (2) - /-G - ~~~~~ ,MA 

wnb + /_+/I ” 

The singular points of equation (28) are those 
points at which I/( Z) is zero. 

At the ends of the device the field vanishes, and 
the carrier densities, as well as their accompanying 
space charge, diverge as 8-l in order to maintain 
constant current. The trapped charge densities 
and the carrier lifetimes will approach constants 
determined by the ratio &/no). The recombination 
rate r. becomes n,,/~,, (= p,,/~,) and will also diverge 
as .ZP’. Thus both the numerator and denominator 
in equation (8) will diverge as 8-l at the contacts. 
This means that A (z, a) will become a function 
of z alone at the ends of the device, and we can 
write 

g’(z) = MA(z,,)(z-zzo), z + zo, 

g(z) = MA(z,,) (z-z,.), z + z/,1 

where A (z,,) > 0 and A (z,.) < 0. At the same time 
B will become proportional to H (z) , and (I and b 
will become unity at the contacts. The result is 
that U(z) will tend to zero at z,, and z,. as E’(Z) 
does. As long as s is not on the negative real 
axis, these are the only points at which U(Z) 
vanishes. On the other hand, V(Z) and W(Z) 
remain finite (nonzero) at the contacts. Thus, 
the points z. and z,, are regular singular points of 
the differential equation (28)[34]. At a singular 
point one of the two solutions of the homogeneous 
equation will in general be irregular. Hence, when 
there are two singular points, the solution regular 
at one will generally be irregular at the other, and 
there are no solutions to the homogeneous equation 
regular at both singular points. This implies a 
unique solution to the inhomogeneous equation 

(28). 
Since the expressions for U, V, W, and T are so 

complicated, it is perhaps more instructive to give 
actual numerical results for a particular set of 
parameters rather than to attempt a general 
discussion. In Fig. 1 we show computed curves 
for these coefficients at two different values of s for 
the case of a Au-doped silicon p-i-n diode with 
NH = lOl6 crne3, L = 100 pm, and V, = 15.7 V. The 
most prominent features in these curves are the 
very sharp structures which occur near z = 0.5 
and z = 0.87. These structures correspond 
physically to the space-charge regions near the 
anode and cathode, respectively. The structure 
near the anode occurs throughout the low injection 
square-law regime, moving to larger values of z 
as the voltage is increased. The structure near the 
cathode occurs in both square-law regimes and 
moves to smaller values of z as the high injection 
cube-law region is approached. Another important 
result indicated in Fig. 1 is that over most of the 
range of z U(Z) and V(z) are quite small compared 
with W(z) and T(z). This fact will allow us to 
obtain approximate solutions for F(z) at very low 
and very high frequencies, as will be discussed 
below. 

3.2 Large s behavior 

For very large values of s we first note that a and 
b become unity, while CY and p become propor- 
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tional to s. These results follow by inspection of 
equations (A3) and (A7) in the Appendix. This 
means that T(z) will increase as s, while W(z) 
increases as 9. Now, keeping only the highest 
order terms in s on each side of equation (28) 
we find 

so.& T(z)F(z) = Lib) T(z), 

and the solution is 

(33) 

F(z) =f &). (34) 

The impedance corresponding to this solution is 
determined by equation (26), 

Z(s) = LIES, (35) 

which is the capacitive response expected at high 
frequencies for a structure with dielectric constant 
E and length L. 

At somewhat lower frequencies, when ST,&? is 
comparable to unity, we must also keep the linear 

; 
3 

-3x12 - 

/ 

/I 

/I 

j 1’ 

1’ 
-4 _ I -4x10 /I 

11’ (0) 

.02 

.08 

s term in W(z). Since T(z) is still large, however, 
we can still neglect V(z) and U(z) . In this approx- 
imation equation (28) becomes 

{I+s~,,~(z)}T(z)F(z) = (j/j,,)T(z). (36) 

and the solution is 

F(z) = 
j/j,, 

I + ST,&?(Z) 
(37) 

The integral (26) for the impedance cannot now 
be evaluated explicitly unless g(z) has some simple 
form. Some insight into the response at these 
frequencies can be gained, however, by writing 
Z(s) as an integral over x. Using equations (26) 
and (3 7), we find 

I 
I. 

