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Abstract - In a recent experiment for determining the mechanical response of brain in cico. a 
probe, inserted through scalp. skull and dura, is placed in contact with and normal to the brain. 
given a prescribed motion, and the time variation of corresponding force is measured. In the 
corresponding continuum mechanical model, brain is idealized as a linear isotropic viscoelastic 
solid constrained by a rigid skull. At the mating surface. the shear stress anJ normal displace- 
ment vanish everywhere except under the probe which exens a local radial displacement. This 
model introduces effective viscoelastic moduli in shear, which is unknown, and in dilatation. 
which is considered known from other sources. Part II of this study is concerned with stress 
relaxation induced by a small step displacement of the probe. From the solution of the corres- 
ponding quasi-static boundary value problem, a nonlinear Volterra integral equation is estzb- 
lished from which the shear stress relaxation function can be solved in terms of measured probe 
displacement and force. A numerical method of solution is developed. 

1. MTRODL’CTION 

RECENTLY, Fallenstein et al. (1969) developed 
an experiment to determine the mechanical 
response of brain in cico. A small hole is cut 
through the scalp, skull and dura of a monkey 
so that a probe can be put into contact with its 
brain. After a small preset displacement, the 
probe is oscillated normal to the brain at a 
fixed frequency and amplitude. The probe 
force and displacement are recorded so that 
their amplitude rate and phase lag can be 
determined. 

The present work is concerned with cor- 
relating data from such an experiment with 
specific material parameters. In order to define 
the material parameters. a continuum mech- 
anical model must be assumed for the experi- 
mental conditions and brain material. In Part 
I. it was assumed that the skull could be 
modeled as a rigid spherical container com- 
pletely filled with a brain modeled as a linear 
isotropic viscoelastic solid. The probe was 
modeled as a local normal harmonic displace- 

ment. By assuming that brain material exhibits 
linear, isotropic viscoelastic response, two 
independent material parameters Caere intro- 
duced. One was a frequency dependent shear 
modulus and the other was a frequency depen- 
dent bulk modulus. The bulk modulus is 
known from other sources (Goldmith. 1966). 
but the shear modulus is unknown. With the 
experiment now modeled as a boundary value 
problem in dynamic linear viscoelasticity. an 
equation Lvas developed which relates the 
shear modulus to experimental data. A meth- 
od of solution uas developed and the shear 
modulus evaluated. 

It is the purpose of Part II of this work to 
study how Fallenstein’s probe test can also be 
used to measure the reiaxation response of 
brain. The relaxation experiment is identical 
to the oscillatory experiment in all details 
except that now the probe is subjected to an 
instantaneously applied displacement which 
is held constant while time decay of the force 
required to maintain the probe is measured. 
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The relaxation test can be combined with the 
above mentioned osci!latory test. Some time 
after the probe has been displaced in the 
relaxation test the applied force has relaxed 
to its long term value. The system can now be 
regarded as having the initial preset required 
for the oscillatory test. 

for solving the governing integral equations 
for the shear modulus is discussed in Section 
4. 

There are several reasons for doing a 
relaxation test. First, it is of interest to esti- 
mate the order of magnitude of the relaxation 
modulus and the time for significant amount 
of stress relaxation. The test is useful for 
determining the range of linearity of response, 
since if the probe displacement is altered by a 
factor of o, so should the measured stress. For 
a linear viscoelastic material, there exists a 
relation between the shear relaxation modulus 
and the shear frequency dependent modulus. 
By determining both moduli experimentally 
and comparing them against this relation, one 
can evaluate the assumption of linear visco- 
elasticity for the mechanical response of brain. 

Because the relaxation test is so similar to 
the oscillatory test. the brain and skull can be 
modeled as before. The only difference is in 
the time dependent displacement boundary 
condition representing the probe. Two in- 
dependent moduli are again associated with 
the assumption of linear isotropic visco- 
elasticity, a time dependent shear relaxation 
modulus and a time dependent bulk relaxation 
modulus, the latter as previously mentioned 
being known. With the relaxation experiment 
now modeled as a boundary value problem, 
an equation is developed which relates the 
shear relaxation function to experimental 
data. The equation takes the form of a non- 
linear Volterra integral equation of the second 
kind for which a method of solution is devel- 

