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Abstract —In a recent experiment for determining the mechanical response of brain in vito. a

nrohbe inserted through ¢calin ckull and dura is nlacad in contact with and normal to the brain
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given a prescribed motion, and the time variation of corresponding force is measured. {n the

corresponding continuum mechanical model, brain is idealized as a linear isotropic viscoelastic
solid constrained by a rigid skull, At the mating surface. the shear stress an, ! normal displace-

g COon alingéad DY ¢ sxu SUriace, ing sacal s5iIess dnilad

ment vanish everywhere except under the probe which exerts a local radial displacement. This
model introduces effective viscoelastic moduli in shear, which is unknown. and in dilatation.
which is considered known from other sources. Part 1] of this study is concerned with stress
relaxation induced by a small step displacement of the probe. From the solution of the corres-
ponding quasi-static boundary value problem. a nonlinear Volterra integral equation is estab-

lished from which the shear stress relaxation function can be solved in terms of measured probe

displacement and force. A numerical method of solution is developed.

RECENTLY, Fallenste et l 969) developed
per ma nt ta Aat m:na +h ~ haminal
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response of brain in viro. A small ho
through the scalp, skull and dura of a monkey
so that a probe can be put into contact with its
brain. After a small preset displacement, the
probe is oscillated normal to the brain at a
fixed frequency and amplitude. The probe
force and dispiacement are recorded so that

their amplitude rate and phase lag can be
determined

(St 38328 Lo10

The present work is concerned with cor-
relating data from such an experiment with
specific material parameters. In order to define
the material parameters, a continuum mech-
anical model must be assumed for the experi-
mental conditions and brain material. In Part
was assumed that the skull could be
modeled as a rigid spherical container com-
pletely filled with a brain modeled as a

isotropic viscoelastic solid. The probe was
modeled as a local normal harmonic displace-
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ment. By assuming that brain material exhibits
linear, isotropic viscoelastic response, two
independent material parameter
duced. One was a frequency dependent shear
modulus and the other was a frequency depen-
dent bulk modulus. The bulk modulus is
known from other sources (Goldmith, 1966).
but the shear modulus is unknown. With the
experiment now modeled as a boundary value
probiem in dynamic iinear viscoelasticity. an
equation was developed which relates the
A maoth-
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od of solution was developed and the shear
modulus evaluated.

It is the purpose of Part I1 of this work to
study how Fallenstein’s probe test can also be
used to measure the reiaxation response of
brain. The relaxation experiment is identical
to the oscillatory cxpenr‘ert details
except that now the probe is subjected to an
instantaneously applied dmnla(‘empnt which

siainialico At QlaPiacelliciit

is held constant while time decay of the force
required to maintain the probe is measured.
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]atory test.
t probe haq been displaced in t}
rei xation test the applied force has relaxed
to its long term value. The system can now be
regarded as having the initial preset required
for the oscillatory test.

There are several reasons for doing a

relaxation test. First, it is of interest to esti-
mate the order of magnitude of the relaxation

modulus and the time for significant amount
of stress relaxation. The test is useful for
determining the range of linearity of response,
since if the probe displacement is altered by a
factor of a, so should the measured stress. For
a linear viscoelastic material, there exists a

ralatinn hetwean the chear relavatian madulig
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and the shear frequency dependent modulus.
By determining both moduli experimentally
and comparing them against this relation, one
can evaluate the assumption of linear visco-
elasticity for the mechanical response of brain.

Because the relaxation test is so similar to
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modeled as before. The only difference is in
the time dependent displacement boundary
condition representing the probe. Two in-
dependent moduli are again associated with
the assumption of linear isotropic visco-
elasticity, a time dependent shear relaxation
modulus and a time ucpéﬁut‘:ﬁt bulk relaxation
modulus, the latter as previously mentioned
being known. With the relaxation experiment

now modeled as a boundary value problem,
an equation is developed which relates the
shear relaxation function to experimental
data. The equation takes the form of a non-
linear Voiterra integral equation of the second
kind for which a method of solution is devel-
oped.

