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EXCITATION OF AN ELASTIC HALF-SPACE BY A 
TIME-DEPENDENT DIPOLE-I. 

THE SURFACE DISPLACEMENTS DUE TO A 
SURFACE DIPOLE 

0. F. AFANDI and R. A. SCOTT 

Engineering Mechanics Department, University of Michigan, Michigan 

Abstract-The surface displacements due to a surface, time-dependent dipole in an elastic half-space are treated. 
Closed-form expressions are given for an arbitrarily oriented dipole with a ramp time-dependence. These expres- 
sions are analyzed numerically for a special dipole orientation for several values of the ramp rise-time. 

1. INTRODUCTION 

TRANSIENT elastic wave propagation in a homogeneous elastic half-space is treated, the 
waves being generated by a time-dependent dipole. Such a study is a contribution to non- 
axisymmetric elastodynamics, an area of emerging interest (see Scott and Miklowitz [l]). 
It is also important in view of the fact that dipole sources can be regarded as simple earth- 
quake models. 

A substantial amount of work on elastic transients in a half-space has already been 
done. First motion studies involving various source models have been given by Knopoff 
and Gilbert [2, 31 and Burridge et al. [4]. Pekeris [5, 61 gave closed-form solutions for the 
surface displacements due to a vertical, surface point source with a Heaviside step time- 
dependence. This same problem was treated by Chao et al. [7], who retained only the 
Rayleigh wave contribution in their numerical work. Lang [8], in work on a surface point 
load, gave numerical results for distinct surface events. Pekeris [9] also gave results in 
terms of integrals for the surface displacements due to a buried, vertical force with a 
Heaviside step time-dependence. In a later paper [lo], he and Lifson evaluated the integrals 
numerically and gave results for several epicentral distances. Pinney [I l] obtained the 
surface displacements due to impulsive, internal sources and torques. His results were in 
terms of integrals, information being obtained by numerical integration. The buried torque 
pulse was also treated by Pekeris and Longman [12]. They obtained the surface vertical 
displacements and evaluated the integrals that arose numerically. Chao [13] presented 
closed-form, surface results for the case of the surface of the half-space being loaded by a 
tangential point force with a Heaviside step time-dependence. A significant contribution 
was given by Aggarwal and Ablow [14, 1.51, who developed a method whereby surface 
results for arbitrary, buried sources can be obtained in terms of integrals. The works of 
Eason [16] and Mitra [17] should also be noted. Eason, using integral representations 
and a Cagniard-de Hoop method, obtained surface results and large-time results for the 
case of a suddenly applied, vertical, surface force. Mitra presented surface information on 
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the displacements produced by time-dependent body forces. However, his solutions are 
in terms of integrals and no numerical information was given. 

Little work has been done on the transients generated by dipole (and other multipole) 
sources. Chandra [18], using saddle-point methods, gave results on the surface phases 
generated by a double couple source with a Heaviside step time-dependence. The present 
paper treats the surface displacements produced by a surface dipole with a ramp time- 
dependence. A major contribution is that closed-form expressions are given for the hori- 
zontal and vertical displacements for the case of an arbitrarily oriented dipole. The formal 
solutions are obtained using Fourier-Bessel superposition methods and the Laplace 
transformation. Inversion is achieved with the aid of contour integration techniques. 

Numerical studies for several values of the ramp rise-time, are presented for a special 
dipole geometry. 

2. DEVELOPMENT OF THE SOLUTIONS 

Only shear faults are treated, that is (see Fig. 1) 

where the n’s are the Cartesian components of a unit vector perpendicular to the fault plane 
and the f’s are the Cartesian components of a unit force in the fault plane. A point dipole 
is an idealized model of such a fault. Cylindrical coordinates r, 4 and z are used with the 
origin at the dipole, which is a depth d below the surface of the half-space and the z axis 
pointed vertically downwards. In view of the very considerable amount of algebra involved, 
only an outline of the procedure will be given. 

