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ABSTRACT 

Growth equations are established for a population of individuals that have fixed 
age dependent reproduction and mortality rates. Equations are obtained both for the 
population density and for the numerical size of the population in a fixed age group. Age 
and time dependent migration is taken into consideration. The usual integral equation of 
renewal type for these variables is shown to be equivalent to a functional differential 
equation of retarded type; these differential equations are of main interest in this work. 
The role of initial data in characterizing a unique solution of the functional differential 
equation is examined in detail. Finally, some special cases for the reproduction and 
mortality rates are considered where the functional differential equations take a reason- 
ably simple form. 

I N T R O D U C T I O N  

Processes involving the numerical  growth of objects that  are self- 
reproducing and subject to failure occur in a number  of different contexts. 
An interesting case is where the reproduct ion (birth) rate and  the survivor- 
ship (mortality) rate are dependent  on the age of the individual  objects. 
Properties of interest are the age dis t r ibut ion and the size of the popula t ion  
of  objects. In  this work mathematical  models of such age dependent  
processes are carefully examined. The objectives are: (1) to formulate age 
dependent  models in terms of functional  differential equations,  (2) to take 
into account  initial condit ions at t = 0, i.e. representations of the process 
previous to t = 0 that  uniquely characterize the age dis t r ibut ion and  size 
of the popula t ion  after t - 0, (3) to distinguish between the age density 
funct ion and the number  of individuals in an age group, and  (4) to intro- 
duce age dependent  migration.  Al though special classes of age dependent  
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processes have been studied in great detail, basic questions concerning a 
broader formulation of  such processes have generally been ignored. The 
motivation for this work arises from the area of mathematical demography 
[11], from which much of the terminology is derived; the ideas should also 
be applicable to certain problems in ecology [15], biology [14], economics 
[2], and industrial maintenance [1, 12]. 

The basic equation which usually occurs in the study of age dependent 
processes is the renewal equation [4] which is an integral equation for an 
age density function, typically the density of individuals of age zero. 
Under the usual assumptions concerning the reproduction and survivor- 
ship functions the renewal equation is shown to have a differentiated form, 
which can be expressed as a functional differential equation of retarded 
type [8]. In addition to consideration of the age density function the 
numerical size of the population in a fixed age group is also considered. 
In fact, this variable is shown to satisfy the same functional differential 
equation as that satisfied by the age density function, but with different 
initial conditions. Next, the effects of age dependent migration are exam- 
ined; the resulting functional differential equations are obtained and the 
influence of initial conditions for the migration process is examined. 
Finally, a number of  special cases are considered; the resulting functional 
differential equations take some particularly simple forms. 

In this work only continuous time and continuous age models are 
examined. Discrete time and discrete age models can be obtained from our 
models, as in Ref. 6, by replacing derivatives by the appropriate differences 
and integrals by summations. One of the disadvantages of  the discrete 
model, from a conceptual standpoint, is that one is necessarily concerned 
with approximating the process between the specified time points by use of 
some numerical integration scheme; such difficulty does not occur in the 
continuous model. The process is also assumed to be deterministic. Some 
stochastic models have been considered for age dependent processes, as 
by Kendall [10], but the models are generally so complex as to yield little 
insight into the process. Finally, the reproduction and survivorship rates 
are assumed to be age dependent but time independent; these rates are also 
assumed to be independent of the population variables. Since in this werk 
the objective is to formulate certain models these last assumptions could 
have been relaxed. These assumptions were included, however, in order to 
concentrate primarily on the age dependent effects; extensions of the 
models presented here should not be difficult. 

PROCESSES CLOSED TO MIGRATION 

In this section equations which describe the age distribution and size 
of a single homogeneous population of individual objects that are closed 
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tO migration are derived. The models are formulated both in terms of 
integral equations and functional differential equations. 

A quantity of interest is the density of individuals of age s at time t, 
which is denoted by x(s, t). For an infinitesimal age increment ds, the 
number of individuals between the ages s and s + ds is x(s, t)ds. The 
vital parameters are the reproduction function b(s) and the survivorship 
function S(s). The number of individuals of age zero (births) due to an 
individual of age between s and s + ds is given by b(s)ds. S(s) denotes the 
proportion of individuals of age zero that survive to at least age s. The 
dimensions of x(s, t) are 1/time, of b(s) are 1/time, and S(s) is dimension- 
less. The age s and the time t are measured in the same units. The func- 
tions b(s) and S(s) are assumed independent of time t and the population 
is assumed, at this point, to be closed to migration. The only factors 
influencing the age distribution and size of  the population are reproductive 
and survivorship factors. Although the approach is not standard, it is 
convenient to use the survivorship function instead of a death density 
function; use of the survivorship function is both simpler and somewhat 
more general. When it is possible to define a death density function d(s), 
sometimes called the force of mortality, then 

S ( s ) = e x p ( - I ~ d ( u ) d u ) ,  O ~ < s <  oo. 

Note that only nonnegative ages are considered. It is clear that the repro- 
duction and survivorship functions should be nonnegative for all allowable 
ages, i.e. 

b(s) > O, s > O, 
S(s) > O, s > O. 

The reproduction function b(s) is also assumed to be a function of bounded 
variation (locally) on 0 ~< s < ~ and right continuous on that interval. 
The survivorship function S(s) satisfies S(0) = 1 and is monotcnically 
nonincreasing; hence it is of bounded variation (locally) on 0 <~ s < oo ; 
S(s) is also assumed to be right continuous. This completes the assump- 
tions which are required. Note that the only assumptions not based on 
physical arguments are the technical continuity assumptions on b(s) and 
S(s). Now consider, mathematically, the relationship between the variables 
which have been introduced. It is convenient, for the original derivations, 
to assume that - oo < t < oo; this assumption is relaxed shortly. 

Using the definition of the reproduction function b(s) and assuming 
that the population is homogeneous the density of individuals of age 
zero is given by 

x(O, t) = b(s)x(s, t) ds, - oo < t < oo. (1) 
0 

18 
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Using the definit ion o f  the survivorship  funct ion the densi ty o f  individuals  
o f  age u at  t ime t consists only o f  individuals  of  age s a t  t ime t + s - u 
tha t  survive f rom age s to age u. Then 

S(u) , 0 <~ u < 
= - , - ~ < t < ~ .  (2) x(u, t) - ~ x l . s ,  t + s u), 0 <~ s < 

The fol lowing convent ion  is m a d e :  i f  0 ~< u ~< s then S(s) > 0 is explicit ly 
assumed,  i f  0 ~< s ~< u then  S(s) = 0 necessari ly implies tha t  S(u) = 0 
and  define 0/0 = 0. Equat ions  1 and  2 are the two basic equat ions  in this 
section. 