The discussion of the idealization of the
experiment into a continuum mechanics model
is given in Part 1 and will only be summarized
here for convenience. The model itself and the
associated equations are reviewed in Section

A general solution to these equations is
eveloped in Section 3. A numerical method
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solving the governing integral equations
the

or
or the shear modulus is discussed in Section

o

2. IDEALIZATION OF EXPERIMENT, GOVERNING
EQUATIONS

The general three dimensional form of the
constitutive equation for isotropic linear
viscoelastic materials depends on two in-
dependent nir)
k(7), where T denotes time. These are both
zero for r < 0 and may have jump discon-
tinuities at 7= 0. u(r) represents the relaxa-
tion of shear stress due to a shear strain
applied at time =0 and then maintained
constant. x(7) represents the relaxation of

hudragtatic strage induiicad hy 2
Hyudivotativ ouLiLvod lIvuved Vy «

strain applied at time =0 and then held
fixed. Because of this interpretation, w(r) is
called the shear stress relaxation function and
k(1) is called the bulk relaxation function.
According to Goldsmith (1966), the bulk
modulus of brain is similar to that of water,
constant whose value is 3 X 10° psi. For use in
equation (1), this can be expressed as k(f) =
G,(1)/3 =3x10%1(s), where 1 (¢) is the unit
step function, that is, 1(¢#) =1, t=0 and
1() =0, t < 0. For later use, we let G,(¢) =
G,1(1), where G, =9 X 10 psi.

The tensorial stress history oy(f) corres-
ponding to an arbitrary time varying tensorial
strain history €;(t) is then given by the
constitutive equation

and
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where for notational convenience, G, = 2u,
G. = 3«. Equation (i) can be written in the
following form so as to include the discon-
tinuities of G, and G, at t = Qin the integral
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t

o =[ €;(t—7) dG (1)

0
t

1
+§6ij e (t—7) d[ G, (1) — G (7).
o

2)

Since its mathematical structure involves
both convolution and Stieltjes integration,
equation (2) is often abbreviated as (Gurtin
and Sternberg, 1962)

o= €;+dG + 38, #d[G.— G].  (3)

The special notation introduced in equation
(3) allows the use of a very convenient
algebra for performing operations involving
the Stieltjes convolution integral in equation
(2). This operator algebra, derived by Gurtin
and Sternberg (1962), corresponds only to
operations on the time variable and may be
interchanged with operations involving spatial
variables. These operations will be introduced
as needed, but will not be verified.

In constructing a continuum mechanics
mode! of Fallenstein’s probe test, the follow-
ing assumptions are made: '

1. Brain tissue will be assumed to be a

linear, homogeneous, isotropic visco-

elastic material.

. The brain entirely fills the skull which is

assumed to be a spherical case.

3. Since the skull is much harder than the
brain tissue, the skull is assumed to be
rigid.

4. The excitation load is axisymmetric,
which implies that response will also be
axisymmetric about an axis through the
line of force of the excitation load. Also,
displacements occur only in planes
through the line of force.

Body force is neglected.

6. The connection between the brain and
the skull is complex. Generally, there is
a thin layer of cerebrospinal fluid be-
tween the skull and brain. In addition.
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there are nerve bundles and blood
vessels at the lower part of the brain.
Since the probe is placed in a section of
the skull far from the restraint of nerve
cords, the influence of this is neglected.
Furthermore, since the layer of cerebro-
spinal fluid is thin and its viscosity is
small (similar to the water). the addition-
al assumption is made that the shear
stress at the interface between brain and
skull can be neglected.
Based on the above assumptions. a theoreti-
cal model is pictured as shown in Fig. 1. We
introduce spherical coordinates (R, 8. ¢)
with origin at the center of the sphere and with
the center line of the probe lying on 6 = 0.
Assumption 6 means that there is no shear
stress at the interface of viscoelastic material
and rigid container. Hence the boundary
condition on stress takes the form

orela,0,0) =a.4(a,8,1)=0. (4)

Assumption 4, of axisymmetry, implies
oo = 0, so that the stress boundary condition

Electrodynamic
shaker

t A1)

g—- Vibroting probe

Rigid spherical
shel!