Following the development given by Haskell [19], it can be shown that the Laplace- 
transformed displacements U,, Us and i& due to a point dipole in an infinite medium, are, 
for z < O,t 

FIG. 1. Dipole geometry. 

t Since interest is ultimately in the surface displacements, only z < 0 is considered in the sequel. 
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c: = (R, +&f/p, c.; = p/p. 
1 and p being the Lame constants, p the density, h(t) the source time-dependence, the J’s 
Bessel functions of the first kind and the bar denotes the Laplace transform, parameter p, 
In arriving at (l)-(3), the integral representations 

were used. As (4) shows, branch points arise on the imaginary p-axis. The branches that were 
chosen were such that Re vt > 0, Re ~7~ > 0, when Re p > 0, Re denotmg real part. 

The solutions to the half-space problem are obtained by using (1)_13) to suitably 
adjust general solutions to the equations of mation, the resulting expressians being in turn 
adjusted so that the surface of the half-space is stress-free. Follawing Scott and Miklowitz 
[I] it can be shown that quite general sofutions to the transformed equation of motion are 

where n is an integer, provided 

m-(S) - 
&gylE(S) 

Xi - ----- d: 
nw 

@I 

dZwC(s) 
J I q$3”‘“’ 

dz2 
= 0, j = I, 2, 

Solutions to (8)-(11) are readily obtained. On substituting these soWions, which 
involve arbitrary constants, into (5)-(7), a general family of solutions to the transformed 
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displacement equations of motion is 0btained.t Not all members of this family are required 
for the problem at hand. In fact, since no &boundary arises, the &dependence in the 
solutions must be the same as that of the source. Hence only the n = 0,l and 2 terms in (5) 
(11) are retained. The arbitrary constants involved are evaluated using the following 
procedure: (i) Terms corresponding to (lH3) are matched. (ii) Use is made of the trans- 
formed stress-displacement relations and the fact that the half-space boundary is stress- 
free. On noting the linear independence of the trigonometric functions, several conditions 
arise. For example 

fYzr = 0, a -0, :e - z= -d 

lead to, in part 

where the functions f, , fi and f, involve arbitrary constants. Multiplying (12) by r/2, 
differentiating the result with respect to r and adding to (13), can be shown to give 

z=-d 
(14) 

It should be noted here that in [l] it is stated that equations such as (14) follow immedi- 
ately from equations such as (12). However, in view of the recursion relation 

2 ;J,(H+$.J,(kr) = kJ,(kr) 

the right side of which has an infinite number of zeros in the range of integration, the 
procedure of setting the integrands in (12) and (13) to zero separately as a general one is 
suspect. But, as occurs in [l], the method can lead to correct results in certain circum- 
stances, such as restricting the manner in which the boundary shear stresses can vary. 
The last author in particular is grateful to Dr. K. Viswanathan who pointed out the current, 
more general method in a private communication. 

Proceeding in the above fashion, enough conditions for the determination of the 
arbitrary constants can be found. Once the constants have been obtained, the transformed 
field quantities can be found. After considerable algebra, the transformed radial displace- 
mentS can be shown to be 

ii, = ii,o+u,‘+ii,2 (15) 

4vP2u_o = _n3f3 m 
h(P) r -I 2 0 

k2(L, + L2)Jt(kr) dk (16) 

t The transformed stresses can be found on using the transformed stress-displacement relations. 
1 For the sake of brevity, the subsequent procedure is illustrated only for 0,. 
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g = (kZ+d)*+4kZiil~~2, D = (k2+r/:)2-4k2~1~2 

fn 

A1 = f,fT,lt;3nl* 

fn 
",=k+&. 

Attention is now confined to the surface displacements and to a ramp time-dependence, 
i.e. 

I 

0, t<q 

h(t) = ;, o<t<q. (19) 

1, f’q 

Moreover, only solids for which fz = p are treated.? Then ~14~(18) yield, on making the 
variable change c,k = px, 
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twit condition, the roots of the Rayleigh wave equation are real. This results in simpler algebra later. 
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i, = s n; x2 
- J,(S) exp( -p da,/c,) dx + 31, 

0 a2 

i9 = 
s 

lx 2x4a2 

0 
m, JIG9 ~M-P Wc,) dx 

I,, = 
s 

“‘x4(1+2x2-4t11cz2) 
J3(6) exp( - p da,lc,) dx 

0 mla2 

iI1 = 
s 

J, 2X4$ 
---~J,(~)exp(-~d~,lc,)dx 

0 ml 

AX = 4Kf3r1 +fl~j) ~0s do +(.f2vJ +f3v2) sin $1 

cc1 = J(x3+ih cI2 = 4(x2+ l), 6 = pxr/c,, rQ = qc, 

m, = (1 +2x2)* -4x2(x2 + 1)+(x2 +$)+. 

