On the Validity of the Geometrical Theory of Diffraction by Star-Shaped Cylinders

C. O. Bloom

Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48104

Submitted by C. L. Dolph

INTRODUCTION

Let \(U(X, X_0; k) \) be the (Green’s) function defined by the equations

\[
(\Delta + k^2) U = \delta(X, X_0), \quad X, X_0 \in \mathcal{E}; \\
U = 0, \quad X \in \mathcal{B}, \quad X_0 \in \mathcal{E};
\]

\[
\lim_{R \to \infty} \int_{|X| = R} |\partial U/\partial |X| - i k U|^2 \, dX = 0,
\]

where \(\mathcal{E} \) is the (2-dimensional) region exterior to a piecewise smooth star-shaped curve \(\mathcal{B} \). We obtain a rigorous asymptotic approximation of \(U(X, X_0; k) \) in the shadow \(S(X_0) \) of \(\mathcal{B} \) under the assumption that \(\mathcal{B} \) coincides with a circle \(\mathcal{B}_0 \) near the points of diffraction.

In Part I, using a priori estimates obtained by Morawetz and Ludwig [3], we establish that if \(\mathcal{B} \) coincides with \(\mathcal{B}_0 \) in the shadow, then

\[
U(X, X_0; k) = U_0(X, X_0; k) \left[1 + O(\exp(-k^{1/3} \sigma)) \right]
\]

as \(k \to \infty \), uniformly on every closed bounded subset of \(S(X_0) \). Here \(U_0(X, X_0; k) \) is Green’s function for the case \(\mathcal{B} = \mathcal{B}_0 \), and \(\sigma \) is a positive number independent of \(k \) and \(X \).

Using this result, we prove in Part II that if \(\mathcal{B} \) coincides with \(\mathcal{B}_0 \) only near the points of diffraction, then

\[
U(X, X_0; k) = U_0(X, X_0; k) \left[1 + O(\exp(-k^{1/3} \gamma)) \right]
\]

as \(k \to \infty \), uniformly on every closed bounded subset \(S(X_0) \) sufficiently far from \(\mathcal{B} \), where \(\gamma \) is a positive number independent of \(k \) and \(X \).

The asymptotic approximations obtained in this study are believed to be the first ones established for solutions of diffraction problems with nonconvex boundaries. They were announced in [1]. These results generalize those
obtained by Bloom and Matkowsky [2]; they considered diffraction by infinite cylinders of convex cross section. A reasonably complete account of other literature on this subject is given in [2].

PART I

Let $U_1(X, X_0; k)$ be the solution of the scattering problem P_1:

(i) $[\Delta + k^2] U = \delta(X, X_0), X, X_0 \in \mathcal{E}_1 (= \text{exterior of closed curve } \mathcal{B}_1);$
(ii) $U = 0, X \in \mathcal{B}_1 (= \text{piecewise smooth and star-shaped});$

(iii) $\lim_{R \to \infty} \int_{|X| = R} |\partial U/\partial X| |X| - ikU|^2 \cdot |dX| = 0.$

Assume: (1) \mathcal{B}_1 is obtained by deforming the portion of the circle $\mathcal{B}_0 (\{X : |X| = a\})$ "illuminated" by the "source" X_0 into a piecewise smooth arc A_1 (see Fig. 1).

(2) A_1 has no points on the tangents to \mathcal{B}_0 that pass through X_0.

(3) A_1 cuts \mathcal{B}_0 at a finite number of points.

THEOREM 1. As $k \to \infty,$

$$U_1(X, X_0; k) = U_0(X, X_0; k) \cdot [1 + O(\exp\{-k^{1/\sigma}\})],$$

uniformly in X for $X \in S_1 \prec (X_0)$.

Here σ is a positive number independent of X and k. The function $U_0(X, X_0; k)$ is the solution of the scattering problem P_0:

(i)' $[\Delta + k^2] U = \delta(X, X_0), |X|, |X_0| > a;$

(ii)' $U = 0; |X| = a;$

(iii)' $\lim_{R \to \infty} \int_{|X| = R} |\partial U/\partial X| |X| - ikU|^2 \cdot |dX| = 0.$
$S_{1}(X_0)$ is the "shadow" of $\mathcal{B}_1 : X \in S_{1}(X_0)$ if and only if $X \in \mathcal{B}_1 \cup \mathcal{B}_1$ and the straight line through X and X_0 cuts \mathcal{B}_1 at 2 distinct points $S_{1}<(X_0)$ is any closed, bounded subset of $S_{1}(X_0)$ (see Fig. 2).