Viscoelastic
material

aN

Fig. 1. Model for theoretical analysis.
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reduces to

0',-9((1,9, t) =0 (5)

Since the skull is assumed rigid, the normal
displacement must vanish every where except
at the opening provided by the probe. Under
the probe the displacement is prescribed.
The boundary condition on normal displace-
ment u,(a, 0, t) then becomes

(8, 1) 0<s0=<6,
ua, g, =

(6)

The normal displacement «(8, ) will have
its maximum value under the probe, at 8 = 0,
and then decrease gradually as # increases
until it reaches zero at 8 = 6,. In the relaxa-
tion test, the probe is given a radial displace-
ment which varies in time like a step function,
i.e.

u(8,t) = u(@ 1() €))]

where 1 () =0,r<Oand1(r) =1,t = 0.
For notational convenience, the general field
equations are stated with respect to a Carte-
sian coordinate system. It can be assumed
that waves generated by this step loading will
damp out in a very short period of time, so
that the motion may be regarded as quasi-

static. Neglecting inertia, the stresses satisfy
00;
—L=y. (8)
ax‘,’

For small strains, the strain-displacement

equation is

dudX, t)
axj

(X, 1) = %[ duX. ”]. ©)

ax,'

The strain-displacement relations on spherical
coordinates are given in Part [ and will not be
repeated here. For a linear, homogeneous,
isotropic viscoelastic material, the equation
for the displacement is found from equations
(3).(8)and (9) to be

19 [au,‘

VX, 154G () +5 71 | T (X, ] #d[G (1)

+2G,(H1=0 (10)
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orin vector form

Viu=dG,+3V(V.u)«d(G,+2G,) =0.
(11)

where G, (t) =2u(t), G,(1) =3« ().

3. SOLUTION

It has been shown by Gurtin and Sternberg
(1962) that the general solution of elastostatics
in terms of the Papkovich-Neuber displace-
ment potentials can be extended to quasi-
static viscoelasticity. That is

u=v(@+X.¥) «d(G,+2G,)
—4¥=d(2G,+G,). (12)

is the general solution of equation (10). where
® and W are. respectively, a scalar valued and
a vector valued function of X and ¢, i.e. D =
d(X,1,¥=w¥(X,1),which satisfy
Vi =0, VI = (. (13
Relesrring equations (12) and (13) to spheri-
cal coordinates, the assumption of axisym-
metry implies that ® and ¥ depend only on
R, 6 and r. The additional condition that
i, =0 implies that ¥, = 0. If a separation of
variables representation for @ and ¥ is then
assumed, that is, ® and ¥ can be expressed in
the form F(RYH(8)T(t), then the general
solution of equation (13) is given by Luré
(1964), as

O = i —B,R"P,(cos 8)

n=0

V=73 —A,(n+1)R*'Py(cos ) e,
n=0

+ 3 A,R"*'P,(cos B)eg

n=1

(14)

where 4, and B, are unknown functions of
time, P,(cos @) are Legendre functions and



VISCOELASTIC BEHAVIOR OF BRAIN [V VIVO-11 573

P, (cos ) = dP,/d6 = —P, V', where P, are
the associated Legendre functions of order 1.

Substituting the above solutions into equa-
tions (12) gives

x

=3 {—nR""'B,=d(G;+2G,)

n=0
—(n+ DR™A,»d[(n—6)G,+2nG.,l}.
P,(cos 8)

=

ug= S {—=R"B,+d(G,+2G,)

n=1
—R" 4, =d[(n+9)+2(n+ 3)G.,]}.

P,{(cos 8). (13)
A.(t) and B,(t) can be determined from
boundary conditions of equations (5-7). In
order to apply them. note the following;
(i) the radial displacement on the surface
in equation (6) can be expressed in
Legendre polynomials, i.e.

wu(a, 8.0 =u(@1(t) = }E ¢, P, (cos 8) 1(r)
n=0
(16)

(i) Equations (1) and (3) imply that €,4(qa,
8. t) satisfies

&s(1) G1(0) + [ €ra() G(1=7) dr =0,

where G, denotes the derivative of G, with
respect to its argument. This is a homoge-
neous, linear Volterra integral equation of the
second kind. If G,(0) # 0, it has a unique
solution (See Smithies, 1958),
€9(a,0.0)=0,r=0. (17)
Using equation (17), a relation between
A, (1) and B, (1) is established
1 du,

8119 I1rs
cla0) = (355 + 5 =)

r=a

= 3 {—=2a"d,+d[(n+2n—3)G,
n=i
+2n(n+2)G,]-2(n—-1)a"?