A single equa t ion  for  the popu la t i on  densi ty  funct ion at  the fixed age ~ 
can  he obta ined.  Assume  tha t  4 ~> 0 is a fixed age such tha t  S(4) > 0; 
cont inue  to  write x(4, t) even though  ~ is fixed. Subst i tu t ing Eq. 2 into 
Eq. 1, s implifying and  let t ing s = 4, a single equa t ion  for  the popu la t i on  
densi ty  o f  age 4 results 

x(~, t) = b(t - u)S(t - u)x(~, u) du, - ~ < t < ~ .  (3) 
~ o o  

Not ice  tha t  i f  x(~, t) is k n o w n  for - ~ < t < o~ then x(s, t) can be 
de te rmined  for  all 0 ~< s < oo, - ~ < t < ~ ,  f rom Eq. 2. Note  also 
tha t  the form of  Eq. 3 is invar ian t  with respect  to  the par t i cu la r  age 4. 

Equa t ion  3 is an  integral  equat ion  for  x( ( ,  t) ;  it  is basical ly the equa t ion  
s tudied  in Refs. 4, 6, and  11. Unde r  the s ta ted assumpt ions  on b(s) and  
S(s) it is shown in the A p p e n d i x  tha t  x(~, t) is differentiable as a funct ion 
o f  t ime t; it  is not ,  however ,  necessar i ly  differentiable as a funct ion o f  the 
age var iable  4. Different ia t ing Eq. 3, as indica ted  in the Append ix ,  a 
funct ional  differential  equa t ion  is ob ta ined  for  the age densi ty funct ion 

dx f t_  ~ ( ~ ,  t)  = b ( O ) x ( 4 ,  t)  - x ( ~ ,  u )  ~ l . {b ( t  - u ) S ( t  - u)}, (4) 
0 3  

Equat ion  4 basical ly represents  a balance  between the rate o f  change o f  
the  densi ty funct ion and  the rate  at  which pas t  values of  the age densi ty  
funct ion cont r ibu te  to  the current  t ime rate o f  change. Of  par t i cu la r  inter-  
est in the above  is the special case where 4 = 0. 

The previous  equat ions  have been der ived based on  the s ta ted  assump-  
t ions  being valid for  - ~ < t < ~ .  A l though  the der ivat ion  o f  Eq. 4 
was s t ra igh t forward  it should  be clear  tha t  there  are  an  infinite number  o f  
so lu t ions  o f  Eq. 4, i.e. funct ions which satisfy Eq. 4 identically,  on 
- ~ < t < o~. A useful ma themat i ca l  model  should  have the p roper ty  
tha t  it has a unique solution.  

To ob ta in  a unique solut ion consider  Eq. 4 only on  the interval 
0 < t < 0% together  with a descr ip t ion  o f  init ial  da t a  at  t = 0 which 
summar izes  the age densi ty funct ion x(~, t) previous  to t = 0. In  terms o f  
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Eq. 4 in fo rma t ion  is required which summarizes  x(~, t) for - oe < t ~< 0 
in the sense tha t  there  is a unique so lu t ion  o f  Eq. 4 on the interval  0 < t < 
or. The  init ial  t ime is t aken  arb i t ra r i ly  as t -- 0, wi thout  loss of  general i ty.  
I t  should  be emphas ized  tha t  there are innumerab le  ways o f  descr ibing the 
init ial  da t a  for the age densi ty funct ion;  only the simplest  and  most  
interest ing descr ip t ions  are considered here. 

In  o rder  to  make  clear wha t  in fo rma t ion  summarizes  the age densi ty  
funct ion previous  to  t = 0 Eq. 4 can  be rewri t ten for 0 < t < ~ as 

d x  3, f '  ~ (  t) = b(O)x(~, t) - x(~,  u) d , {b ( t  - u)S( t  - u)} 
0 

I ° - -  x(~,  u ) d , { b ( t  - u )S ( t  - u)}, 0 < t < oo. 

F r o m  the theory  o f  funct ional  differential equat ions  [7, 8] it follows tha t  
if  the quant i t ies  

I ° - -  x(~,  u ) d , { b ( t  - u)S( t  - u)}, 0 < t < oo, 

x(~, o), 
are known funct ions there is a unique age densi ty funct ion which is a 
solut ion of  Eq. 4 on the interval  0 < t < oe. In  this sense i t  is clear tha t  
knowledge  o f  the age densi ty funct ion 2(~, t), - oe < t ~< 0, is sufficient 
to  de termine  

i o - x(~,  u) d . {b ( t  - u )S( t  - u))  = 2(4, - u )  d . {b ( t  + u)S( t  + u)}, 
- -50 

x(~,  O) = 2(~, O) = b(u)S(u)2(~ ,  - u) du,  
o 

and  hence a unique solut ion o f  Eq. 4 on 0 < t < oo. To dist inguish 
in fo rma t ion  previous  to  t = 0 the t i lde no ta t ion  is used. Thus  Eq. 4 can be 
rewri t ten on  the restr ic ted interval 0 < t < oo, tak ing  into  account  the  
init ial  condi t ions ,  as 

fo ~f (~ ,  t) = b(O)x(~, t) - x(~,  u) d , {b ( t  - u )S( t  - u)} 

I S + 2(3, - u ) d , { b ( t  + u)S( t  + u)}, 0 < t < o% (5) 
0 

x(~, 0) = ~z(~, 0) 

Note  tha t  an a l ternate  expression for x(~, 0) in Eq. 5 is 

x({ ,  O) = b(u)S(u)Y,({,  - u )  du. 
0 
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These two expressions for x(~, 0) are clearly equivalent if ~(4, t) satisfies 
Eq. 3 on - ~  < t ~< 0. In summary,  it follows that knowledge of  
if(4, t), - ~ < t ~< 0, determines a unique solution o f  Eq. 5 on 0 < t < 
~ ,  and hence a unique x(s ,  t), 0 ~< s < ~ ,  0 < t < ~ .  Note  that  the 
initial data :~(~, t), - ~ < t ~< O, must  be specified so that  the indicated 
indefinite integral is absolutely convergent. This type o f  assumption is 
required throughout .  

There are other ways o f  describing the initial data. Equat ion  5 is 
expressed in terms o f  the age density function ~7(~, t), - ~ < t ~< 0, at 
the fixed age 4. It is possible to summarize the age densky function previous 
to  t = 0 in terms o f  the age density function at the fixed time t = 0. By 
substituting Eqs. 2 and 3 and simplifying, we obtain 

I ° -- _ x(4,  u)  d . { b ( t  - u )S ( t  - u)} 
oo 

f ~ Yc(u, O) d , {b ( t  + u - ~)S(t  + u - {)}, 0 < t < m, = s ( o  S(u---~- 

S({ )  ~ b(u - { )S (u  - {)Yc(u, O)du .  x(~, 0) Y~({, 0 ) =  
Oe s(~) 

Hence Eq. 4 can also be rewritten on 0 < t < ~ as 

d x  f t  ~ ( ~ ,  t) = b(O)x(4, t) - x ( { ,  u) a , {b ( t  - u )S ( t  - u)} 
0 

f ~ 2(u, 0) d , {b ( t  + u - O S ( t  + u - ()}, 0 < t < m, +s(o s(.~)- 
¢ 

x(¢, 0) = ~(¢, 0), (6) 

which necessarily has a unique solution for 0 < t < m for each function 
~(s, 0), ~ ~ s < m. An alternate characterization for x(¢, 0) in Eq. 6 is 
given by 

x(4,  O) = S(¢)  f ° °  b(u - ¢)S(u - ¢)2(u,  O) du. 
3 ¢ S(u) 

The above two expressions for  x(~, 0) are equivalent if  if(s, 0), ~ ~< s < c~, 
is compatible with Eqs. 1 and 2. 