Z(s) = dx 
& (xl lj,, 

1 + s&~ (~1 /A. 
(38) 

I, 

We can think of this integral as a series sum of 
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Fig. 1. Computed values of the coefficients in equation (28) for an Au-doped siliconp-i-n device at 300°K. 
The solid curves are for s = 0, the dashed ones for s = lO%ec-I. The device parameters are NR = 1016cm-S, 

L = 100 pm,j, = 0.53 A/cmZ, V, = 15.7 V. 

discrete elements each with impedance AZ given 

by 

(39) 

We recognize that the impedance (39) is just what 
one would expect at high frequencies from a 
narrow slice of the structure with width Ax, i.e., 
a resistance R(x) = Ax&(x)/j, shunted by a 
capacitance C(x) = e/h. Thus the impedance (38) 
can be thought of as a series sum of parallel RC 
elements as indicated in Fig. 2. We call this 
response the distributed RC response. It can be 
expected to occur at high frequencies in any struc- 
ture that has a nonuniform resistivity over a 
reasonable length. 

3.3 Small s behavior 

The device impedance in the low frequency limit 

R(X)* Ax Eo(xVio 

. ..o... 
I I 
i--Ax-’ 

ax)= E/AX 

Fig. 2. Equivalent circuit for the distributed RC response 
described in the text. 

is determined simply by the slope of the j,- V,, 
curve, i.e., 

Z(s + 0) = dl/, 
dh ’ (40) 
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a result which is obvious from physical considera- 
tions. To see how this result follows from the 
formal solution of equation (28) is more difficult. 
We will give a discussion only for the two square- Since the solution (44) gives dF/d: = 0, it will be 
law and the Lampert cube-law regimes of the a valid approximation even if U or V are large, 
current-voltage characteristic. provided T/W is slowly varying. The impedance 

In the limit s - 0 the expansion parameters (1 can be easily evaluated by inspection of equation 
and b can be written as partial derivatives of the (27), yielding the required result for a square-law 
d.c. space charge, while (Y and p can be written characteristic: 
as partial derivatives of the d.c. recombination 

rate: Z(.\ - 0) = ;I?,,. (45) 

a 
(I -+ - (111, - PII + N,, - P,,) . The results (42)-(45) are equally valid for both 

J%, the square-law regimes, although the derivation is 

h~~(,‘,,-rr,,+P,,-N,,i. (41) 
simpler in the high injection case. 

0 
In the cube-law regime the only modification to 

the above results is that the second term on the 

I d I’,, right side of (31) also becomes important. In fact, 

N + NK (ca + c,,) an,, ’ 
p’  1 ifr;, 

N,t Cc,,, + (.,,I a~,, . this term becomes equal to the first and third terms, 
giving 

Through the relations (6), these derivatives can 
be changed to derivatives with respect to z and ~5. W(z) = 3. (46) 

From the steady state results we know that in 
the square-law regimes the solution is given quite The impedance is thus 

accurately by the quasineutrality approximation, 
and the narrow regions of large space charge can Z(s + 0) = iK,,. (47) 

be neglected. Within this approximation dZ/dz is 
constant, and B(z) is proportional to g(z) over A solution with F(z) constant implies that the 

most of the device. This means that the expressions small signal field has the same spatial dependence 

(41) can be evaluated explicitly. Using these as the d.c. field, which in turn implies that the 

results, it can be shown that the second term on the spatial dependence of the d.c. field does not change 

right side of equation (32) is negligible, and the strongly with the applied voltage. We know from 

first term gives the computer solutions of the steady-state problem 
that in the square-law regimes the space-charge 

T(z) = I. (42) regions do move as the voltage is changed. Thus, 
we should expect the exact solutions for F(z) 

At the same time all but the first and third terms to differ appreciably from the above approximate 

on the right side of equation (31) are negligible, ones in these regions. However, since these regions 

which gives are very narrow in the square-law regimes, the im- 
pedance will be only slightly affected by relatively 

W(z) = I +T(s) = 2. (43) 
large changes in F(z) which might occur there. 