X B"T‘.ﬂd(Gl'FZGg)}P:t(cos 6)=0.
(18)

Since the associated Legendre functions are
linearly independent, forn = 1,

12a4,#dG, =0 (19)

which in integral form is (See equation 1 1)

12a[ G (0) A, (1) + [ 4y(r) Golt—7)dr] =0,
(20)

Since G,(0) # 0, equation (20) is a homoge-
neous linear Volterra integral equation of the
second kind for 4,(#). As mentioned above,
this equation has the unigue solution

A =0. 2n
B, (t) will be determined later.

For n = 2. the relation between A, and B,
is

B,+d(G,+2G,) =—a‘-’An+:-d[(n+3>Gl

(22)

+2n(n+2) Gg}.
n—1

This represents an integral equation for B (1)

in terms of A, (¢). Substituting equations (21)

and (22) into (15) gives

i, = 6RAO"dGl—'Bl'd(Gl+ZGZ) P;(COS 9)

+> {a‘an"”‘A,,-'sd [(n+3) G,

2n(n+2) G

+ n—1

]—(n+ DR"1A4,,

Xdi(n—-6)G,+ 2n62]} P.(cos 6)
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lg = —Bl*d(Gl-i"ZGg)Pl(COS 6)

+ Z ia’K"-‘A 2d L(n’f‘j)(:l

n=2

+ 2n’(1n_+12) Gz] — R4, +d[(n+9) G,

+2(n+3)62]}P;(cos 9). (23)
Evaluating the radial displacement u, on the

surface and equating to equation (16) gives

Uplr=a

X Py(cos )+ 3 a"*'A,=d[(8n+6)G,

= 2’;, c.P,(cos8) 1(2).

n=0

(24

Due to the linear independence of Legendre
functions, 4, can be solved from equation
(24) as

C
AO%dGl=6—;1(x). (25)
In integral form, equation (25) becomes
t
GO Ao()+ | A(D)Gilt=m) dr=21().
' 26)

The integral equation for B,(¢) is found from
equation (24)to be

—B,+d(G,+2G,) =c,1(1) 27

2G,(7) 1 dr=—c,1(2).
(28)
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Equation (24) also gives integrai equations for
A,forn = 2,

1 b4

= c,1(t)/a*.

A1) ed [(8n+6) G,+12n (2::” ‘) G.,]
(29)

It was mentioned in Section 2 that G,(t) =
G,1(t), where G, is a known constant. Equa-

PO [ o PR

tion (47) then has the mlegral worm

n 2n+1 \ 1
n+3\n—1 J

AN R
An(t) [01(0)+

+ [ A=) Gy(7) dr

=, 1()/[(8n+6).a*1]. (30)
If the material parameters G, G, and the
boundary condition «(8) are given, one can

determine A,(t) from equations (25) and
(29), which are all Volterra integral equations
of the second kind. Then B,(¢) are found by
using equations (22) and (28).

After having determined these functions,
the stress components wili be easily obtained
from the stress- strain relations equation (3).

nnnnnnnnnnnn

-
X A, +d [(n+3)c,+3%§"j+l—‘—) GQJ +dG,

+R”A"$dGl'¥d[(_n3+ n)Gl

—(2n*~8n—6)G,]} Pa.(cos 8)
B,+dG,+d(G,+2G,
99=6A0*d61*d62— ! ! [(2 ! -)

X [Py(cos 8) + Pi(cos 0)]

+ 2 R4, +dG =d[(6n*+ 121+ 6)G.,

n=2

—(3n2+15n+12)G,] P.{(cos 8)
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+ > a’R*4,#dG,+ { n*+3n)G,
2
g—n—n(—i-;ﬁG] 2(cos 8)

+ 3 {atRr4,20G,0d | (143G,

2
42nint2) G-| R"A,*dG,+d

n—1
i

X[(n+NCG,+2(n+ 3)62]} Pi(cos 6)

B, *dG,+d(G+2G,)
R
X [P,(cos 8) +cotd Pi{cos8)]

.. =64 A
Y oo VL gTUAT Y

Al —
(S0 )

