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Abstract

The application of the Conjugate Gradient FFT(CGFFT) method to electrically
large radiating and scattering systems is discussed. Results are presented for thin
cylindrical dipoles, thin conductive and resistive strips, dielectric cylinders and ma-
terial plates of various sizes. The extension of the conjugate gradient FFT method
to encompass general subdomain expansion functions is also considered. The pro-
cedure involves the incorporation of subdomain basis functions associated with the
current representation of linear and planar radiating elements. It is shown that
significant improvements are achieved in the convergence of the CGFFT method
when using sinusoidal basis functions due to a more accurate representation of the
current in the spectral domain. In all cases, an increase in the rate of convergence
by a factor of two or better was observed. These results are further compared with

those obtained by the Moment Method.
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Chapter 1

Introduction and Background

Most integral equations arising in the study of electromagnetic radiation and
scattering problems involve a convolution integral. A typical form of such integral
equations is

Ei(r) = i(r) - J(r) + / T(r—rl)- I (1.1)
where E! denotes the incident or excitation field vector, J is the unknown current
density vector, I' is the associated dyadic Green’s function and 7 is some given
tensor specific to the geometry of the problem. Also, r and r’ are the observation
and source position vectors. Alternatively, (1.1) can also be written in an operator
form as

A[J]=E'. (1.2)
Traditionally, the Method of Moments(MOM)[1] has been applied for the solution
of ( 1.2). This involves the discretization of the operator after first introducing an
expansion of the current using some basis function. The coeflicients of the expan-
sion are then computed via a matrix inversion process. However, the limitations

on available computer resources(storage and time) associated with the numerical
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formulation of large systems have limited the range of applicability of the MOM.
This has prompted some researchers to investigate iterative approaches to the so-
lution of ( 1.2) including the conjugate gradient method[2],[3] in conjunction with
the Fast Fourier Transform(FFT)[4],[5],(6]-[9].

The conjugate gradient method is a nonlinear semi-direct scheme. That is, in
the absence of roundoff errors, the exact solution is obtained in a finite number
of steps. Also, the solution is improved at a steady rate throughout the iterative
process. When combined with the FFT, the conjugate gradient method takes
advantage of the convolution theorem reducing the cumbersome computation of
the convolution integral to simple algebraic manipulations in the spectral domain. -
Such a formulation avoids the generation of the square matrix corresponding to
operator A and thus implies a storage requirement of O(N) as compared to O(N?)
required for an implementation of the MOM. This storage economy has made
the formulation suitable for large radiating systems and is a major factor in the
capability and potential of the method.

Otbher iterative methods utilizing the FFT algorithm have also been applied to
a number of scattering problems[10]-[12]. However, these techniques usually suffer
from two major defficiencies common to most iterative approaches: 1) convergence
is not strictly guaranteed and 2) convergence is often slow. The conjugate gradient
method virtually eliminates the first problem because it guarantees monotonic
convergence throughout the process. As for the second one, the required number
of iterations before the conjugate gradient method can yield a reasonable accuracy

is often a fraction of the total number of unknowns. This depends primarily on the
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distribution of the dominant eigenvalues of the operator projected onto the system
matrix. It has been argued convincingly[7] that the conjugate gradient method
requires roughly twice as much computation time per solution as the Gaussian
elimination-an O(N3) operation. However, the CGFFT is considerably faster since
it requires only 4N(1 + log, N) operations per iteration. This will be discussed
later in more detail.

In this report the application of the CGFFT method to several problems of
interest in electromagnetics is explored. A brief presentation of the MOM is first
given in chapter 2. In chapter 3, the concept of conjugate directions is introduced
along with the iterative algorithm utilized in this study. The formulation of the
CGFFT ﬁlethod is given next. A considerable portion of this report is devoted to
improving the convergence rate of the CGFFT by the incorporation of subdomain
basis functions for the expansion of the unknown current distribution. To accom-
plish this, the current is first expressed as a convolution of the chosen subsectional
basis with a finite sequence of delta functions whose amplitudes are the sampled
values of the current. By cmploying this representation in conjunétion with the
convolution theorem, the CGFFT formulation is extended to general basis func-
tions. A detailed formulation of this procedure is presented in chapter 4. The
method is applied to thin cylindrical dipoles, conductive and resistive strips, di-
electric cylinders and material plates of various sizes in chapter 5. In all cases, The
numerical results are further compared with those obtained by the corresponding
direct method. The incorporation of the subsectional basis functions to iterative

methods involving the FFT has been previously treated in connection with the
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Spectral Iterative Technique(SIT)[13] and has shown to produce improvements in
the rate of convergence. However, no quantitative conclusions were drawn because
of convergence difficulties associated with the SIT.

In the following chapters a time dependence e/“* is understood and suppressed.

13



Chapter 2

The Method of Moments

In the method of moments the unknown current in ( 1.2) is expanded in terms

of a sequence of known basis functions {f,} as

N
I@) = Y eafala), (2.1)
n=1
where {c,} represents the unknown complex coefficients to be determined. The
justification for the validity of the above expansion is discussed in appendix A
where the series convergence in the mean square sense has been established for the
problems of interest. Substituting ( 2.1) into ( 1.2) gives
N .
ALY eofale)] = E(a), (2.2
n=1
with a corresponding residual error defined by
N .
R=Y ciAlfa(z)] — E'(2) - (2.3)
n=1
The coefficients ¢, are computed so that the weighted average of the error on each

segment is forced to zero. Thus, by introducing the inner product

< f,9>= [ f(=)g(a)da, (24)
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the residual error is orthogonalized with respect to a sequence of weighting func-

tions {w,} such that

<w,R>=0

The above represents a system of linear equations

N
> en < W, Alfn] >=< wp, E' >

n=1

which can also be put in the matrix form
[Amn]lea] = [E7,)

with
Anpn =< wp,, A[f,] >

and

Ei, =<wn,E' > .