Note that the exact results shown in the solid 3.4 Low injection squure-law approximations 

curves of Figs. I(c) and l(d) agree quite well with Since the oscillatory instabilities occur in the 
equations (42) and (43), if the space-charge regions low injection square-law, then this is naturally 

are ignored. the most interesting steady-state regime to discuss. 
Now we again make use of the fact that U and Unfortunately, it is also the most difficult to discuss. 

V are very small compared with T and W, obtaining The approximate d.c. solution in this regime is 
an approximate solution to equation (28) of the based on the quasineutrality approximation and 
following form: the assumption of position- and injection-level- 
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independent lifetimes. The .A, - V,, curve is given by 

If2 
.A, = 5 ~cL,++ ( mn - w,) s1 (48) 

where T,~ and 71, are the electron and hole lifetimes 
and (poT,, - n,,T,,) is given by the capture and thermal 
emission coefficients of the traps. The corres- 
ponding approximate expressions fork? and B are 

F(z) = (PL,T,, + w,J NH 
2 (PL,! + P,J (POT,! - w,) 

(cr.-z)* (49) 

B(z) =~(c.+c,,iM,(~lrr,,+~~~,,)D(z): (50) 
n I, 

and the corresponding small-signal parameters 
become 

(I= 1+1/s7,,, h = 1 + I/ST,,, (51) 

S + l/T,, 

(y = (c’,, + c,,) NH ’ ’ = 
st l/T,, 

( c,~ + c,,) NK ’ (52) 
where we have restricted s to values such that /sI 
is greater than the free carrier density multiplied 
by a typical capture coefficient. This restriction 
greatly simplifies the s dependence in the problem, 
and the only error it introduces is in the low 
frequency limit which has already been discussed. 
Note that the electric field (49) fails to match the 
boundary condition at z,,. This is characteristic of 
the quasineutrality solutions. 

Using the above results we find that equations 
( 19)-(32) become 

U(z) = - 
%WJ,,7,, ST, 

P(z,.-z), (53) 
( /&,T,, + P,,TJ 2 1 + ST1 

l’(z) = z- /&T, ( 1 + $7~) - &T,, ( 1 + S’T,l) 
( CLnTn + /.W,,) ( 1 + $71) 

x {l+S7,(z.,,-Z)]r (54) 

W(z) = I + { 1 ++ST,(Z,,-Z)}T, (55) 

T(z) = (1 +.m?J (1 +n,J 
(l+ST,) ’ 

(56) 

where 

T, = TnTu (/hi + PP) Tc = E ( /-‘nTn + /-Wp) 
PnTn + PDT,, ’ %d-h (PoTn - 47~) . 

(57) 
power series solution. 

*Curve 1 in Fig. 1 of Ref. [23] is the result of the above 

Now solutions to equation (28) can be readily 
generated in terms of power series expansions 
about z,.. This can be verified by inspection of 
the indicial equation. There is one serious difficulty, 
however. Since ci(z) no longer vanishes at z,,, 
this point is no longer a singular point of the 
differential equation. The two linearly independent 
power series solutions-one a particular, the other 
a homogeneous one- are both regular in the 
interval z,, s z s z,,. The complete solution is only 
defined with respect to an arbitrary constant 
multiplying the homogeneous solution, and in 
order to determine this constant we must impose 
a boundary condition. 

In a previous paper[23] we discussed a simpler 
model which was equivalent to neglecting the 
z, dependence in all the quantities in equations 
(53)-(56). This model resulted in a second order 
differential equation for F(z) with constant 
coefficients, and an explicit solution in terms of 
exponentials was obtained. Since that equation had 
no singular points, two boundary conditions were 
needed to determine the solution, and the ones 
we used were F(z,,) = F(z,J = 0. The corres- 
ponding boundary condition for the power series 
approach is F (z,,) = 0. With these conditions the 
two models give very similar results.* Oscillatory 
instabilities are predicted, arising from poles in 
the impedance function, whose threshold conditions 
were shown to be in agreement with experiment. 
Because of the similarity between the results of 
the two approaches, we will omit a discussion of 
the power series method. The agreement with 
experiment and the agreement with our numerical 
results in Section 4 are the primary justifications 
for the apparently arbitrary choice of boundary 
conditions. 