![Figure 2](image)

Applying Green's second identity to $U_1(X', X_0; k)$ and $U_0(X, X'; k)$, and then integrating over the region

$$\mathcal{E}_1 \cap \mathcal{E}_0 \quad (\mathcal{E}_o = \{X : |X| > a\}),$$

we get the integral equation

$$U_1(X, X_0; k) = U_0(X, X_0; k) + I_1(X, X_0; k) - I_2(X, X_0; k),$$

where

$$I_1(X, X_0; k) = \int_{\mathcal{E}_1 \cap \mathcal{E}_0} U_0(X, X'; k) \cdot \frac{\partial U_1}{\partial n}(X', X_0; k) \, |dX'|,$$

and

$$I_2(X, X_0; k) = \int_{\mathcal{S}} \frac{\partial U_0}{\partial n}(X, X'; k) \cdot U_1(X', X_0; k) \, |dX'|.$$

In the last integral

$$\mathcal{S} = \mathcal{B}_0 \cap \mathcal{E}_1 - \mathcal{B}_0 \cap \mathcal{B}_1.$$

To prove Theorem 1 we show that as $k \to \infty$,

$$I_1(X, X_0; k) - I_2(X, X_0; k) = U_0(X, X_0; k) \cdot O(\exp\{- k^{1/\alpha}\}),$$

uniformly in X for $X \in S_{1}<(X_0)$. Setting

$$U_1(X', X_0; k) = U_1^{(a)}(X', X_0; k) + \frac{i}{4} H_0^{(1)}(k |X' - X_0|),$$
\((H_0^{(1)}(z) = \text{Hankel function of first kind of order zero})\), we get the integral equation

\[
I_1(X, X_0; k) = I_{11}(X, X_0; k) + I_{12}(X, X_0; k),
\]

where

\[
I_{11}(X, X_0; k) = \frac{i}{4} \int_{\mathcal{A}_1 \cap \overline{\mathcal{A}_0}} U_0(X, X'; k) \cdot \frac{\partial H_0^{(1)}}{\partial n} (k | X' - X_0 |) \, dX',
\]

\[
I_{12}(X, X_0; k) = \int_{\mathcal{A}_1 \cap \overline{\mathcal{A}_0}} U_0(X, X'; k) \frac{\partial}{\partial n} U_1^{(1)}(X', X_0; k) \, dX'.
\]

and the integral equation

\[
I_2(X, X_0; k) = I_{21}(X, X_0; k) + I_{22}(X, X_0; k),
\]

where

\[
I_{21}(X, X_0; k) = \frac{i}{4} \int_{\mathcal{A}_1} \frac{\partial U_0}{\partial n} (X, X'; k) \cdot H_0^{(1)}(k | X' - X_0 |) \, dX',
\]

\[
I_{22}(X, X_0; k) = \int_{\mathcal{A}_1} \frac{\partial U_0}{\partial n} (X, X'; k) \cdot U_1^{(1)}(X', X_0; k) \, dX'.
\]

Using Schwarz' inequality, we derive the estimate

\[
I_1(X, X_0; k) \leq \max_{\mathcal{A}_1 \cap \overline{\mathcal{A}_0}} |U_0(X, X'; k)|
\]

\[
\cdot \left[\mathbb{L}_1^{1/2} \left(\int_{\mathcal{A}_1} \left| \frac{\partial U_1^{(1)}}{\partial n} (X', X_0; k) \right|^2 \, dX' \right)^{1/2}
\]

\[
+ \int_{\mathcal{A}_1} \left| \frac{\partial H_0^{(1)}}{\partial n} (k | X' - X_0 |) \right| \, dX' \right],
\]

where \(\mathbb{L}_1\) is the length of \(\mathcal{A}_1\), and the estimate

\[
I_2(X, X_0; k) \leq (2\pi a)^{1/2} \max_{\mathcal{A}_1 \cap \overline{\mathcal{A}_0}} \left| \frac{\partial U_0}{\partial n} (X, X'; k) \right|
\]