2. IDEALIZATION OF EXPERMENT. GOVEXNING 
EQUATIONS 

The general three dimensional form of the 
constitutive equation for isotropic linear 
viscoelastic materials depends on two in- 
dependent material parameters, CL(T) and 
K(T), where T denotes time. These are both 
zero for r < 0 and may have jump discon- 
tinuities at r = 0. CL(T) represents the relaxa- 
tion of shear stress due to a shear strain 
applied at time T = 0 and then maintained 
constant. K(T) represents the relaxation of 
hydrostatic stress induced by a volumetric 
strain applied at time T = 0 and then held 
fixed. Because of this interpretation, F(T) is 
called the shear stress relaxation function and 
K(T) is called the bulk relaxation function. 
According to Goldsmith (1966), the bulk 
modulus of brain is similar to that of water, a 
constant whose value is 3 X lo5 psi. For use in 
equation (l), this can be expressed as k(r) = 
G,(t)/3 = 3 X lo3 l(r), where 1 (t) is the unit 
step function, that is, 1 (t) = 1, t B 0 and 
1 (t) = 0, t < 0. For later use, we let G*(r) = 
G?l (t) , where G, = 9 X lo3 psi. 

The tensorial stress history au(t) corres- 
ponding to an arbitrary time varying tensorial 
strain history eu(t) is then given by the 
constitutive equation 

t 

ail(r) = G,(O+)~ii(t) + I “* 
Ey(t-T) ydr 

oped. 
The discussion of the idealization of the 

+~8ij(e~~(f)[G~(O+)-Gi(O+)] 
, . 

+ I E&r-T) 
n* 

& i.Gd~)-- G,(r)] dT] 
v 

experiment into a continuum mechanics model (I) 
is given in Part I and will only be summarized 
here for convenience. The model itself and the where for notational convenience, G, = 21. 
associated equations are reviewed in Section GZ = 3~. Equation (1) can be written in the 
2. A general solution to these equations is following form so as to include the discon- 
developed in Section 3. A numerical method tinuities of G, and G? at r = 0 in the integral 
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I 

Ctj(f) = 

i 

Eij(t-7) dG,(T) 
I)- 

t 

+i 6ij 

I 

Q.~(~--T) d[G,(r) -G,(r)]. 
0. 

(2) 

Since its mathematical structure involves 
both convolution and Stieltjes integration, 
equation (2) is often abbreviated as (Gurtin 
and Sternberg, 1962) 

crij=~ij~~dGL+~~ij~k~~~d[GG:!-G,]. (3) 

The special notation introduced in equation 
(3) allows the use of a very convenient 
algebra for performing operations involving 
the Stieltjes convolution integral in equation 
(3). This operator algebra, derived by Gurtin 
and Sternberg (1961). corresponds only to 
operations on the time variable and may be 
interchanged with operations involving spatial 
variables. These operations will be introduced 
as needed, but will not be verified. 

In constructing a continuum mechanics 
model of Fallenstein’s probe test, the follow- 
ing assumptions are made: 

1. 

7 _. 

3. 

4. 

:: 

Brain tissue will be assumed to be a 
linear, homogeneous, isotropic visco- 
elastic material. 
The brain entirely fills the skull which is 
assumed to be a spherical case. 
Since the skull is much harder than the 
brain tissue, the skull is assumed to be 
rigid. 
The excitation load is axisymmetric, 
which implies that response will also be 
axisymmetric about an axis through the 
line of force of the excitation load. Also, 
displacements occur only in planes 
through the line of force. 
Body force is neglected. 
The connection between the brain and 
the skull is complex. Generally. there is 
a thin layer of cerebrospinal fluid be- 
tween the skull and brain. In addition. 
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there are nerve bundles and blood 
vessels at the lower part of the brain. 
Since the probe is placed in a section of 
the skull far from the restraint of nerve 
cords, the influence of this is neglected. 
Furthermore, since the layer of cerebro- 
spinal fluid is thin and its viscosity is 
small (similar to the water), the addition- 
al assumption is made that the shear 
stress at the interface between brain and 
skull can be neglected. 

Based on the above assumptions. a theoreti- 
cal model is pictured as shown in Fig. I. We 
introduce spherical coordinates (R, 0.4) 
with origin at the center of the sphere and with 
the center line of the probe lying on 8 = 0. 