There is one important feature of the impedance 
function which can be demonstrated independent 
of the boundary conditions. Namely, 

Z(s) =Oats=-l/~,,,-I/T,,. 

This result follows from equation (56). When 
T(z) = 0, then F and also Z must vanish. These 
zeros of Z(s) represent the decaying modes 
observed in a transient response experiment under 
constant voltage conditions [22]. 
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The s -+ 0 limit of equations (53)-(56) seems to 
give the correct low frequency result: T = I, 
W = 2, and thus F(z) = $( j/j,). However, this 
result is not obtained as a limit of the solutions for 
nonzero s from either of the models described 
above. In fact, the solutions from both models 
yield impedances which oscillate rapidly without 
converging in the limit s -+ 0. These oscillations 
are not physical. They stem from the fact that 
I/(z) in equation (53) tends to zero as s does. 
The difficulty arises from the approximate ex- 
pressions (5 1) used for a and b. These expressions 
diverge as s -+ 0, whereas the actual values 
remain finite. 

4. NUMERICAL SOLUTION AND DISCUSSION 

In this Section we discuss two different methods 

The method which we tried first was to treat (28) 
as a pair of first order equations of the form: 

for finding a numerical solution to equation (28), 
only one of which was successful. The primary 
motivation for obtaining such a solution is to 
confirm the results of our simple model which was 
successful in explaining the experimental results. 
In principle at least this should be a relatively 
simple task. The coefficients U, I’, W. and T are 
all continuous, bounded functions of z. The 
solution F(z) , which satisfies the boundary 
conditions of regularity at the endpoints, exists 
and is unique. 

g = G(z), 

$f = [ (.liJ T(z) - V(z) G (z) 
(58) 

- W(z)F(z)l/~(z). 

These equations were integrated simultaneously 
starting out at the boundaries and using one of 
the standard techniques based on numerical 
integration[35]. The solution obtained starting 
from the left boundary contains an arbitrary 
constant multiplying the homogeneous solution 
regular at zO. Similarly, the solution obtained 
starting from the right boundary contains another 
arbitrary constant multiplying the homogeneous 
solution regular at z,,. These two constants are 
determined by matching the right and left hand 
solutions and their first derivatives at some 
intermediate point zi. 

By constructing F(z) and then the impedance 
function in the above manner, one can show that 
Z(s) will have poles whenever the Wronskian 
of the two homogeneous solutions vanishes: 

d d 
FhoGF,jA - Fkd~Fho = 0, (59) z=zi 

where the superscripts indicate the boundary at 
which each function is regular. The condition (59) 
which is independent of zi, will presumably be 
satisfied at some discrete values of s. If these 
values occur in the right-half s plane, spontaneous 
oscillations will occur. 

We begin by assuming an expansion for F(z) 
of the form: 

Although the above method is very straight- 
forward and leads to a simple condition for 
oscillations, in practice it did not work. The 
difficulty arose in integrating (58) across the 
space-charge regions. Referring back to Fig. I 
we see that the coefficients in equation (28), 
although continuous, have very sharp structure in 
these regions. We tried a variety of numerical 
integration techniques, but none succeeded in 
taking the solutions smoothly through the space- 
charge regions. With unlimited computer time this 
method will surely work. With a given amount of 
computer time, however, we had much better 
success with an entirely different approach. 

F(Z) = i @i(z), (60) 
i=l 

where {Pi(z) } is any set of complete functions 
regular at the boundaries. For our problem we 
chose the Legendre polynomials suitably normal- 
ized over the interval z,, G z G z,.. We next 
insert (60) into (28), multiply on the left by P,(z). 
and integrate. The result is a set of I simultaneous 
linear equations forfi: 

&fl=L (k-1,2 ,..., I), 
i=l 

where 

Tk = (j/j,) j2y dzT(z)P,(z). 

(61) 

(62) 

(63) 
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The set of equations (61) is then solved for A, 
and the resulting impedance function is 

where 

*‘dzg(z)B(z)Pi(z) 
gi = I z. 