\[
\cdot \left[(2\pi a)^{1/2} \max_{\mathcal{A}_1 \cap \overline{\mathcal{A}_0}} \left| U_1^{(1)}(X', X_0; k) \right|
\]

\[
+ \int_{\mathcal{A}_0} \left| H_0^{(1)}(k | X' - X_0 |) \right|^2 \, dX' \right]^{1/2}.
\]
Morawetz and Ludwig [3] have obtained the following a priori estimates, as $k \rightarrow \infty$:

$$\max_{\mathcal{S}_0 \cap \mathcal{S}_1 - \mathcal{S}_1 \cap \mathcal{S}_0} \left| \frac{\partial U_1^{(\omega)}}{\partial n} (X', X_0; k) \right| \left[\int_{\mathcal{S}_1} \left| T \cdot \nabla H_0^{(1)} (k \mid X' - X_0 \mid)^2 \right| dX' \right]^{1/2}$$

$$= \mathcal{O} \left(\left\{ \int_{\mathcal{S}_1} \left| T \cdot \nabla H_0^{(1)} (k \mid X' - X_0 \mid)^2 \right| dX' \right\}^{1/2} \right)$$

uniformly in X_0, $X_0 \in \text{any closed subset of } \mathcal{S}_1$ where T is the unit tangent to \mathcal{S}_1 at X'.

(ii) \[
\int_{\mathcal{S}_1} \left| \frac{\partial H_0^{(1)}}{\partial n} (k \mid X' - X_0 \mid) \right| dX' = \mathcal{O}(k^{1/2} / |X_0|^{1/2}),
\]

and

(iii) \[
\int_{\mathcal{S}_0} \left| H_0^{(1)} (k \mid X' - X_0 \mid)^2 \right| dX' = \mathcal{O} \left(\left\{ \frac{\ln |k/X_0|}{k} \right\}^{1/2} \right),
\]

uniformly in $X_0 (|X_0| \geq \rho > 0)$.

Consequently, as $k \rightarrow \infty$,

$$I_1(X, X_0; k) = \max_{\mathcal{S}_1 \cap \mathcal{S}_0} \left| U_0(X, X'; k) \right| \cdot \mathcal{O}(k^{1/2}),$$

$$I_2(X, X_0; k) = \max_{\mathcal{S}_0 \cap \mathcal{S}_1 - \mathcal{S}_1 \cap \mathcal{S}_0} \left| \frac{\partial U_0}{\partial n} (X, X'; k) \right| \cdot \mathcal{O} \left(\frac{\ln |k/X_0|}{k} \right)^{1/2},$$

uniformly in X_0 for $X_0 \in \text{any closed subset of } \mathcal{S}_1$.

As $k \rightarrow \infty$,

$$U_0^{-1}(X, X_0; k) = \mathcal{O}(k^{1/2} \cdot \exp\{k^{1/3}(\Im \tau_1) a^{-2/3} \lambda_m(X, X_0)\}),$$

uniformly in X for $X \in S_0 \subset (X_0) (= S_1 \subset (X_0))$;

$$U_0(X, X'; k) = \sum_{1}^{1} \mathcal{O}(k^{1/2} \cdot \exp\{- k^{1/3}(\Im \tau_1) a^{-2/3} \lambda_m(X, X')\}),$$

$$\frac{\partial U_0}{\partial n} (X, X'; k) = \sum_{1}^{1} \mathcal{O}(k^{1/2} \cdot \exp\{- k^{1/3}(\Im \tau_1) a^{-2/3} \lambda_m(X, X')\}),$$
uniformly in X' and X for $X' \in \mathcal{B}_1 \cap \mathcal{B}_0 \cap \mathcal{B}_0 \cap \mathcal{B}_1$ and $X \in S_1^{<}(X') (\subseteq S_1^{<}(X_0))$.