Note  that  in each of  Eqs. 5 and 6 the current time rate o f  change o f  
the age density function depends on the sum of  the rates o f  change due to 
individuals in the popula t ion previous to  t = 0 and due to individuals that  
have been reproduced since t = 0. 

The above two ways o f  characterizing the initial conditions for the age 
density function are only illustrative; they are not  exhaustive. For  example, 
if 0 ~< ~' ~< ~" are fixed then 2(s, 0), 0 <~ s <~ ~", and ~(s, - ¢'), 4" - 4' ~< 
s < ~ ,  also can be used as initial data. Appropria te  functional differential 
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equat ions  can be derived which character ize  a unique x(¢, t) on 0 < t < 
in terms o f  this data.  

Equa t ions  have been der ived which describe the age densi ty funct ion 
x(~, t) at  a fixed age 3. I t  is often convenient  to  examine a dimensionless  
popu l a t i on  var iable  such as the number  of  individuals  in a fixed age 
group.  F o r  convenience only,  cons idera t ion  is given to the number  o f  
individuals  between ages zero and  the fixed age n at  t ime t, which is deno ted  
by X(n, t), so that  

X(n, t) = x(s, t)ds, - oo < t < oo. (7) 
0 

In order  to ob ta in  equat ions  solely in terms o f  X(n, t) Eqs. 3 and 4 can be 
in tegra ted  with respect  to  the age var iable  to ob ta in  the integral  equat ion 

I X(n, t) = b(t - u)S(t - u)X(n, u)du,  - oo < t < oo. (8) 
- o o  

It  follows, as ind ica ted  in the Appendix ,  that  X(n, t) is differentiable as a 
funct ion of  the t ime t and  satisfies 

d X  
- - ( n ,  t) = b(O)X(n, 0 
dt 

J - -  o9 

Note  tha t  Eqs. 8 and  9 are in the same form as Eqs. 3 and  4 for the densi ty 
functions.  

As before,  a unique solut ion for Eq. 9 on 0 < t < 0o can be ob ta ined  
by summar iz ing  X(n, t) previous  to  t = 0. Using Eq. 9 and  proceeding  as 
in the der iva t ion  of  Eq. 5 it follows tha t  

dX n, f '  ~ (  t) = b(O)X(n, t) - X(n, u ) d . { b ( t -  u)S(t - u)} 
0 

+ X(n, - -u)d .{b( t  + u)S(t + u)}, 0 < t < 0% (10) 
0 

X(n, 0) = £ ( n ,  0), 

or  a l ternate ly  in Eq. 10 

X(n, 0) = b(u)S(u)X(n, - u )  du, 
0 

so tha t  knowledge o f  37(n, t), - oo < t ~< 0, uniquely determines  X(n, t), 
0 < t < oo. No te  tha t  knowledge  o f  ~(s, t), 0 ~< s ~< n, - oo < t ~< 0, 
al lows de te rmina t ion  o f  37(17, t), - o o  < t ~< 0, and  hence uniquely 
determines  X(n, t), 0 < t < oo. 
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In terms of the density of  individuals at the fixed time t = 0 it follows 
by integrating Eq. 6 with respect to the age variable that 

d X  n, fo  - ~ (  t) = b(O)X(n, t) - X(n ,  u) d.{b(t  - u)S(t  - -  U)} 

+ - - -  x[s,O) ds du{b(t + u)S(t  + u)}, (11) "lJ. 
X(n,  O) = 2(s, O) ds, 

o 

so that knowledge of if(s, 0), 0 < s < on uniquely determines X(n, t), 
0 < t < oo. An alternate expression for X(n, O) in Eq. 11 is 

x ( . ,  0) = o o + 7 )  + " '  0) ds S(.)  d . .  

The above represent the simplest characterizations of  the initial data. 
Other characterizations can easily be obtained. Of  particular interest is the 
special case where n = oo since X(oo, t) is the total number of  individuals 
in the population of  arty age. 

PROCESSES OPEN TO M I G R A T I O N  

With few exceptions models which have been used to describe age 
dependent processes have not allowed for migration either into or out of  
the population of  interest. In this section the previous developments are 
modified to include the effects of  age dependent and time varying migra- 
tion. Functional differential equations for the age densit~ function and 
the population size, where migration is allowed, are obtained. The role of  
initial data in summarizing both the native population and the migration 
process previous to t = 0 is examined. 

Both age density functions and functions representing the numerical 
size of  the population are introduced. In the remaining part  of  this work 
let x(s, t)ds denote the number of individuals in the population, not 
including migrants in the population, that are between ages s and s + ds 
at time t; x(s, t)ds consists only of  native individuals. Let the number of 
individuals in the population, taking into account migrants, that are be- 
tween the ages s and s + ds at time t be given by z(s, t)ds. Finally let X(n, t) 
denote the number of  individuals, not including migrants, that are between 
ages zero and n at time t; let Z(n, t) denote the number of  individuals, 
including migrants, that are between ages zero and n at time t. 

The migration variables are defined as follows. The migration age 
density rate v(s, t) is defined so that v(s, t)dsdt denotes the number of  
migrants that enter or leave the basic population during the time interval 
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t to t + dt that are between the ages s and s + ds. The corresponding 
migration age density function is introduced where m(s, t)ds denotes the 
number of migrants at time t that are between ages s and s + ds. The 
migration functions are allowed to be either positive, corresponding to 
net immigration into the basic population, or negative, corresponding 
to a net emigration from the basic population. Note that the quantity 
v(s, t) is a density rate and has dimensions (l/time) 2 while x(s, t), z(s, t) 
and re(s, t) are density functions of dimensions l/time. The quantities 
X(n,  t) and Z(n ,  t) are dimensionless. 

The following relations should be clear from the above definitions 

x ( s , t ) - =  z ( s , t ) - m ( s , t ) ,  0~<s  < ~ ,  - oo < t < ~ ,  (12) 

X ( n , t )  = x ( s , t )  ds, 0<~ 11< oo, - co < t < ~ ,  (13)  
0 

Z ( n , t )  = z ( s , t )  ds, 0 ~ <  n < o% - oo < t < o% (14)  
0 

so  t h a t  

X ( n , t )  = Z ( n , t )  - m ( s , t )  ds, 0 <~ n < oo, - oo < t < oo. (15)  
0 

The reproduction function b(s) and the survivorship function S(s)  are 
as defined previously and apply to the total population including migrants. 
The usual assumptions are made regarding b(s) and S(s).  