I . ” dz8(z) B (z) 
(65) 

*Cl 

The above method will always converge to the 
correct solution in the limit I + m. In practice, 
of course, we must truncate the expansion at some 
reasonable value of I and hope the result is still 
valid. The truncated solutions will not agree with 
the actual solutions in the narrow space-charge 
regions. This is expected since the sharp structure 
in these regions (of the sort shown in Fig. 1) could 
only be fit with very high order polynomials. To the 
extent that these regions do not strongly influence 
the device impedance, then the truncated solutions 
will be quite accurate. Here we see the real 
advantage of the polynomial expansion method - it 
tends to smooth out the effects of the space-charge 
regions. The method based on integrating the 
differential equation from the boundaries must find 
the solution in these regions just as accurately as 
in the rest of the device, since the errors will 
propagate. 

To test the accuracy of our expansion method, 
we first applied it to the case s = 0. The solid curve 
in Fig. 3 is the s = 0 solution F(z) obtained for 
the same steady-state conditions as in Fig. 1, using 
ten Legendre polynomials in the expansion. 
The dashed curve is a plot of T(z)/W(z) in the 
regions where the ratio is slow!y varying. From 
equation (44) we expect the dashed curve to match 
the correct solution except in the space-charge 
regions. Although F(z) has oscillations induced by 
the attempt to fit sharp structure in these regions, 
over most of the device its average value is given 
fairly well by the dashed curve. Moreover, the 
impedance given by the solution in Fig. 3 is within 
4% of the exact value 0.489R,, determined by the 
slope of the j,,- V, curve. As a further check on 
the convergence of this method, we computed 
the impedance using six Legendre polynomials and 
found the result to be within 6% of the exact value. 

In Fig. 4 we show the computed real and 
imaginary parts of the impedance along the 

2 

Fig. 3. Computer solution F(z) of equation (28) at s = 0 
using the same parameters as those for Fig. 1. The dashed 
curve is a plot of T/W in the regions where it is slowly 
varying. The impedance from this solution is 0.47 R,, 

compared with the exact value of0.489 R,. 

imaginary s axis (s = iw). Ten Legendre poly- 
nomials are used in this calculation, and the steady- 
state parameters are NE = 1Ol6 crne3, L = 100 pm, 
j, = 4.71 A/cmZ, and V. = 45.09 V. Also shown in 
the figure as dashed curves are the corresponding 
results from the simple model of Ref.[23], where 
we used 7, = 18.2 nsec and Q-,, = 3.53 nsec, the low 
injection square-law lifetimes. Resonant structure 
occurs at the same frequencies in both calculations, 
and for large o both match smoothly onto the high 
frequency limit (35). The results from the two 
models are quantitatively very similar. The main 
difference being that, for the particular operating 
point chosen, the pole causing the high frequency 
resonance is nearer the w axis in the exact solution. 
The computational difficulties are quite different, 
however. For example, the solid curves in Fig. 4 
required approximately 20 min of machine time 
on the Honeywell 6000 digital computer, while 
the dashed curves required only 20 sec. 

The accuracy of our impedance in the limits of 
low and high frequencies, where it can be easily 
checked, was found to be several percent. Since 
the numerical difficulties are no worse at inter- 
mediate values of s, we expect the same magnitude 
of accuracy to hold there as well. 

We have not attempted to make a detailed com- 
parison of our computer solution with experi- 
mental results. Such a comparison seems to be 

SSEVol. ISNo. 12- D 
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Fig. 4(b). 

Fig. 4. Computed real (a) and imaginary(b) parts of the 
impedance on the imaginary s axis (S = iw) for an Au- 
doped silicon p-i-n device at 300°K. The solid curve is 
the result of solving the exact equation (28) using the 
polynomial expansion method with ten Legendre poly- 
nomials. The dashed curve is the result from equation 

(14) in Ref.[23]. The device parameters are N, = IO’” 
cm-:<. L = 100 pm, j,, = 4.71 A/cm’, V,, = 45.09 V. The 
low injection square-law lifetimes, 7, = 18.2 nsec and T,, = 

3.53 nsec. were used for the dashed curve. 

unwarranted for several reasons: First, it would 
require an inordinate amount of computer time. 
Second, the present solution gives results which 
tend to confirm our simple model[23], and that 
model was shown to agree with experiment. Third, 
the main differences between the two models will 
arise from the narrow space-charge regions near 
the contacts, which are completely neglected in 
the simple model. In an actual device diffusion will 
be important in these regions and will tend to 

modify the boundary conditions. Both models 
neglect diffusion, however, so that any differences 
caused by including the space-charge regions will 
have questionable validity with regard to an actual 
device. 