Here $2^{1/3} e^{\pi \sqrt{3/3}}$ is that zero of the Airy function closest to zero, and

$$\lambda_<(X, X_0) = \min_{m=1,2} \lambda_m(X, X_0),$$

$$\lambda_1(X, X') = a[\theta - \theta' - \arccos[a/X] - \arccos[a/X']],$$

$$\lambda_2(X, X') = a[2\pi - \theta - \theta' - \arccos[a/X] - \arccos[a/X']],$$

$$\theta = \arg X, \quad \text{and} \quad \theta' = \arg X'.$$

Let \hat{X}_m be the point on

$$\mathcal{F}_1 = \mathcal{B}_1 \cap \mathcal{B}_0 \cap \mathcal{B}_0 \cap \mathcal{B}_1$$

such that

$$\lambda_m(X, \hat{X}_m) = \min_{X' \in \mathcal{F}_1} \lambda_m(X, X'), \quad X \in S_1^{<}(X_0).$$

If $0 < \theta < \pi$, and $0 < \theta - \hat{\theta}_1$, then

(i) $\lambda_<(X, X_0) = \lambda_1(X, X_0)$, $\theta_0 = 0$,

(ii) $\lambda_1(X, \hat{X}_1) = \lambda_1(X, X_0) + \mu_1(X)$, $\mu_1(X) > 0$, and

(iii) $\mu_1(X) \geq \min_{S_1^{<}(X_0)} \mu_1(X') \geq \Delta > 0$.

Statements (i)–(iii) imply the inequality

$$-\lambda_1(X, \hat{X}_1) \leq -\lambda_<(X, X_0) - \Delta \quad \text{(see Fig. 3).}$$

![Figure 3](image-url)
If $0 \leq \theta \leq \pi$ and $0 \geq \theta - \hat{\theta}_1$, then

(i) $\lambda_<(X, X_0) = \lambda_1(X, X_0)$, $\theta_0 = 0$,
(ii) $\lambda_2(X, X_0) \geq \lambda_1(X, X_0)$, $\theta_0 = 0$,
(iii) $\lambda_2(X, X_0)_{\hat{\theta}_0=0} = \lambda_1(X, X_0)_{\hat{\theta}_0=2\pi}$,
(iv) $\lambda_1(X, X_1) = \lambda_1(X, X_0)_{\hat{\theta}_0=2\pi} + \mu_2(X)$, $\mu_2(X) > 0$,
(v) $\mu_2(X) \geq \min_{S_1 < (X_0)} \mu_2(X') \geq \Delta > 0$.

Statements (i)-(v) imply the inequality

$$-\lambda_1(X, \hat{X}_1) < -\lambda_<(X, X_0) - \Delta$$

(see Fig. 4).

FIGURE 4

If $\pi \leq \theta \leq 2\pi$ and $0 \geq \theta - \hat{\theta}_1$, then

(i) $\lambda_<(X, X_0) = \lambda_2(X, X_0)$, $\theta_0 = 0$,
(ii) $\lambda_2(X, X_0)_{\hat{\theta}_0=0} = \lambda_1(X, X_0)_{\hat{\theta}_0=2\pi}$,
(iii) $\lambda_1(X, \hat{X}_1) = \lambda_1(X, X_0)_{\hat{\theta}_0=2\pi} + \mu_3(X)$, $\mu_3(X) > 0$,
(iv) $\mu_3(X) \geq \min_{S_1 < (X_0)} \mu_3(X') \geq \Delta > 0$.

Statements (i)-(iv) imply the inequality

$$-\lambda_1(X, \hat{X}_1) < -\lambda_<(X, X_0) - \Delta$$

(see Fig. 5).
Statements (i)–(iv) imply the inequality

$$-\lambda_1(X, \hat{X}_1) \leq -\lambda_<(X, X_0) - \Delta$$ \hspace{1em} (see Fig. 6).

It follows from the above series of inequalities that for all \(X \in S_1 <(X_0) \)

$$-\lambda_1(X, \hat{X}_1) \leq -\lambda_<(X, X_0) - \Delta,$$

where \(\Delta \) is positive and independent of \(X \).

Similarly,

$$-\lambda_2(X, \hat{X}_2) \leq -\lambda_<(X, X_0) - \Delta$$

for all \(X \in S_1 <(X_0) \).
Since
\[-\min_{\mathcal{A}_1 \cap \mathcal{A}_0} \lambda_m(X, X') - \min_{\mathcal{A}_0 \cap \mathcal{A}_1 - \mathcal{A}_0 \cap \mathcal{A}_1} \lambda_m(X, X') \leq -\lambda_m(X, X_m), \]