Assumption 6 means that there is no shear 
stress at the interface of viscoelastic material 
and rigid container. Hence the boundary 
condition on stress takes the form 

cTr@(O, e, t) = vr*(CI, 8,f) = 0. (4) 

Assumption 4. of axisymmetry, implies 
cr,& = 0, so that the stress boundary condition 

I 

Electrcdynumc 
shaker --I-- 

Fig. 1. Model for theoretical analysis. 
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reduces to 

u,e(n, 8, f) = 0. (5) 

Since the skull is assumed rigid, the normal 
displacement must vanish every where except 
at the opening provided by the probe. Under 
the probe the displacement is prescribed. 
The boundary condition on normal displace- 
ment ~,(a, 8, r) then becomes 

lr(e, f) 0~8~8, 
II&Z, 8, t) = 

0 e. s 8 s 7~. 
(6) 

The normal displacement u(8, t) will have 
its maximum value under the probe, at 8 = 0, 
and then decrease gradually as 8 increases 
until it reaches zero at 8 = B,,. In the relaxa- 
tion test, the probe is given a radial displace- 
ment which varies in time like a step function, 
i.e. 

qe, t) = 0(e) i(t) (7) 

where 1 (t) = 0, t < 0 and 1 (t) = 1, t 2 0. 
For notational convenience, the general field 

equations are stated with respect to a Carte- 
sian coordinate system. It can be assumed 
that waves generated by this step loading will 
damp out in a very short period of time. so 
that the motion may be regarded as quasi- 
static. Neglecting inertia, the stresses satisfy 

aaij 
- 0. 

axj- 
(8) 

For small strains, the strain-displacement 
equation is 

E.,(X t) = 1 a4K 0 + dllj(X, t) 
I, ( 2 [ 

- _ 
dXj 1 aXi ’ 

(9) 

The strain-displacement relations on spherical 
coordinates are given in Part I and will not be 
repeated here. For a linear, homogeneous, 
isotropic viscoelastic material, the equation 
for the displacement is found from equations 
(3). (8) and (9) to be 

or in vector form 

V”u~:.dG,+3V(V.u)i-d(Gl+2G?) =O. 

(11) 

where G,(t) = 2p(f), G,(t) = 3K(r). 

3. SOLUTION 

It has been shown by Gut-tin and Sternberg 
(1962) that the general solution of elastostatics 
in terms of the Papkovich-Neuber dispiace- 
ment potentials can be extended to quasi- 
static viscoelasticity. That is 

u= t(@+X.Y) +;d(G,+ZG,) 

-4’I’+:d(2G,+ G,). (12) 

is the general solution of equation (10). where 
Q and q are. respectively, a scalar valued and 
a vector valued function of X and t, 
@(X, t) , W = Y (X, t) , which satisfy 

V’Q, = 0, VW = 0. 

i.e. @ = 

(13) 

Recurring equations (12) and ( 13) to spheri- 
cal coordinates, the assumption of axisym- 
metry implies that Cp and W depend only on 
R, 0 and t. The additional condition that 

&l = 0 implies that qm = 0. If a separation of 
variables representation for @ and p is then 
assumed, that is, @ and * can be expressed in 
the form F (R)H(B)T(r), then the general 
solution of equation (13) is given by Lure 
(1964), as 

G.J = - B,tR”P,(cos 0) 

q = -A,(n+ 1) RJffLP,(cos 8) e, 

+ i A,R n+lP: (~0s 8) es (14) 

where AI,~ and B,, are unknown functions of 
time, P,,(cos 0) are Legendre functions and 
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P;(cos ,9) = dP,/df3 = -P,(l), where P,(l) are 
the associated Legendre functions of order I. 

= & {-la”A.~~d[(n’+Zn_3)C, 

Substituting the above solutions into equa- +2n(n+2)G,] -2(n- l)n”-’ 
tions ( 12) gives 

ur= 2 {--nR”-LB,~~~d(G,+2G?) 
,,=o 

x B,,::d(G,+2G,)}P;(cos 0) = 0. 
(18) 

Since the associated Legendre functions are 
-(n+ I)R”+‘A,*d[(n-66)G,+2nG,]}. linearly independent, for n = 1, 

P,(cos e) 
12aA1 +:dG, = 0 (19) 

ue= i {-R”-‘B,+:d(G,+2G,) which in integral form is (See equation 1 1) 

n=1 

-R,If’A.~~d[(~z+9)+2(n+3)G,]}. lZa[G,(O)A,(t) +~o’A,(r)&(r-~)dr] =O. 