However, the problem of finding an efficient 
numerical method for accurately solving equation 
(28) still is of considerable mathematical interest. 
The difficulty is with the sharp structure in the 
narrow space-charge region, and if techniques were 
developed to handle this problem one would 
expect them to have broad applicability. 

One very interesting result that came out of our 
numerical solutions was that the small-signal 
quasineutrality solution[22] does not give the 
correct impedance throughout the expected range 
in S. The quasineutrality solution, which neglects 
all space-charge effects, is given by 

Z(S) =R,,TI(l+T), (66) 

where T is given by (56). This equation gives the 
correct zeros of Z on the real s axis, and normally 
one assumes it will be valid whenever /s/ < T,~~‘. 
where TV is the local dielectric relaxation time. 
However, for the data in Fig. 4 at o = 5 X IO’ set ‘, 
a factor of 20 less than ~,,-r, the real part of Z from 
equation (66) is several times greater than the 
correct value. The reason for the large discrepancy 
is that small changes in the free carrier densities 
can lead, through trapping, to much larger changes 
in the trapped densities and, hence, in the space 
charge associated with the traps. 

The failure of quasineutrality actually provides 

the key to understanding the oscillatory instabil- 
ities. A small wavelike fluctuation in the free carrier 
densities leads to a larger fluctuation in the trapped 
densities, shifted by 90”. The trapped space charge 
leads to a field further shifted by 90”, resulting in 
a 180” shift of the field from the free carriers. If the 
magnitude of the resulting field is such that the 
various contributions to the small-signal current 
cancel, then the system will oscillate freely in that 
mode. 

We show in Fig. 5 the field and charge number 
densities as a function of position for the oscillatory 
mode at threshold, i.e., when the pole giving the 
oscillations crosses the w axis. Figure 5(b) is the 
configuration l/4 cycle in time later than 5(a). 
These curves were calculated from the power 
series method of Section 3.4 using the approximate 
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Fig. 5. The time dependent electric field and charge 
number densities as a function of position at the threshold 
for space-charge recombination oscillations in a p-i-n 
device. The curves were calculated using the power series 
method of Section 3.4 with the boundary condition 
F(z,,) = 0. The parameters chosen were w = 2.12 x 10’ 
set-‘. (V,/L’) = 6.42 x 105V/cm2, C&/L) = 2.68 x 103- 
A/cm3. 7, = 36.4 nsec, 7,, = 1.765 nsec, and the mobilit- 
ies were those for silicon at 300°K. (b) is the configura- 

tion + cycle in time later than (a). 

equations (53)-(56) and the boundary condition 
F(z,,) = 0. The phase relationships described above 
are evident in the figure. Here we have chosen 

T, ti r, which implies that I@ and E,,n are the 
dominant contributions to the small-signal current. 
As shown in the figure n and E remain nearly 180” 
out of phase across the device, resulting in 
n,,E+ E,n = 0. 

Also indicated in Fig. 5 is the fact that the 
oscillation takes the form of an asymmetrical 
left-running wave. The asymmetry comes from 
the z dependence in U, V, and W included in the 
power series method. A similar picture of left- 
running waves resulted from our simple model of 
Ref.[23], but there the waves were more sym- 
metrical since a spatially homogeneous d.c. 
solution was assumed. 
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The solution of the small-signal analogues of equations 
(A 1) yields the following expressions for a and b: 

a= l+D{c,(N,-N,,-fP,,)(s+2e,+2c,p,,+r,++(,,~’n,,) 

+ c,,+P,,(s + 2a, + 2cnno + r,- + ce-po) }, 

(‘43) 

b = I + D{ cl, ( NR - N,, - P,)) (s + 2e, + 2c,,n, + c,,- + c,, -p,,) 

+c,,~N,(s+2e,+2c,p0+r,,++c,,+n,,)}, 

where 

D-’ = (J + P,,- + (.,,-p,,) (s + e,,+ + (.,~+n,J 

+ (J + ep+ + c,$+n,,) (e, + c,,n,,). (A4) 

If Is] is greater than the thermal emission coefficients and 
the products of the capture coefficients with the carrier 
densities, then D - s-*, and we recover the result (51) 
i.e., a + 1 + I/ST,, and b + 1 + ~/ST,,. 