it follows from the above estimates for \(U_0(X, X'; k), \partial U_0(X, X'; k)/\partial n, \) and \(U_0^{-1}(X, X_0; k), \) that as \(K \to \infty, \)
\[
\max_{\mathcal{A}_1 \cap \mathcal{A}_0} \left| U_0(X, X'; k) \right| = | U_0(X, X_0; k) | \cdot O(\exp(-K^{1/3}(\text{Im } \tau_1) a^{-2/3} \Delta)),
\]
and
\[
\max_{\mathcal{A}_0 \cap \mathcal{A}_1 - \mathcal{A}_0 \cap \mathcal{A}_1} \left| \frac{\partial U_0}{\partial n} (X, X'; k) \right| = | U_0(X, X_0; k) | \cdot O(k^{1/2} \exp(-k^{1/3}(\text{Im } \tau_1) a^{-2/3} \Delta)),
\]
uniformly in \(X \) for \(X \in S_1 <(X_0). \)

We therefore conclude that as \(K \to \infty, \)
\[
\begin{align*}
I_1(X, X_0; k) &= \max_{\mathcal{A}_1 \cap \mathcal{A}_0} \left| U_0(X, X'; k) \right| \cdot O(k^{1/2}) \\
&= | U_0(X, X_0; k) | \cdot O(\exp(-k^{1/3} a)),
\end{align*}
\]
and
\[
\begin{align*}
I_2(X, X_0; k) &= \max_{\mathcal{A}_0 \cap \mathcal{A}_1 - \mathcal{A}_0 \cap \mathcal{A}_1} \left| \frac{\partial U_0}{\partial n} (X, X'; k) \right| \cdot O((\ln[ka/\rho])^{1/2}) \\
&= | U_0(X, X_0; k) | \cdot O(\exp(-k^{1/3} a)),
\end{align*}
\]
uniformly in \(X \) for \(X \in S_1 <(X_0). \)

PART II

Let \(U_2(X, X_0; k) \) be the solution of the scattering problem \(P_2: \)

(i) \([\Delta + k^2] U = \delta(X, X_0), \) \(X, X_0 \in \mathcal{B}_2 (= \text{exterior of closed curve } \mathcal{B}_2); \)

(ii) \(U = 0, \) \(X \in \mathcal{B}_2 (= \text{star-shaped deformation of } \mathcal{A}_1); \)

(iii) \(\lim_{R \to \infty} \int_{|X| = R} |\partial U/\partial X| - i k U |^2 \cdot |dX| = 0. \)

Assume: (1) \(\mathcal{B}_2 \) is obtained by deforming the “dark” portion of \(\mathcal{B}_1 \) into a piecewise smooth arc \(A_2; \) see Fig. 7. (2) \(A_2 \) cuts \(\mathcal{B}_1 \) at a finite number of points.
THEOREM 2. If \(B_2 \) is obtained by deforming the “dark” portion of the boundary of Theorem I into a piecewise smooth arc \(A_2 \), then as \(k \to \infty \)

\[
U(X, X_0; k) = U_0(X, X_0; k) \cdot [1 + O(\exp(- k^{1/3}))],
\]

uniformly in \(X \), for \(X \in S_2^\circ(X_0) - B \).

Here \(S_2^\circ(X_0) \) is any bounded closed subset of the shadow \(S_2(X_0) \) of \(B_2 \), and \(B \) is the “region of influence” of \(A_2 \) defined as follows. Let \(e \) be the end of \(A_2 \) closest to the illuminated side of \(B_2 \), and let \(f \) be a point on \(B_2 \) between \(e \) and the shadow boundary at \(g \). Let \(f' \) be a point on \(B_2 \) between the other end of \(A_2 \) and the shadow boundary, that is as far from the illuminated side of \(B_2 \) as \(f \). Assume \(f \) is so located that the tangents to \(B_2 \) at \(f \) and \(f' \) have no points on \(A_2 \). \(B \) is that part of \(S_2(X_0) \) bounded by \(B_2 \), and the tangents from \(f \) and \(f' \) (see Fig. 8).