+ S R"4,+dG,=d((6n* + 12n+6) G,

n=2

—(3n2+15n+12)G,] P,(cos 9)

+3 aZR""ZA,,%dGI%d[(n'Z-i-M)GI

2+
2n8(n+2) = 1 p (cos6) 31)
n—1_ % '
+3 {a2u"“2“,,*dul*d[(rz-.‘-})u-l
n=2

_,J —R"4,+dG,+d[(n+ 9G,

+2(n+3)G, ]}cotOPn(cos 9)

o= 3 {—2R"M,+d[(n>+2n—-3)G,

2n(n+2)G,]—2(n—1)R"*

X B,+d[G,+ ZGg]}MG1 .P,(cos8).

Note that the expressions for the stresses
involve a repeated Stieltjes convolution opera-
tion, i.e. Ay*dG,#dG,. Gurtin and Sternberg

(1962} hav t this may

4
C
[
(l
s

4. NUMERICAL APPROACH
If the force or stress under the probe are
known from measurements in this relaxation
test, the relaxation function G,(¢) can be
obtained by a numericai method. The stress
under the probe will be (from equation 31)

ofa,0,1) =6A4,+dG,+dG,

+ 3 a"d,+dG,«d[2n*—-2mG,

n=2

+ (4n*+8n+6)G.]. (32)
Using equations (26) and (30), equation (32)
becomes

coGal{t) 2 [ el

02 n
og(a,0,1) = + ar |-

S a 2 (8n—+6)ar+!

5
_4n'j+-3(nn—l)GA (¢ )]
X «d{(2n*—2n) G,
+ (4n*+8n+6)G.].
Applying equation (30) again.

the above
equation reduces to '

~ £ 11 s Ed
L4 S (Fum)An(0Ge

o(a,0,t) = ;

n=2

Fy(n)G.1(1) + F3(n)G,(1)]

(33)
where
F,(n) = [‘i’%ﬁ%‘—’—mnusws)J

2n(2n+1)a”
(8n+6)(n—1)

4n:(2n+ 1)"

F.(n) = [4n~+8n+6- s

Cn

X (&nr+6)a
(onro)a
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2 —_
Fs(”) = E_g';l(rl+—6)lc)l'crz- (34)
In deriving these results use was made of the
representation G.(¢t) = G,1(r) and the opera-
tion A4,{z)=d1(2) = A4,(¢). Equation (33) re-
lates the measured stress o,,.(a,0, t) to G, (1),
which appears explicitly and also implicitly in
the unknown functions A,(¢). In order to find
G, (1), equation (33) will have to be solved
simultaneously with the integral equations
(30) for A,(t). The procedure for doing this
combines a numerical method for solving
integral equation of Voiterra type (30) with
the graphical procedure outlined in Part I.

Equation (30) can be rewritten as

Go(0) A (D) + [, Au1=7) G\ (7) dr

=g (n)1(t) —g.(n) A, (t) (35)

where

Cn
&) = Enreyam

) = G.,n(2n+1)
&M = =D

If t = 0+, equation (35) becomes

G,(0)4,(0) = g,(n) —g:(n)A4,(0)

or

A4,(0) = g\(m[G,(D)+g:(m].  (36)

Substituting equation (36) into (33) evaluated
att = 0+ yields

"~ Fy(n)g,(n)
2 [61(0)+g2<n>

n=2

+F,(n)G,+ Fg(n)Gl(O)].

coGs

or(a,0,0,) =

37

From the above equation, acurve of ¢,..(a,0,0)
vs. G,(0) can be obtained as shown on Fig. 2.
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From this cirve, one may find the correct
value of G,(0) for which o,.(a,0,0) will
match the experimental results.

If we now let t=1t, > 0, equation (35)
becomes

Go0 A, (1) + [, Au(ty=7) Gu(m)dr
= g,(n) —g.(n)A4,(1,).