The dynamic relations between the basic variables are now presented. 
Since the population has homogeneous reproduction rate the density of 
individuals of age zero, which are necessarily in the native population, is 
given by 

So x(O, t) = b(s)x(s ,  t) ds + b ( s )m(s ,  t) ds, - ov < t < oo. (16)  
0 

T h e  n a t i v e  p o p u l a t i o n  d e n s i t y  o f  a g e  u a t  t i m e  t c o n s i s t s  o f  t h e  d e n s i t y  o f  

individuals of age s at time t + s - u that survive from age s to age u. 
Thus 

S(u)  ~ 0 <~ u < 
- , - o o  < t < o r .  ( 1 7 )  x(u,  t) = ~ Z )  xts ,  t + s u), O <<. s < oo 

From Eq. 12 it also follows that 

S z(O, t) = b(s)z(s,  t) ds, - oo < t < o% (18) 
0 

a n d  

S(u)~ 
z (u ,  t) = s ~ I z ( s ,  t + s - u)  - re(s, t + s - u ) ]  + re (u ,  t),  

0 < ~ u <  oo, 0 ~ < s <  ~ ,  - -  ov < t <  oo. (19)  
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It is possible to relate the rate at which migrants enter or leave the 
population to the age density of  the migrants. The migrant of  age s at time 
t consist of  individuals that migrated between times t - s and time t that 
survive to time t. Hence 

f ' S(s)  u )V(  s 
re(s, t) = t -s  S(s  Z t + - t + u, u)  du,  

0 ~ < s < ~ ,  - ~ < t < ~ .  (20) 

As in the previous section the age density functions are first examined 
and functional differential equations are obtained; then the equations 
describing the numerical size of  the population are derived. In each case 
emphasis is placed on summarizing the process previous to t = 0 in order 
to characterize a unique solution after t = 0. 

An integral equation for the age density function x(G t) is obtained by 
substituting Eq. 17 into Eq. 16 and simplifying to obtain 

I' 
x (G  t) = b(t - u )S( t  - u)x(~, u) du 

+ S ( ~ ) I o b ( u ) m ( u , t - ~ ) d u  , - c ~  < t <  ~ .  (21) 

Using Eq. 12, Eq. 21 can be written in terms of the density function 
z(¢, t) as 

z(~, t) = b(t - u )S( t  - u)z(~, u)  du 
--0(3 

, )  - I b ( ,  - - 

+ S ( ~ )  b(u)m(u ,  t - ¢) du,  - oo < t < co. 
0 

It  is possible to develop the succeeding equations in terms of  the density 
functions x(~, t) or z(~, t), but it is convenient, and in fact no less general, 
to consider here only the case ~ = 0. Thus the equations to follow are 
expressed in terms of the density of  individuals of  age zero. 

Letting ~ = 0 in Eq. 21 and making use of  Eq. 20 leads to 

x ( O ' t ) = I ' - o ~  b(t - u )S( t  - u)x(O, u) du 

+ I o b ( u ) m ( u ' t ) d u '  -- ~ < t <  ~ ,  

or in terms of the migration age density rate 
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I x(0, t) = b(t - u )S( t  - u)x(O, u) du 
--0:3o 

+ S(s)  v(s, u) ds du,  
- - o ¢  0 

- o o  < t < o o .  ( 2 2 )  

Under  the stated assumptions it follows, as indicated in the Appendix,  
that  x(0, t) is differentiable and 

d x  0 f t  ~ t  ( , t) = b(O)x(O, t) - x(O, u) d . {b( t  - u )S( t  - u)} 

+ b(u)v(u,  t) du + S(s-~- 
0 - ~  0 

- o o  < t < o o .  ( 2 3 )  

The above equation expresses the fact that  the time rate of  change of  the 
density o f  individuals o f  age zero consists of  a component  due to the 
inherent dynamic characteristics of  the reproduct ion and survivorship 
functions and a component  due to  the reproduct ion o f  migrants. 

Even for a known migrat ion policy it is clear that  Eq. 23 possesses an 
infinite number  of  solutions on - oo < t < o0. In order to characterize a 
unique solution on the interval 0 < t < oo consideration o f  the process 
previous to  t = 0 is required. Throughout ,  the migration process v(s, t), 
0 < s < oo, 0 < t < oo, is assumed known. The question arises as to 
what  information sufficiently summarizes the process previous to t = 0 
so that  there is a unique age density function and 0 < t < oo. The results 
o f  the previous section indicated several ways in which the history o f  
x(0, t) previous to t = 0 could be summarized. In  this section consider- 
at ion is also given to summarizing the migration process previous to t = 0. 
There are many ways of  summarizing the migration process previous to 
t = 0; only the simplest and most  interesting ways are considered. 

Proceeding as in the previous section Eq. 23 can be rewritten as 

d x o  f 'o  ~ (  , 0 = b(O)x(O, t) - x(O, u) d,,{b(t - u)S( t  - u)} 

S O So -- x(O, u) d,,{b(t - u )S( t  - u)} + b(u)v(u,  t) du 
- oco 

+ ds(b(s  + t - u)S(s  + t - u)} du 
o --s-is)- 

fo + -o~ o S(s)  + t -  u)S(s  + t -  u)}du,  

- -  O0 < t < O0,  
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and it follows tha t  if in addit ion to v(s, t), 0 < s < ~ ,  0 < t < os, the 
quantit ies 

I ° - x(O, u) d.{b(t - u)S(t - u)}, 0 < t < ~ ,  
-- oo 

-oo S(s) + t -- u)S(s + t - u)} du, 0 < t < oo, 

x(O, o) 
are known there is a unique solution on 0 < t < oo. Using the tilde 
nota t ion  to denote quantities previous to t = 0 obtain 

i o x(O, u) d.{b(t u ) S ( t - u ) } =  
- - o o  

I ~ ~(0, - d,{b(t + u)S(t + u)}, u) 
o 

fo_~ foO v(s,u____) ds{b(s + t _ u)S(s + t _ u)} S(s) 

f ° ~ f  ~g(s '  - U ) d s { b ( s +  t +  u ) S ( s + t +  u)}du,  
o o S(s)  

x(O, O) = if(O, O) = .[': b(u)S(u)2(O, - u )  du 

+ S(s) 0 0 

Hence  a functional  differential equat ion  for  x(O, t) is 

d X o  f [  -d-f( , t) = b(O)x(O, t) - x(O, u) d.{b(t - u)S(t - u)} 

+ 2(0, - u )  d.{b(t + u)S(t + u)} + b(u)v(u, t) du 
0 0 

f 
t U' v(s, u) . . . .  