Ph(cos f?). (1% (10) 

A,(r) and B,(t) can be determined from Since G?(O) # 0, equation (20) is a homoge- 
boundary conditions of equations (5-7). In neous linear Volterra integral equation of the 
order to apply them, note the following: second kind for A,(t). As mentioned above, 

(i) the radial displacement on the surface this equation has the unique solution 
in equation (6) can be expressed in 
Legendre polynomials, i.e. A,(t) = 0. (21) 

(/&I, e.t) = lr(e)l(t) = i c,,~~(cos~) l(r) B,(t) will be determined later. 
n=o For n > 2. the relation between rl,& and B, 

(16) is 

(ii) Equations (1) and (5) imply that +@(a, B,,+:d(G,+2Gz) =--&tA,+;d (n+3)G, 
8. t) satisfies 

&e(t) G,(O) + I,’ e,+(r) C&-T) dr = 0. 

where 6, denotes the derivative of G, with This represents an integral equation for B,,(t) 
respect to its argument. This is a homoge- in terms of A,,(t). Substituting equations (2 1) 
neous, linear Volterra integral equation of the and (22) into (15) gives 
second kind. If G,(O) # 0, it has a unique 
solution (See Smithies, 1958), lfr= SR4,~~dC,-B,~~d(G,+lG,) P,(cos 0) 

+&. 8. t) = 0, t 3 0. (17) 

Using equation (17), a relation between 
A,(t) and B,(t) is established 

+ i (n’nR”-‘A,+d [(n+;) G, 
n=” 

+2n(n+l) 
,,_1 G, -(n+ l)R”-‘/I.<: 

I 

X d[(n - 6) G, f ?FI&] P,,(COS 8) 
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ug = -B,*d(G,+2G,)P;(cos f3) 

+ c a=R”-‘A,*d (n+3)G1 
II=‘2 

Equation (24) also gives integral equations for 
A,forn 3 2, 

A,O*d[(Sn+6)G,+2n[%) G1] 

+2n(ni2) G 
n-1 2 

I 

- R”+‘A,sd[(n + 9) G, 
= c,l(r)/a”+‘. (2% 

fZ(n+3)G,]}P.(cosB). 
It was mentioned in Section 2 that G2(f) = 

(23) G,l (t), where Gz is a known constant. Equa- 
tion (29) then has the integral form 

Evaluating the radial displacement ur on the 
surface and equating to equation (16) gives 

~bl,=, = 6dA,*dG,-B,~d(G,+2G~) 

r 
+j; A&-&(T) dr 

x P1(cos e)+ x bnf1A.+:d[(8n+6)G, 
II=2 = c,l(t)/[(8n+6) . a”+‘]. (30) 

+Zn~~)G,]P.(cos8) 
If the material parameters G1, G2 and the 
boundary condition u(e) are given, one can 
determine A,(t) from equations (25) and 

= .C, c,P, (COS e) i(t). 
(24) (29), which are all Volterra integral equations 

of the second kind. Then B,(r) are found by 
using equations (22) and (28). 

Due to the linear independence of Legendre After having determined these functions, 
functions, A0 can be solved from equation the stress components will be easily obtained 
(24) as from the stress-strain relations equation (3). 

These are found to be 

A,*dG,=zl(x). (25) 
cpr = 6A,,sdG,*dG,+ c {a2n(n- 1) R”-’ 

lt=2 

In integral form, equation (2.5) becomes 

G,(O)A,(r) + A,,(+?&-7) dr= 2 l(r). 

(26) 

xA,sd (n+3)G,+ *dG, 
[ 

2n;_-2) G, 
I 

+RnA,l+dG,sd[(-n3+n)G1 

The integral equation for B,(r) is found from - (2n3 -8n--6)G?]} P,(cos8) 
equation (24) to be 

-B,~d(G,+2G,) = c,l(t) 
see = 6A,sdG,*dG, - 

B,++dG,+d(G,+ZG,) 

(27) R 

or 

[G,(O) +2G,(O)lB,(r) 

x [P&OS e) +P;(cos e)] 

+j; B,(r--)[C;1(~)+2C;i(7)] dr=-cCll(f). 

633) 

+ i RnA,*dG,*d[(6n2+ 12n+6)G, 
n=2 

- (3n2+ lSn+ 12)G,]P,(cos 0) 
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+ c nlR”-zAA,+>dG,+:d (n’+ 3n) G, 
,I = ” [ 

+2nyn+2) 
n-l 

G, 1 P”(COS e) 

+ i 
1 

a*R”-*AA,+dG,*d 
[ 

(n+3)G, 
“X” 

+2n’(n+2) 
n-l 

G, 1 - R”A,+dG,+d 

x [(n+9)GI+2(n+3)G,1 P;(cos@ 
I 

crmm = 6A,+dG,+dG,-- 
B,*dG,*d(G, + 2Gg) 

R 

x [P,(cose)+cot8P;(cose)] 

+ i R”A,+:dG,sd[(6n* + 12n+6)Gz 
“=? 