The d.c. recombination rates are given by equations 
(2.8) in Ref. [28]: 

r,,,, = (c,.n,, - e,) (NH - N, - P,,) - en-N,, + c,!‘n,P,,. 

(A5) 

r,,,, = (c.,,P,~ - e,,) ( NK - N,, - P,,) - c,,+P,, + c’,,~rhN,,. 

Using (A2) one can show that r ,,,, I = rl,,,, = r,,, where 

rn = NR (SUP, - Q’) (e, + c,,no) ( 
cn+cp (en- + cumpO) + c,,~‘~~ (cp+ + c,,+nO) 

ep+ + c,+n,,) + (e. + c”p,,) (e,- + cz,-pO) + (e,,+ + c,,+nll) (e,,- + c,,mpt,) 
(A6) 

APPENDIX and ni is the free carrier density in intrinsic silicon. 
Here we give expressions for the quantities used in our The solution of the small-signal analogues of (AS) 

numerical solutions for Au-doped silicon devices. The yield the following expressions for 01 and p: 
formulas will be given in terms of n, and pO. It is assumed 
that a solution Z?(z) has been determined numerically, 

( cTI + c,,) NHa = s + c,, (N, - N,, - I’,)) [ I - D{ (s + e,,’ 

and thus using (6) all quantities can be determined as + c,,+Q,) (c,n,, ~ c,, + (‘#PO - r,, - (‘,,_ P,I + e, -) 
functions of z alone. + (e,, + (.#P,,) ((.,,‘11,1 - E,,’ - “,,FP,, + e,,J } 1 

The rate equations for the trapped charge densities are + ~.,~+f,,[ I + D{ (s + e,,- + c‘,,~p,J (c.,rne - c,, + (‘,,P,, ~ e,, 
given by equations (2.9) in Ref. [28]: -c,,+n,,+e,,+) + (e,,+c.,& (c’,,-p,,-fr,,---c,,+n,,+(,,,+) ]], 

+ c,,-P,J (c,.n,, - e,, + (‘,,r4, - c,~ - (.,,+th + e,, + ) 

ap,_ + ( ep + c~.n,J ( “,,-A - en - c,,,+n,, + e,,+) I I 

at - (C,PO + en) (NR - NO-~‘,,) - (c.,+nll + e,,+) f’,,. +(.,-NJ I+ D{ (s + e,, + + c,,+QJ (c,,n,, - e,, + “,,lJ,, - e,, 

~ (‘PrnPI, + e,,-) + (e,, + C.,P,,) ((.,+%I - e,,+ - “,,-p,,+ e,, 1 I]. 
where e,(e,) and e,,+(en-) are the thermal emission co- (A7) 
efficients for holes (electrons) from neutral and positive 
(negative) gold recombination centers, respectively; If Is] is in the range such that equations (51) arc valid, 
while c,(c,) and cp-(c,+) are the corresponding capture then the terms involving D in (A7) can be neglected, and 
coefficients. The steady-state solution of (A 1) yields we obtain the results given in equations (52). 

N” = NR (P,, + cnn,,) ( 
(e,, + c’,,n,d Cc,+ + (‘a ’ 4,) 

e,+ + c,+no) + (e,, + cpp,,) (e,,- + c,,-p,,) + (e,,’ + (.n+no) (e,- + CzFp,,) 

P” = NH (e,, + c,,n,,) ( 
(e,z + C,,P,,) (CJ,>F + (.,‘_P”) 

e,,++c,,+n,J + (~,,+c.~p~,) (e,,m+(,,,mp,J + (r,,’ +c’,t+no) (e,,-+c.,, p(,) 

(A2) 