+ o J/o ~ a A ° ( s  + t - u ) S ( s  + t - -  u)} d u  (24) 

f ~ f ~ ' ( , , - . )  o o S(s) d~{b(s + t +  u)S(s + t + u)}du,  O <  t < ~ ,  

x(O, o)  = 5(0,  o). 

An al ternat ive expression for  x(0, 0) in Eq. 24 is given by 

x(O, O) = b(u)S(u)i(O, - u )  du 
0 

+ f ~ f  ~b(s+u)s(s+u)e(s'o o S(s) - u )  ds du. 
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In summary ,  for a known migrat ion policy v(s, t), 0 < s < or, 0 < t < ~ ,  
the quantities £(0, t), - ~ < t ~< 0, ~(s, t), 0 < s < 0% - ~ < t < 0, 
determine a unique solution of  Eq. 24 on the interval 0 < t < ~ .  The age 
density funct ion for  the total  populat ion,  including migrants,  can be 
determined using Eqs. 12 and 20 to be 

f s-,  S(s) u)V( s 
z ( s , t ) =  S ( s ) ~ ( O , t -  s) + S ( s -  t -  " - t -  u, - u )  du 

o 

f ' S(s)  (25) 
+ S(s S t - +  u) v ( s -  t + u , u )  du,  0 <~ t < s, 

0 

f t S(s) v(s - t + u, u )du ,  
z(s, t) = S(s)x(O, t - s) + ,_~S(s - t + u) 

s < < . t < ~ .  

A similar equat ion can be developed for x(s, t). 
N o w  consider another  representat ion of  the process previous to t = 0. 

Using Eqs. 18-20 obtain 

I ° - x(O, u)  d . {b( t  - u )S( t  - u)} 
- -  ct3~ 

f o  f ~  v(s, u) 
+ S(s) - -  oc  0 

- -  ds{b(s + t - u)S(s  + t - u)) du 

= f ~  ~(u, O)du{b(t  + u)S( t  + u)}, 
3 o S(u) 

x(O, O) = ~(0, O) = b(u)~(u, O) du. 
0 

Hence f rom Eq. 23 

dx  f t  ~i~(O, t) = b(O)x(O, t) - x(O, u) d ,{b( t  - u)S( t  - u)} 
0 

+ S(u)  + u)S( t  + u)} + b(u)v(u,  t ) d u  
0 0 

+ d~{b(s + t - u)S(s  + t - u)} du, 
o o - S ( f f  

0 < y < cx:~, 

x(0, 0) = -~(0, 0). 

An alternate representat ion for x(0, 0) in Eq. 26 is 

x(O, O) = b(u)~(u, O) du. 
0 

(26) 
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Thus for known v(s, t), 0 < s < 0% 0 < t < 0% the quantities 2(s, 0), 
0 ~< s < 0% determine a unique solution of Eq. 26 on the interval 0 < t < 
oo. From Eq. 12 it follows that Y(s, 0), 0 ~< s < az, and nS(s, 0), 0 ~ s < 
oo, determine ~(s, 0), 0 ~< s < oo; hence they also determine a unique 
solution of  Eq. 26. Using Eqs. 19 and 20 the age density function for the 
population, including migrants, is determined to be 

S(s)z t, O) + to S(s  zS(s)t--+ z(s,  t) = S (s  t) ~(s - u) v(s - t + u, u) du,  

O < ~ t < s ,  

f ' S(s) u)V( s 
z ( s , t )  = S ( s ) x ( O , t -  s) + t - s S ( s  - t - +  - t + u , u )  du,  (27) 

s < , t < o o .  

A similar equation can be developed for x(s,  t). 
Functional differential equations have been obtained for the density 

of individuals of age zero where migration has been allowed. Two repre- 
sentations of  the process previous to t = 0 have been presented; these two 
representations are only illustrative of a whole class of ways of summarizing 
the process previous to t = 0. In addition, equations have been given for 
z(s,  t) in terms of x(0, t) and the appropriate description of the process 
previous to t -- 0. As mentioned earlier it is possible to obtain explicit 
functional differential equations for x(s ,  t) and z(s,  t) although the resulting 
equations are rather lengthy. 

Attention now turns to consideration of the number of individuals 
between ages zero and the fixed age n at time t. By integrating Eq. 21 with 
respect to the age variable, we obtain the integral equation: 

X ( n ,  t) = b(t  - u)S(!  - u )X (n ,  u) du 
- o o  

+ S(s )b (u )m(u ,  t - s) d u d s ,  - oo < t < 0% (28t 
0 0 

for the number of individuals, not including migrants, between the ages 
zero and n at time t. Similarly, an integral equation can be obtained for the 
total number of individuals between ages zero and n, including migrants, 

Z(n,  t) = b(t  - u )S( t  - u)Z(n ,  u) du 
- o o  

i + S( s )b (u )m(u ,  t - s) du ds + m(s ,  t) ds 
0 0 0 

-- b(t  - u)S(I  - u)m(s ,  u ) d s  du, - oo < t < oo. 
- -o0 0 
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Although functional differential equations can be obtained for X(n,  t) 
and Z(n,  t), in the general case the resulting equations become rather 
lengthy. Hence, for purposes of illustration only, a special but important 
case is considered; functional differential equations for the total native 
population Z(oo, t) are obtained. Equations are also obtained which relate 
the total population, including migrants, Z(oo, t), to the variable X(oo, t) 
and the initial data. 

Hence from Eq. 28 we obtain 

= [" b ( , -  u)S(t-  u)X(oo, u)au 
, l -  o¢ 

- oo < t < o% ( 2 9 )  

or its equivalent functional differential equation form 

d X  f f  Z ( c ~ ,  t) = b(O)X(o% t) - X ( ~ ,  u) d .{b( t  - u )S( t  - u)} 
- oo 

+ b(s)m(s,  t) ds - b(s)m(s,  u) ds d~S(t - u), 
0 - ~  0 

- c o  < t < c o .  ( 3 0 )  

The first two terms on the right hand side of Eq. 30 represent the time rate 
of  change of the native population due to reproduction and mortality of 
the native population itself, the third term represents the rate of increase 
due to reproduction of migrants, while the last term represents the rate of  
decrease of the native population due to mortality of  offspring of migrants. 
In terms of the migration density rate Eq. 20 can be used to obtain 

dX(oo, t) b(O)X(oo, t) - X(oo, u) d.{b(t u)S(t - u)} 
dt _~  

+ - ~  o c ( t , s , u ) ~ d s d u ,  - co < t < o% (31) 

where 

c ( t , s , u )  = b(s + t -  u)S(s  + t -  u) 

I' 
-- b(s + 2 - u)S(s  + ;t - u ) d z S ( t  - 2), 

u 

0~< s < oo, 0 <. u ~ t < oo. 