-(311~+15~+12)G,]P,,(c0~8) 

+f a’R”-*A3A,+;dG,+d ($+3n) G, 
“Z” [ 

+2n*(n+2) 
n-1 

Gz 1 P,(cos e) (31) 

+ i 
( 

n2R”-2A,*dG,+~d (n + 3) G, 
n=z [ 

+2n(n+2) 
n _ 1 G, 1 -R”A,t+:dG,+d[(n + 9)G, 

+2(n+3)G,] cotePh(CoSe) 
I 

u,@ = i {-2R”A”*d[(n* +2n-3)G, 
n=1 

be computed as either (A,+dGi)*dG, or 
A,*(dG,*dG,). 

-1. NUMERICAL APPROACH 

If the force or stress under the probe are 
known from measurements in this relaxation 
test, the relaxation function G,(r) can be 
obtained by a numerical method. The stress 
under the probe will be (from equation 3 1) 

(~,(a, 0, f) = 6A,++dG,sdG, 

+ i a”A,~dG,xd[(‘n’-2n)G, 
“=p 

+ (4nz+8n+6)G,]. (32) 

Using equations (26) and (30), equation (32) 
becomes 

flrr(a, 0, t) = 
c,G,l(t) D c,,l(r) 

cI + c 0” 
n=” (8n+6)a”” 

-h(s) GA,(t)] 

x +:d[(2n’- 2n) G, 

+ (4n2+8n+6)G,]. 

Applying equation (30) again. the above 
equation reduces to 

urr(n, 0, t) = cOG;l(f)+ i [F,(n)A,(t)Gz” 
n = ? 

where 

+2n(n+2)GS] -2(n- l)R”-’ 

X B,l+d[G, + 2G,] 
I 

+:dG, . Pl(COS e). 

Note that the expressions for the stresses 
involve a repeated Stieltjes convolution opera- 
tion, i.e. A,+:dG,*dG,. Gurtin and Stemberg 
(1962) have been shown that this may 

+F,(n)G,l(t)+F,(n)G,(t)] 
(33) 

F,(n) = 
4n’(2n+ 1) 

8n+6 
- (4n’+8n+6) 1 

2n(2n+ 1)n” 
’ (8,+6)(n- 1) 

4n2+8n+6-‘n?s(nZn; ‘)I 
t 

’ (8nc;6)a 
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Zn(n- 1) 
F,(n) = (8n+6)ac”. (34) 

In deriving these results use was made of the 
representation Gi (t) = G?l (t) and the opera- 
tion A,(t)*dl(t) =A,l(r). Equation (33) re- 
lates the measured stress ~,.,(a, 0, t) to C,(r), 
which appears explicitly and also implicitly in 
the unknown functions A,(t). In order to find 
Gl(r), equation (33) will have to be solved 
simultaneously with the integral equations 
(30) for A,,(t). The procedure for doing this 
combines a numerical method for solving 
integral equation of VoIterra type (30) with 
the graphical procedure outlined in Part I. 

Equation (30) can be rewritten as 

G,(O)&(t) +j-; A&-~)&(T) dT 

= s,(n)l(t) -gZ(n)A,(o (35) 

where 

a(n) = (8n+c;)a”+* 
C.,n(2n+ 1) 

gZ(n) = (4nf3)(n-1)’ 

If t = O+, equation (35) becomes 

G,(W,(O) = sl(n) -gz(n)A,,(O) 

Or 

&KU = gl(nV[G,(O)+-g,(n)l. (36) 

Substituting equation (36) into (33) evaluated 
at t = 0+ yields 

(+rr(fl, o,o-) = 

+F,(n)G2+F,(n)G,(0) . 
1 

(37) 

From this curve, one may find the correct 
value of G, (0) for which ~,.~(a, 0,O) will 
match the experimental results. 

If we now let r = f, > 0, equation (35) 
becomes 

= g,(n)--gg,!(n)A,t(~,). 