Applying Green’s second identity to \(U_0(X, X'; k) \) and \(U_1(X', X_0; k) \), and then integrating over the region \(\bar{S}_2 \cap \bar{S}_1 \), we get the integral equation

\[
U_2(X, X_0; k) = U_1(X, X_0; k) - I_3(X, X_0; k) + I_4(X, X_0; k),
\]

where

\[
I_3(X, X_0; k) = \int_{S_2 \cap \bar{S}_1} U_1(X', X_0; k) \cdot \frac{\partial U_2}{\partial n} (X, X'; k) \cdot |dX'|,
\]

and

\[
I_4(X, X_0; k) = \int_{S_2 \cap \bar{S}_2 \cup \bar{S}_1 \cap \bar{S}_2} \frac{\partial U_1}{\partial n} (X', X_0; k) \cdot U_2(X, X'; k) \cdot |dX'|.
\]

To prove Theorem 2 we show that as \(k \to \infty \),

\[
I_3(X, X_0; k) - I_4(X, X_0; k) = U_1(X, X_0; k) \cdot O(\exp(- k^{1/3}))
\]
uniformly in \(X \) for \(X \in S_2 \prec (X_0) - \mathcal{R} \). Set

\[
U_d(X, X'; k) = U_2^{(2)}(X, X'; k) + \frac{i}{4} H_0^{(1)}(k | X - X'|)
\]

in the above integrals and use Schwarz' inequality to make the estimates

\[
|I_d(X, X_0; k)| \leq \max_{\mathcal{B}_2 \cap \mathcal{S}_2} \left| U_1(X', X_0; k) \right|
\]

\[
\cdot \left[L_2^{1/2} \left\{ \int_{\mathcal{B}_2} \left| \frac{\partial U_2^{(2)}}{\partial n} (X, X'; k) \right|^2 |dX'| \right\}^{1/2} \right]
\]

\[
+ \int_{\mathcal{B}_2} \left| \frac{\partial H_0^{(1)}}{\partial n} (k | X - X'|) \right| |dX'|
\]

and

\[
|I_d(X, X_0; k)| \leq L_1^{1/2} \cdot \max_{\mathcal{B}_1 \cap \mathcal{S}_2 - \mathcal{B}_1 \cap \mathcal{B}_2} \left| \frac{\partial U_1}{\partial n} (X', X_0; k) \right|
\]

\[
\cdot \left[L_1^{1/2} \cdot \max_{\mathcal{B}_1 \cap \mathcal{S}_2 - \mathcal{B}_1 \cap \mathcal{B}_2} \left| U_2^{(2)}(X, X'; k) \right| \right]
\]

\[
+ \left\{ \int_{\mathcal{B}_1} \left| H_0^{(1)}(k | X - X'|) \right|^2 |dX'| \right\},
\]

where \(L_2 \) is the length of \(\mathcal{B}_2 \).
By essentially the same argument used to prove Theorem 1 we get the result that as $k \to \infty$

$$
\frac{\partial U_1}{\partial n} (X', X_0; k) = \frac{\partial U_0}{\partial n} (X', X_0; k) \cdot [1 + O(\exp(- k^{1/3}))] ,
$$
uniformly in X' for $X' \in S_2^<(X_0) (\subseteq S_1^<(X_0))$.

It follows from this result, Theorem 1, the estimates of Morawetz and Ludwig [3], and the above inequalities that, as $k \to \infty$,

$$
I_3(X, X_0; k) = \max_{\mathscr{A}_2 \cap \mathfrak{F}_1} |U_0(X', X_0; k)| \cdot O(k^{1/3}),
$$

$$
I_4(X, X_0; k) = \max_{\mathscr{A}_1 \cap \mathfrak{F}_2 = \mathfrak{F}_1} \left| \frac{\partial U_0}{\partial n} (X', X_0; k) \right| \cdot O((\ln |h\rho|)^{1/2}),
$$

uniformly in X for $X \in S_2^<(X_0) - \mathscr{R}$.

It follows from Theorem 1 that, as $k \to \infty$,

$$
U_1^{-1}(X, X_0; k) = O(k^{1/3} \exp(- k^{1/3}(\text{Im } \tau_1) a^{2/3} \lambda_<(X, X_0)))
$$

uniformly in X for $X \in S_2^<(X_0) - \mathscr{R} (\subseteq S_1^<(X_0))$.