In order to characterize a unique X(m, t), 0 < t < oo, it is possible 
to proceed as before to obtain 
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dX oo f t  ~7 ( , t) = b(O)X(oo, t) - X(oo, u) d,(b(t - u)S(t - u)} 
0 

+ Y.(~,  - u ) d . { b ( t  + u)S(t + u)} 
0 

+ o o c(t,s, u ) - ~ d s  du 

+ c(t,s, - u ) - ~ - ( ~ a s d u ,  0 < t < ~ ,  (32) 

x(oa, o) = g(oo, o). 

A n  al ternate  form for X(oo, 0) in Eq. 32 is 

X(oo, O) = b(u)S(u)X(oo, - u )  du 
0 

+ S(2)b(s + u - 2)S(s + u - 2) a~(-Ti77--as  au. 
0 0 0 

Thus for a k n o w n  migra t ion  pol icy  v(s,t), O < s < oo, 0 < t < 0% 
)~(oo, t), - oo < t ~< 0, and  ~(s, t), 0 < s < ~ ,  - oo < t < 0, the da ta  
de te rmine  a unique solut ion o f  Eq. 32 on 0 < t < oo. The number  o f  
individuals ,  including migrants ,  is de te rmined  using Eq. 15 to be 

f ~ ° f ° ° S ( s + t + u ) ~ ( s ,  z(oo, t) = X(oo, t) + - u )  ds du 
o o S ( s )  

f t  Foo S(s + t + u)v(s ' u)ds du, 0 < t  < co. (33) 
+ j j S(s) 0 0 

A n o t h e r  way o f  descr ibing the process  previous  to  t = 0 is in terms o f  
da ta  at  the fixed t ime t = 0. Using Eqs. 13 and  17, it follows tha t  

dX  oo f '  ~ 7  ( , t)  = b(O)X(oo, t ) -  o X ( ° ° ' u )  d " { b ( t -  u ) S ( t -  u)} 

+ S(s - u)d.[b( t  + u)S(t + u)J?%V~--~ ds 
0 0 

+ b(s)lfi(s, - u )  ds d,S(t + u) 
0 

J'~ 0.r~(s, 0) 
+ c(t,s, ) - - s ( f f -d s  

0 

+ c ( t , s , u ) - ~  sdu,  0 <  t < ~ ,  (34) 
0 0 

X(oo, O) = 2(s, O) ds. 
0 
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An alternate expression for X ( ~ ,  0) in Eq. 34 is 

X ( ~ ,  O) = b(s)S(s) 
o o S(s + - + u,O) ds S(u) du 

For a known migration policy 

271 

+ S(u)b(s)rfi(s, - u )  ds du. 
0 o 

v(s,t) ,  0 < s <  oo, 0 < t <  oo, the 
quantities if(s, 0), 0 ~ < s <  0% and rfi(s,t), 0 ~< s <  0% - 0o < t.G< 0, 
determine a unique solution of Eq. 34 on the interval 0 < t < 0o. The 
total number of  individuals, including migrants, is given by 

f '  f S(s + ' - %s, Z(oo, t) = X(oo, t) + S(s) u) ds du 
0 

f ~ S(s + t)rfi(s, 0) ds, 0 < t < (35) 
+ o s(~) 

oO. 

Functional differential equations have been developed for the number 
of  native individuals X(oo, t); two representations of  the process previous 

to t = 0 have been presented. As expected, the net migration re(s, t)ds 
0 

is generally not sufficient to determine X(oe, t) or Z(ce, t); knowledge of 
the age structure of  the migration process is required. As indicated earlier, 
functional differential equations for X(n, t) and for Z(n, t) can be developed 
using the procedures indicated. 

SOME SPECIAL FORMS FOR R E P R O D U C T I O N  A N D  

SURVIVORSHIP  F U N C T I O N S  

In the previous sections, concern has focused on the development of 
functional differential equations for describing age dependent processes, 
for general reproduction and survivorship functions, in this section some 
special cases of  these functions are considered and the resulting functional 
differential equations are shown to assume some rather simple forms. A 
number of  these special forms have been used as models for growth pro- 
cesses in the literature but usually without a clear understanding of the 
implicitly assumed underlying age structure of the process. Hence, one of 
the contributions of  this work is to relate some of the simple functional 
differential equations to their underlying assumptions about the age 
structure. In the examples to follow the functional differential equations 
are expressed in terms of an age density function at t = 0. Such description 
of  the initial data is probably of most interest. 
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Before considering some special cases in detail mention is made of the 
class of so-called branching processes where 

b(s) = 2d(s), 0 ~< s < ~ ,  

S ( s ) =  e x p { - I i  d(r)  d r } ,  0 ~ < s <  oo. 

Since the reproduction rate is twice the mortality rate, one interpretation 
of the above is that if an individual dies then it is replaced, through the 
reproduction process, by two individuals of age zero. Such processes have 
been extensively studied [9, 13, 19] using integral equations; it should be 
clear that branching processes can also be studied in terms of a functional 
differential equation formulation as developed in the preceding sections. 
To the author's knowledge such an approach has not been taken. 

Now return to consideration of some special forms for the reproduction 
and survivorship functions. First, suppose that the reproduction rate is a 
constant and the survivorship function is exponential, i.e. the force of 
mortality is constant; then 

b(s) = b, 0 <~ s < oo, 
S (s )  = e -ds, 0 <<, s < oo. 

Then from Eq. 22 

x(O, t) = b e -a( ' -")  x(O, u) du + b e -a(,-") v(s, u) ds du,  
--(sO - -  ~O Q 0 

and from Eq. 23 

-~-(0, t) = bx(0, t) - db e -d( t - ' )  x(O, u) du 
oo 

l IS + by(s, t) dt + db e -e(t-")  v(s, u) ds du. 
0 - o c  0 

Substituting the first equation into the second and simplifying yields 

atdx O, f ~ j .  ( t) = (b - d)x(O, t) + b v(s, t) ds. 
0 

The required initial condition is simply 

x(0, 0) = 5(0, 0). 