A typical integral in (20H22) is 

s 2 

x” + ‘[H;“(h) + H;2’(G)]F(x) dx 
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(23) 

where 

F(x) = F,(x) exp( - p da JcJ 

F,(x) being free of exponentials and the Bessel functions having been replaced by their 
Hankel function equivalents. In general the only singularities of F,(x) are branch points 
at x = &- i/d3, f i and simple poles at k y, y = 5(3 + J3)*. Integrals of the type (23) have 
been treated by Pekeris [5] and Aggarwal and Ablow [15] using contour integration tech- 
niques and their method will be followed here. When H!” arises, the contour consists of 
the positive real and imaginary axes and a large quarter circle in the first quadrant. For 
Hi2’, a contour consisting of the positive real axis, the negative imaginary axis and a large 
quarter circle in the fourth quadrant is taken. Aggarwal and Ablow [15] showed that the 
integrals over the quarter circles go to zero if 

F(x) = 0(1x1-(“++)) 

for 1x1 large and arg x I 7c/2. It is important to note that this order condition is not satisfied 
by several of the F,‘s that arise in the present work. However, thanks to the exponential 
factor, the corresponding F’s do satisfy the condition, since Re c(r > 0, when Rep > 0 
-a restriction that is permissible in view of Lerch’s theorem. It is interesting that in order 
to obtain results for a surface dipole, d cannot be set equal to zero at this stage. 

The contour integration method applied to (23) gives 

u”“F,(iu)exp(prv/c,)l(, exp(-pr/c,)[l(~-~~)~+u(l--1~)~]dv (24) 

where 1 = d/R, K denotes a modified Bessel function of the first kind and I stands for imagin- 
ary part. Also, the path of integration is to be interpreted as including an indentation over a 
simple pole (corresponding to the Rayleigh wave). Equation (24) can be reduced further on 
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mapping the v-plane onto a w-plane by means of the transformation 

w = I(_5 - u2y + u( 1 - P)% 

The new path of integration can be “traded” for one along the real w-axis by means of 
Cauchy’s theorem. One gets 

s m 

exp(pru(w)/c,)K, _t ru(w) exp( -prw/c,)F,[iu(w)]u”+‘(w) 2 dw. (25) 
0 I 1 

The advantage of this form is that now w is real, positive, monotonic increasing and has 
an infinite range. Thus it can be interpreted as time. Then, using the shift theorem of the 
Laplace transform and a result in Erdelyi [ZO], one gets 

where 
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Laplace transform, I-I the Heaviside unit step function and 

Using (26), (25) gives 

%= -2 J 
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w3 

On considering a surface dipole, i.e. I = 0, it can be shown that, on employing a partial 
fraction decomposition, integrak such as (27) can be written in closed form. Applying such 
results to (20)-(22), one gets 

(0, z < l/J3 

PI@), l/J3 < z < Q+1/J3 

PIW-BI(~-QL Q+l/J3 < z < 1 

4w$Qr4’ = < A@) - 811~ - Qh l<r<y 

~~(~)-~~(~-Q~, yt~<l+Q 

P&)-/C&-QQ), l+Q<z<y+Q 

83W-B3(~-Qh r>y+Q 

(28) 
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0, z < l/J3 
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are complete elliptic integral of the first, second and third kinds, respectively. 
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Similarly it can be shown that the other displacements are given by 

1 

0, r<l 

47vc:Qru: = hfz -nzfA Pm(~), l<z<l+Q 

PIO(~-B~(~-QL T> l+Q 

r 
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(31) 

(32) 

(33) 

(34) 

(35) 
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/II3 = j?12+5(~2-rZ)+- 
2r 

(Al +rA2ks(,2 _?2)3 

814 = Ts- T6, BIS = TT-Ts> PI6 = T9--TIO 

48n&, = ( - &n(t) + 1 M(t) + 3(1+ J3)l-((20 + 12,,/‘3)<‘, t] 
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i 
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(36) 
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48T,, = {3K(5,)-9r(8, ~1)+(3_2J3)r[-(-20+12J3), 511 

+(3+2JWH20+12,/‘3), 5,1L,h'2) 

3+- K(5,)+9r(8,g,)+3(-l+J3)r[-(-20+12~3),5,] 192T,,= -{y-( ;:] ) 

- 3(1+ ,/W-[(20+ 12,/3), 511 &/(3/2). 