Furthermore, as $k \to \infty$

$$
\max_{\mathfrak{F}_2} |U_0(X', X_0; k)|
$$

$$
= \sum_{m=1}^{2} O(k^{-1/3} \exp(- k^{1/3}(\text{Im } \tau_1) a^{2/3} \lambda_m(\vec{X}_m, X_0))),
$$

and

$$
\max_{\mathfrak{F}_2} \left| \frac{\partial U_0}{\partial n} (X', X_0; k) \right|
$$

$$
= \sum_{m=1}^{2} O(k^{1/2} \exp(- k^{1/3}(\text{Im } \tau_1) a^{2/3} \lambda_m(\vec{X}_m, X_0))),
$$

where

$$
\lambda_m(\vec{X}_m, X_0) = \min_{X \in \mathcal{T}_2} \lambda_m(X', X_0),
$$

with

$$
\mathcal{T}_2 = [\mathfrak{F}_2 \cap \mathfrak{F}_1] \cup [\mathfrak{F}_1 \cap \mathfrak{F}_2 - \mathfrak{F}_1 \cap \mathfrak{F}_2].
$$

To complete the proof of Theorem 2 we show that if $X \in S_2^<(X_0) - \mathscr{R}$ then

$$
- \lambda_m(\vec{X}_m, X_0) \leq - \lambda_<(X, X_0) - \Lambda,
$$
where A is positive and independent of X. It then follows from the above estimates that, as $k \to \infty$,

$$I_0(X, X_0; k) = \max_{\mathcal{B}_1 \cap \mathcal{A}} | U_0(X', X_0; k)| \cdot O(k^{1/2})$$

$$= | U_1(X, X_0; k)| \cdot O(\exp(-k^{1/3} \gamma)),$$

$$I_0(X, X_0; k) = \max_{\mathcal{B}_1 \cap \mathcal{B}_2} \left| \frac{\partial U_0}{\partial n} (X', X_0; k) \right| \cdot O(\ln (ka/p)^{1/2})$$

$$= | U_1(X, X_0; k)| \cdot O(\exp(-k^{1/3} \gamma)),$$

uniformly in $X, X \in S_2 \subset (X_0) - \mathcal{R}$.

Now, if $0 \leq \theta \leq \pi$, and $X \in S_2 \subset (X_0) - \mathcal{R}$, then

(i) $\lambda_\prec (X, X_0) = \lambda_\prec (X, X_0)$, $\theta_0 = 0$,

(ii) $\lambda_\prec (X, X_0) = \lambda_\prec (X, X_0) + \nu_1(X)$, $\nu_1(X) > 0$,

(iii) $\nu_1(X) \geq \min_{S_2 \subset (X_0) - \mathcal{R}} \nu_1(X') \geq A > 0$.

Statements (i)–(iii) imply the inequality

$$-\lambda_\prec (X, X_0) \leq -\lambda_\prec (X, X_0) - A$$

(see Fig. 9).

If $\pi \leq \theta \leq 2\pi$, and $X \in S_2 \subset (X_0) - \mathcal{R}$, then

(i) $\lambda_\prec (X, X_0) = \lambda_\prec (X, X_0)$, $\theta_0 = 0$,

(ii) $\lambda_\prec (X^*, X_0)|_{\theta_0=0} = \lambda_\prec (X^*, X_0)|_{\theta_0=2\pi}$,

(iii) $\lambda_\prec (X^*, X_0) = \lambda_\prec (X^*, X_0)|_{\theta_0=0} + \nu_2$, $\nu_2 > 0$,

(iv) $\lambda_\prec (X^*, X_0)|_{\theta_0=2\pi} \geq \lambda_\prec (X, X_0)|_{\theta_0=0}$.

FIGURE 9
Statements (i)-(iv) imply the inequality
\[-\lambda_1(\vec{x}_1, X_0) \leq -\lambda_<(X, X_0) - A \] (see Fig. 10).

It follows from the above series of inequalities that, for all \(X \in S_k^<(X_0) - \mathcal{R}\),
\[-\lambda_1(\vec{x}_1, X_0) \leq -\lambda_<(X, X_0) - A,\]
and similarly that
\[-\lambda_2(\vec{x}_2, X_0) \leq -\lambda_<(X, X_0) - A.\]

CONCLUSION

In Theorems 1 and 2 we could just as well let \(\mathcal{R}_0\) be any convex curve such that \(U_0(X, X_0; k)\) behaves asymptotically as predicted by the geometrical theory of diffraction.

Furthermore, asymptotic approximations similar to the above can be obtained in 3-dimensions for perturbed spheres or for star-shaped perturbations of any convex surface \(S\) for which the geometrical theory of diffraction is known to be valid.

REFERENCES