The above equation is a simple ordinary differential equation and has been 
used in a number of contexts [2, 11, 14, 15] to describe age dependent 
processes. The age density function for the total population, including 
migrants, is easily obtained from Eq. 27 as 

z(s, t) = e -at 5(s - t, O) + e -a(t-") v(s - t + u, u) du,  0 <~ t < s, 
0 I' 

7.(S, l )  = e-dsx(o ,  t -- S) + e -a(t-") v(s -- t + u, u) du, s <~ t < ~ .  
t S 
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Note that knowledge of if(0, 0) and the total migration v(s, t)ds is 
o 

sufficient to determine the density of individuals of age zero but if the 
density of  individuals at other ages is desired then the age structure o f  
if(s, 0), v(s, t), is required. Using Eqs. 20, 29 and 30 the size of the native 
population can be shown to satisfy 

d X  co -d~( , t) = (b - d )X(oo ,  t) + b e -d' lfi(s, O) ds 
dO 

+ b e -e'  e e" v(s, u)  ds du, 0 < t < oo, 
0 0 

X(oo, O) = ~(s, O) ds, 
0 

and the total size of the population, including migrants, is obtained from 
Eq. 35 as 

Z(oo,  t) -= X(oo ,  t) + e -a('-") v(s, u) ds du 
0 0 

+ e -dr ~fi(s, 0 ) d s ,  0 < t < oo. 
0 

Note that the specific age structure of the native and migrant populations 
at t = 0 is not required in order to determine the total population variables. 
Also note that the above differential equations have simple interpretations 
in terms of the effects of the native population itself, the migrants in the 
population at time t = 0 and the migrants that enter or leave the popula- 
tion after t = 0. An even more specialized, but still interesting, case is 
when the reproduction rate b = 0. After some simple computations the 
density of  individuals, including migrants, is 

I' 
z(s, t) = e -d' ~(s - t, 0) + e -~(t- ' )  v(s - t + u, u) du,  

0 

O < ~ t  < s ,  

I' z(s, t) = e -d' ~(0, O) + e -d( ' - ' )  v(s -- t + u,u)  du,  
t - - s  

and the total population, including migrants, is 

Z ( ~ ,  t) = e -dr 2(s, O) ds + rh(s, O) ds 
0 0 

+ e -d(t-") v(s, u) ds du, 
0 0 

19 

s <~ t < oo, 
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Clearly the popula t ion consists only o f  individuals in the populat ion at 
t = 0 plus individuals that  migrated after t = 0. Also o f  interest is the 
case where the mortali ty rate d = 0. Then the density o f  individuals, in- 
cluding migrants, is 

z(s, t) = ~(s - t, O) + v(s - t + u, u) du, 0 <~ t < s, 
0 I' z(s, t) = e b('-s) 5(0, O) + v(s - t + u, u) du 

I - - S  

+ b  e b( '-s-") v(s, u ) d s  du,  s <~ t < 0% 
0 0 

and  the total populat ion,  including migrants, is 

Z(oo, t) -- e b' )~(s, O) ds + rfi(s, O) ds 
k J o  o 

+ [e b(t-") - 1Iv(s, u ) d s  du,  0 < t < co. 
0 0 

N o w  consider the slightly more complicated case where reproduct ion 
occurs over a finite age interval and there is a maximum age for individuals; 
then 

b(s) = b, 0 <~ s < T1 

= 0 ,  T~ <~ s < oo 

S(s)  = e -ds, 0 <~ s < T2 

= 0 ,  Tz  < ~ S <  OO, 

where 0 < T1 ~< /'2. Without  loss o f  generality assume that  2(s, 0) = 0, 
T2 ~ < s <  0% rfi(s, 0) = 0, T2 ~ < s <  0% and v ( s , t ) = O ,  1"2 < s <  oo, 
0 < t < oo. The equat ion for the density o f  individuals o f  age zero is 
determined f rom Eqs. 22 and 23 to be 

dx  O, 3 t  ( t )  = (b - d)x(O, t) - b e -a' Y.(T 1 - t, O) 

+ b v(s, t) d S  - b e -at ' -")  v(u - t + 7"1, u) du, 
0 

0 < t <  T1, 

d x  0 - ~ (  , t) = (b - d)x(O, t) - b e -dT~ x(O, t - TI)  

+ b v ( s , t )  d s -  b 
t - - T l  

x(O, o) -- ~(o, o). 

e -de-u)  v(u -- t + T l, u) du, 

T~ ~ t < oo,~ 
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The equations for the age density function are 

z(s ,  t) = e -at 2(s - t, O) -F e -art-")  v(s -- t + u, u) du ,  
0 

O < ~ s <  T 2, 0 ~ < t < s ,  

I' z(s ,  t) = e -dsx (O ,  t -- S) + e -a(~-") v(s -- t + u, u)  du ,  
t -s  

0 ~ s <  T2, s < ~ t < o ~  

z(s , / )  = 0, T2 <. s < oo , 0 ~< t < oo. 

The above are referred to as differential difference equations. Such equa-  
tions have been considered [3, 16] as models  for age dependent  processes. 
Note  that  the m a x i m u m  age Tz does not affect the equat ion for  x(0, t) 
since individuals between ages Tx arid Tz do not  reproduce.  The quanti ty 
~-(s, 0), 0 ~< s < T2, clearly serves as initial data  for determinat ion of  
x(0, t) and z(s,  t). 

The equations for  the native populat ion X(oo, t) are obta ined using 
Eqs. 20, 29, and 30 as 

d X  [ ' r ,+r~- t  
~ t - (oo ,  t) = (b  - d ) X ( o o ,  t) - b e -d'  | E(s,  O) ds 

,] T~ --t 

+ b  e - a ( ' - " ) v ( s , u ) d s d u  + b e  -a'  fit(s, 0)ds 
0 

-- b e - a t :  fit(s, t - -  T 2 )  ds,  0 <~ t < 7"1, 
j o  

d X  
~ ( o o ,  t) = (b  - a ) x ( o o ,  t) - b e - a t '  X(oo, t - T1) 

+ b e -a(t-u)  v(s,  u)  ds du  
t-T1 0 

- b  e -aT2 fit(s, t - T2) ds, T1 <~ t < T2, 
o 

d X  
~ t  (oo, t) = (b  - d ) X ( ~ ,  t) - b e - d r '  X ( o o ,  t - 7"i) 

I t  [TI --tWu 
+ b e -d(t-~) v(s, u)  ds du  

t -Tl  OO 
It--T2 [Tl--t+u 

- -  b e - a ( t - u )  v(s ,  u)  ds du  
j o  JO 

f 
TI +T2--t 

- - b e  -at f i t (s ,O)  ds,  T 2 <<. t < T 1 + T2> 
jo  
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d X  
~- (o% t) = (b - d )X(oo ,  t) - b e -aT' X(oo, t - -  T1) 

It [TI -t+u 
+ b e -a(t-u) v(s, u) ds du 

t--Tl JO 

,)t--T1 --T2 dO 
e -d~t-"~ v(s, u) ds du, 

T1 + T2 <~ t <  ~ ,  

X(oo, 0) = ~(s, 0) ds. 

The total size of  the population, including migrants, as determined from 
Eq. 35 is 

It IT2-t+u 
Z(oo, t) = X(oo ,  t) + e -a(t-") v(s, u) ds du 

0 J O  

I 
T2 - t  

+ e -dr ffl ( S , O) d s , 0 <~ t < T 2, 
0 

It IT2-t+u 
Z(o% t) = X ( o %  t) + e -a(t-u) v(s, u) ds du, 

t-- T2 dO 
T 2 < ~ t <  oo. 