The above sequence is for Q = 0.1. It could be quite different for different values of Q. 
A main feature of these results (and a major contribution of the paper) is the fact that dosed- 
form expressions are obtained for an arbitrary dipole orientation. It is seen that the general 
response is nonaxisymmetric, with cos c$, sin 4, cos 24 and sin 24 arising. 

160 

- 
/-- Q=O.O 

/----Q=OUl 

//---A? =I.0 

/--Q- 0.1 

I.4 1.8 

Time T- tC,/r 

FIG. 2. Vertical displacements 32n~c,r2uz/cos d, vs. time r = tcJr for Q = O-O, 04% 0.1, 1.0. 
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3. NUMERICAL RESULTS 

Here numerical results based on (28)-(36) are presented and discussed. Only the special 
geometry, 

fl = 0, fi = 0, f3 = f 

nl = 1, n2 = 0, n3 = 0 

which corresponds to a vertical dipole with its normal along the x-axis, is treated. 
Shown in Fig. 2 are the vertical displacements u, as functions of time for several values 

of the ramp rise-time Q. The arrows indicate the arrival of various events. P designates 
the pressure wave, S the shear wave and R the Rayleigh event. A major feature is the singular 
behaviour (like l/,/r as r goes to 0) at the Rayleigh and delayed Rayleigh arrivals. This is 
in contrast to the case of a point surface load, which was recently treated by the authors [21]. 
There the vertical displacements were found to be finite for a ramp time-dependence. 
The growth of a local maximum near the P-arrival as Q decreases is also noteworthy. 
In fact for Q = 0, which corresponds to a Heaviside step time-dependence, the vertical 
displacements undergo a finite jump at P. A finite jump at S also occurs for Q = 0. Finally 
it should be noted that for all Q values, the displacements are constant after the delayed 
Rayleigh arrival. 

Figure 3 gives the horizontal displacements u, as functions of time for several values 
of Q. Again singular behaviour like l/Jr occurs at the Rayleigh and delayed Rayleigh 

0.6 I.0 1.4 l-8 22 2-6 

Time T -PC, /r 

FIG. 3. Horizontal displacements Ir2r2pru,/cos 4 vs. time T = tcJr for Q = 0.01, 0.1, 1.0. 
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arrivals. Also a build up of a local maximum just after the P-arrival can be seen as Q tends 
to zero. Here the displacements are not constant after the delayed Rayleigh arrival, but 
instead slowly approach their static values. 

Figure 4 gives the horizontal displacements u+ as functions of time for several values of Q. 
In strong contrast to 1.4, and u,, a+ is not singular for any value of Q, except Q = 0. As Q 
approaches zero though, infinite jumps at the Rayleigh and delayed Rayleigh arrivals 
begin to build up. 
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0.6 I.0 1.4 16 2.2 2.6 

Time r = fC, /I 

1 

FIG. 4. Horizontal displacements x2~c,r2u&in (b vs. time r = tcJr for Q = 0.01.0-l and I.0 
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A~~TPQKT-B ynpyrOM IIOJlyIIpOCTpaHCTBe HCCJIe,llyIOTCFl IIOB‘ZpXHOCTHbIe IlejleMelUeHUSi BCJleJ4CTBFle 

,TOBePXHOCTHOTO,3BBIICF(U.WOOT BpeMeHeAHnOnR.~aloTCnBblpBmeHAnBJPMKHYTOM BAfle&JlRIlp01(3BO- 

JlbHO HaIIpaBJIeHHOrO ~~IIOJIz, C 3aBACHMOCTbKl HBKJIOHti BO BjJeMeHA. nPHBOAtiTCR YHCJIeHHbI~ BHBJlHX 

3THX BbtpaN2HHfi nJ,S, CIWJMWIbHOrO HaEfpaB,leHM5, A,fnO,,R, A,,% HeKOTOpblX 3HWEHHfi BO3BpXTZlHWSt 

HaKJlOHa BO BpeMeHH. 