For sufficiently small tl, the integral can be 
approximated using the trapezoidal rule and 
G,(r) can be approximated by a simple finite 
difference scheme so that the integral equation 
can be approximated as 

G,(W,,VA+ Art(r,)fA’,(D) . [Gl(f,)-G,((-j)] 

= g,(n) -_g.,(n)A,,(t,) 

from which the following expression for 
A,r(t,) is obtained 

g,(n) L!+ [G,(r,) -G,(O)1 
A([,) = 

g,(,r)+GAO)+G&,) . 
1 2 

(38) 

The right side of equation (38) has only one 
unknown G,(t,), since A,(O) and G,(O) have 
already been found from the previous step. 
Substituting equation (38) into (33), one will 

Assumed curve 

From the above equation, acurve of grr(u, 0,O) 
us. G, (0) can be obtained as shown on Fig. 3. 

G,(O) 

Fig. 2. Possible variation of ~,,-(a, 0.0) with G,(O). 
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get a form similar to equation (37). or 

~,.,(a, 0. t,) = c fn[G,(r,)] + 
c,G,l(t) 

a n=‘l 
(39) 

wheref,[G,(t,)] is a function of G,(t,) and 
nforn=2.3,4.... Again a curve of crrr( cI, 0. 
t[) cs. G,(t,) is obtained. Then for a given 
cr,,.(n,O, t,), a desired G,(t,) can be deter- 
mined from this curve. 

Now let f = t, > f,, equation (35) can be 
written as 

+j-;A,,(rl--~)6,/~) di- 

= g*(n) -gz(n)A,,(r,). (40) 

If one assumes equal time steps. so that 
tz - t, = t,, equation (40) is approximated by 

G,(O)A,,(t,)+ ~‘,(t,)tA’,(r,)[~,(,,)_G,(0)] 

+A,,k) -tA,,(O) 
9 [G,(b) -G,(t,)l 

= g,(n) -g:!(n)A,l(t:!), (41) 

Continuing as before. this is substituted into 
equation (33) and the curve of ~,,.(a. 0. f,) vs 
G,(r,) is generated. from which the desired 
value of G, (t? ) can be found. 

In general, let t = tj > fj_*, equation (35) 
will be 

+. . . + [,” A,,(fj-_T)G;1(T)dT 
I I 

=gl(fl)-g2(n)A,,Ctj). (43) 

Again using equal time steps, rj-tj_1 = f,, 
equation (43) becomes approximated by 

+ArtCt,-l) +A,L(tj-Z) 
2 [G,(r,) -G,(t,)l 

+. . .+ 4,t(tL)~ArL(o’ [G,(rj)-G,(tj_,)] 

= g,(n) -g:!(n)A,,(rj). (J4) 

From equation (44) one finds AI, in terms 
of G, (tj) and previously determined values of 
rl,, and G,, i.e. 

g,(tr) + An(r:_‘) [G,(t,)-G,(t,)] +. . -+- Af"'[G,(tj-,)-G(rj)] 

Art(tj)= 

G,(O) +g:!(n) + [G,(t,) -G,(O)]/2 
(45) 

uhich can be solved for the unknown value of Continuing the process. one obtains Gi(rj), 
A ,! at time t,. j= 1.2.3.. .., and hence the relaxation func- 

g,(n) i IA* [G,(O) -G,(L)] +* [G,(t,) -G,(t,)] 
il,, ((2 ) = 

G,(O) +g,(n) + [G,u,) --G,(O)]/? 
(11) 
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Fig. 3. Construction of the shear stress relaxation function 
G,(r). 

tion in shear G,(t) = 2p(f), (See Fig. 3). 
It should be emphasized that the method of 

solution described here is only procedural. In 
order to obtain better accuracy or to reduce 
computation, it may be more appropriate to 
choose logarithmic time steps or a different 
means of approximating the integrals. 
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NOllENCLATCRE 

stress tensor 
strain tensor 
Kronecker delta 
position vector 
time 
relaxation function governing shear and 
volumetric dilatation response, respec- 
tively 
spherical coordinates 
displacement vector in space coordinates 
only 
components of displacement vector in 
spherical coordinates 
radius of solid viscoelastic sphere 
scalar displacement potential 
vector displacement potential 
Legendre and associated Legendre poly- 
nomials of first kind 
coefficients of infinite series expansions of 
displacement potentials (0 and IP. respec- 
tively 
coeHicient of the Legendre polynomial 
expansion of the local applied radial dis- 
placement 
gradient operator 
divergence operator 
curl operator 
Laplacian 