Assuming that v(s, t), 0 < s < T2, 0 < t < o% is known, then ~(s, 0), 
0 ~< s < /'2 and r~(s, t), 0 ~< s < 7"2, - T2 ~< t ~< 0, uniquely determine 
X(oo, t), 0 < t < o% andZ(oo,  t), 0 < t < oo. Interpretation of the above 
differential difference equations can easily be given in terms of the contri- 
bution to the time rate of  change due to the population at t = 0, due to the 
population past t = 0, due to migrants before and at t = 0, and due to 
migration past t = 0. 

The previous examples are only illustrative of the kinds of assumptions 
about  the reproduction and survivorship functions which lead to reason- 
ably simple forms for the various functional differential equations. Other 
special forms for these functions lead to specific functional differential 
equations which can be determined using the approach indicated. 

CONCLUSIONS 
Functional differential equations have been derived for the age density 

function and for the numerical size of  the population; the effects of  age 
dependent migration have been included. Emphasis has been placed on 
the role of  initial data in summarizing the process previous to t = 0, in 
terms of characterizing a unique solution of the functional differential 
equation on 0 < t < oo. The fact that there are alternate ways of repre- 
senting the initial data should have important practical implications. For 
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example, it would seem reasonable to formulate a mathematical model 
for an age dependent process which is based on initial data which is most 
accessible or most accurate. The importance of the initial data has gener- 
ally been overlooked in the literature on age dependent processes. It  
should be mentioned that there is no need for the description of the initial 
data to be compatible with the appropriate functional differential equations 
on the interval - oo < t ~ O, if the solution is of interest only on the 
interval 0 < t < oo. In  fact, the equations which take into account initial 
data can be derived by explicit consideration of an initial population; 
this is the approach usually taken in the references previously cited. It is 
felt that the approach used in this work which began by considering the 
case - ~ < t < oo and then proceeding to the case 0 <  t < oo is 
simpler. 

Recall that each of the functional differential equations considered 
are derived from art integral equation. This integral or renewal equation 
has received most attention in the literature on age dependent processes 
[4, 6, 9, 11]. A more recent formulation of age dependent processes using 
partial differential equations is due to yon Foerster [18]; such an approach 
has been developed in some detail by Trucco [17]. However, it is felt that 
added insight is given to the dynamical character of age dependent pro- 
cesses by using functional differential equations. There are further ad- 
vantages in this approach. In either an integral or partial differential 
equation formulation much of the mathematical structure of  the age 
dependent process is obscured. Since there is a reasonably well-developed 
theory of functional differential equations [7, 8] this mathematical struc- 
ture should be recognized so that it can be used to advantage. Secondly, 
there are definite practical advantages of using functional differential 
equations in terms of computer simulation. Finally, as indicated by some 
special cases, the underlying dynamic character of some age dependent 
processes may be rather simple when the process is formulated in terms 
of functional differential equations. 

In the preceding development the following assumptions are made. 
The reproduction and survivorship functions are age dependent but time 
independent; the reproduction and survivorship processes are linear 
functions of the population process; only a single homogeneous population 
of individuals is considered. Each of these assumptions could be relaxed 
so that models of  age dependent processes could be developed for multiple 
population groups whose reproduction and survivorship functions are 
nonlinear and time varying. Fredrickson [5] has examined such a problem 
using yon Foerster's equation. Clearly the models indicated in this work 
are a necessary first step in developing a more general theory for age 
dependent processes based on the use of functional differential equations. 
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This work has been concerned solely with developing models for age 
dependent processes in terms of functional differential equations. The 
usefulness of these models ultimately depends on the analysis of the 
behavior of solutions of such equations. Solution properties of the 
functional differential equations which occur in this work have not been 
presented here; this subject is to be examined in subsequent work. How- 
ever, mention should be made of two general areas of some practical 
interest for which the present formulation of age dependent processes 
should be particularly appropriate. One area is the study of asymptotic 
properties of age dependent processes under various fixed migration 
policies. A second area is the study of the relationship between a migration 
policy, considered as a control, in terms of the succeeding effects on both 
the population density and the size of the population. These subject areas 
certainly deserve additional study; the formulation of age dependent 
processes in terms of functional differential equations should allow a 
direct investigation of such subjects. 

APPENDIX 

It has been asserted that certain integral equations are equivalent to 
functional differential equations under the stated assumptions. To mathe- 
matically justify these statements, the following theorem is presented. 

T H E O R E M  

L e t  h(s), 0 <~ s < ~ ,  and k(s) ,  0 <~ s < ~ ,  be known func t ions  o f  
bounded variation and let #( t) ,  - ~ < t < ~ ,  be a known integrable 

funct ion.  Then each solution x( t ) ,  - ~ < t < ~ ,  o f  the integral equation 

x ( t ) = I  t-co h ( t - s ) x ( s ) d s  

I' 
+ k( t  - s)9(s ) ds, - ~ < t < ~ ,  (A) 

is a solution o f  the func t ional  differential equation 

Jx f, ~-7~ (t) = h(O)x(t) -- 
- - c O  

and vice versa. 

P r o o f  

For convenience define the function 
/~(s) = h ( s )  - h ( O ) ,  

x (u )  d ,h( t  - u) 

9(u)  d,,k(t - u), - ~ < t - ~ ,  (B) 

O ~ s < ~  
- - ~ < s < O ,  
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Consider the following string of  equalities. 

I '_~ f h ( O ) x ( s ) -  I :  x(u) d,h(s - u)}  ds 

= x(u)h(O) du - x(u) d,,h(s - u) ds 
- -  ~ - -  o 0  - -  : x 2  

S ; ;  t x(u)h(O) du x(u) d , f ( s  u) ds 
- -  o 0  - -  o 0  - -  o o  

I I {I ) t x(u)h(O) du x(u) d,, h(s u) ds 
- - o 0  - -  o 0  - -  o o  

I I' (I' } t x(u)h(O) du x(u) d,, h(s u) ds 
- -  c ~  - - c O  u 

I' ; (I' t = x(u)h(O) du -- x(u) d,, fl*(s) ds 
- o c  - o 0  0 

S' ; = x(u)h(O) du + x(u)h(t  -- u) du 

I = x(u)h(t  - u )du ,  - ~ < t < ~ .  

279 

In the above use has been made of  the definition of/~(s) and a Fubini 
theorem due to Cameron  and Martin. Hence 

I '_~ f h(O)x(s) - I~  x(u) d,h(s - u)}  ds 

= h(t - s)~(s)ds,  - ~ < t < ~ .  (C) 

Since the left hand side is obviously differentiable so is the right hand 

I side o f  the equation. Hence f rom Eq. A, the term x(t)  - h(t - s)g(s)ds 
- - o O  

is differentiable. A similar argument  to the above yields that 
t 

-- g(u) d,,k(s - 

I t k(t s)g(s) ~ < < ~ .  (D) t 

I' hence k(t  - s)g(s)ds is differentiable and thus so is x(t). Using formu- 
- - o o  

las C and D the equivalence o f  Eqs. A and B follows directly. 
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