For sufficiently small ¢, the integral can be
approximated using the trapezoidal rule and
G, (1) can be approximated by a simple finite
difference scheme so that the integral equation
can be approximated as

2

G (04, + (Gt — G (0]

= gi(n)—g:(n)A4,(t)

from which the following expression for
A,(t,) is obtained

n 0
4D 16,(1) - Gu(0)]

(0) + G, (1)
2

gi(n)—

Au(tl) =
g:(n) +Gl

(38)
The right side of equation (38) has only one
unknown G,(¢,), since 4,(0) and G,(0) have

already been found from the previous step.
Substituting equation (38) into (33). one will

Experimental value of o,,{z,0,0)

Assumed curve

ag,de,0,0)

|
|
|
I
ll Corresponding G, (o)

Fig. 2. Possible variation of o.{a, 0, 0) with G (0).
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get a form similar to equation (37), or Continuing as before. this is substituted into
equation (33) and the curve of o..(a. 0, £,) vs

3 .
0 FLIG ()] + c;G,1(1) G (t,) is generated. from which the desired
oa,0,t) (t —_—
i 2 " ! a value of G,(t.) can be found.

(39 In general, let r=1t; > t;,_,. equation (33)
will be
where f,[G,(¢,)] is a function of G,(¢,) and " )
nforn=2.3,4.... Againacurve of o..(a,0. G (0)A,(s;) +J, A, (;=1)G (7)dr
t) vs. G,(t;) is obtained. Then for a given r
v a daesired (. (1) can he dater R Ry

O'r,.\/[l. 0, t )., a acsirea G fy) can 0€ aeilr- T n”’\ ij— )61(7) dr
mined from this curve. . '

Now let r=1t, > t,, equation (35) can be + - -+Jflj A,(4,—1)G (7)dT
written as '

=gl(”)—g2(n)An(tj)- (43)

H
G‘(O)A"([f)+ﬁ) Al ‘_‘)G (r)dr Again using equal time steps. f;—¢_ =1,

¢
Aot e lhannmag ammeaviaiatad b
Lyuativil \—PJ[ UCLULLIUD dapplualdllialcu Uy

[£3 .
+ ], At=7G (1) dr At) + At

G(O)A () + 5 (G{tp—G (0]
zgl(n)_g'l(n)Au(t'.’)' (40) L, . ,
Anktj—l)_}_AnU'—z)

. + G ts —'G 14
If one assumes equal tlme steps so that 2 [Gi(z) ()]

Au(rl)_,_A"(O) . R
o At )+ A1) N +oee ) [Gl(t])_Gl(tj—l)]
(J](U)An(t_)) - A

=g(n)—g.(mA,(1;). (44)
A,(1)+A,(0)
- 2 [Gi(r) = Gtr)] From equation (44) one finds 4,(¢;) in terms
of G,(1;) and previously determined vaiues of
=g (n)—g:(n)A,(;), (41) A,and G, ie.

n\tj—1 n\tj-2 A 0
e+ 28216, 0) - 6,1+ 252 (6, 0) - Gt + -+ 25216 1,0 G ()

An(tj) = =
(0) + ga(n) + [GI({l) —Gl(o)}/z

(45)

which can be solved for the unknown value of Continuing the process. one obtains G,(t;),

A, attime t.. J=1,2.3,..., and hence the relaxation func-
u ) A,(0)
s Il 1 Ay
gi(n)+ [Gl(o) t)]+ 3 [Gl(tl)—Gl(t’)]
. —_ 17
Au(ty) .,m +g.(m+[G, 1)~ G (0)])2 : (42)
Mg v T SNV =
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G (1)

2

Time

Fig. 3. Construction of the shear stress relaxation function
Gun.

tion in shear G (¢) = 2u(?), (See Fig. 3).

It should be emphasized that the method of
solution described here is only procedural. In
order to obtain better accuracy or to reduce
computation, it may be more appropriate to
choose logarithmic time steps or a different
means of approximating the integrals,
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NOMENCLATURE

stress tensor

strain tensor

Kronecker delta

position vector

time

relaxation function governing shear and
volumetric dilatation response, respec-
tively

spherical coordinates

displacement vector in space coordinates
only

components of displacement vector in
spherical coordinates

radius of solid viscoelastic sphere

scalar displacement potential

vector displacement potential

Legendre and associated Legendre poly-
nomials of first kind

A,. B, coefficients of infinite series expansions of
displacement potentials ® and W, respec-
tively

¢, coefficient of the Legendre polynomial
expansion of the local applied radial dis-
placement
Vv gradient operator
V- divergence operator
VX curloperator
V* Laplacian