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

This equation can be solved for the unknown coefficients via matrix inversion to

give

[en] = [Amn]-l [E:n] :

15
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Chapter 3

The Conjugate Gradient Method

The conjugate gradient method is now considered for an iterative solution of
( 1.2). In general, iterative techniques become more attractive for the solution
of operator equations arising in electromagnetic problems as the size of the prob-
lem increases. This is mainly because the iterative methods avoid the process of
matrix inversion which is subject to numerical instability for ill-conditioned matri-
ces. Also, these schemes often involve only the multiplication of the matrices with

vectors and thus do not require an explicit storage of the system matrix.
3.1 Description of the Conjugate Gradient Method

The conjugate gradient method is a nonlinear semi-direct purely-iterative scheme.
That is, assuming no truncation and roundoff errors, the exact solution is obtained
in a finite number of steps depending on the number of independent eigenvalues of
the operator matrix. Moreover, the solution is improved at a steady rate through-
out the process and monotonic convergence is guaranteed for a given number of
unknowns and as the order of approximation is increased[9]. The method starts out

with an initial guess Jy and a corresponding residual error Ro. In each iteration,
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it seeks to minimize the residual vector not only on each local search direction but
also over the entire span of search directions. To this end, the solution is expanded
in terms of search directions generated by the modified Gram-Schmidt orthogo-
nalization scheme when applied to the sequence of residual vectors as the basis
functions'. The sequence of search directions, {P.} so constructed are mutually

A-orthogonal or conjugate (as opposed to orthogonal)
<Pi’A[PJ'] >=0 t#] : (3'1)

The significance of this set of directions is as follows: for a quadratic function,
successive line minimizations along a conjugate set of directions will achieve the
minimum without the need to redo minimization in any direction. Consequently,
the minimum is achieved at the end of a finite number of steps. For nonquadratic
functions, this guarantees quadratic convergence as the process goes on.

A modified version of the conjugate gradient method suitable for numerical

computation is[6],[8]
Ry = A[Jp) - E'
Po = '-b_lAa[Ro]
Main Iteration Loop

1
ty = ———
1ALl

Ju+l = Jn + tnPn

1The choice of the n-dimensional coordinate unit vectors as the basis functions would yield Gaussian
elimination.
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and

R‘n+1 = Rn + tnA[Pn]

1
= AT

Pn+1 = Pn - bnAa[Rn+l]

IRl 2
L
I

Repeat If Necessary

lgll* =< g,9 >

< A[g],f >=< gvAa[f] >

3.2 Conjugate Gradient FFT Formulation

The norm and the adjoint operator are defined in terms of the inner product as

(3.3)

(3.4)

The convolution involved in ( 1.2) could be carried out in the frequency domain

where it is reduced to algebraic multiplications. Defining the forward and inverse

Fourier transform pairs for a one dimensional distribution as

or

ik) = [ gle)eIReTds

FHak} =9(z) = [ glk)elbe2an,

(ks ky)

]:_l{g(kz‘) ky)} = g(:c, y)

[ Lo

= [ / " Glks, ky)ed (Ko + R gp_gr.

18
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in the case of a two dimensional one, ( 1.1) can be alternatively written as
Ei=7.3J+FYT.- T} . (3.9)

Clearly, (3.9) avoids the generation of the square matrix corresponding to oper-
ator A and thus implies a storage requirement of O(N) as compared to O(N?)
required for an implementation of the MOM. This represents a major advantage
of the formulation for the solution of large radiating systems where the size of the
associated matrix becomes prohibitively large.

Because of the implied Fourier transforms, a solution of ( 3.9) via the conjugate

gradient method is referred to as the CGFFT method.
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Chapter 4

Extension of the CGFFT to
(General Basis Functions

In the application of the MOM, the use of an appropriate basis function for
representing the unknown current distribution b]ays an important role in the ac-
curacy and efficiency of the solution. Therefore, of interest is the incorporation
of a similar representation of the current in conjunction with the CGFFT proce-
dure. Below, an interpretation of the Discrete Fourier Transform(DFT) consistent
with the usual implementation of the FFT for continuous functions is first given.
Subsequently, a representation of the current in terms of general basis functions
suitable for implementation in the CGFFT formulation is considered.

To perform a numerical computation of the Fourier transform of a continuous
function J(z), a discrete function is first formed by sampling the original one at
equally spaced points. The resulting function can then be written as a é-train of

the form

Js = i:J,.&(z—z,.) , (4.1)

where 6(z) is the usual Dirac delta function and J, = J(z,). To establish a rela-

20



tionship between the Fourier transform of a continuous function and its associated
discrete transform, the function is first expanded in a sequence of subsectional

basis functions {f,} as

J(z) = EJ,,f,,(:I:)

n;l
= z_:l Jnf(z —z,) - (4.2)

Customary forms of the basis function f include the piecewise constant(PWC)

and the overlapping piecewise sinusoidal(PWS) expansion functions given by

[ 1 2] < AJ2
P(z) = (4.3)
{ 0 ,else : '
sin[l'cogA—la:m |z <A
S(z) = I wniod) 171 S , (4.4)
0 ,else

respectively. Combining ( 4.1) and ( 4.2), J(z) can be written as a convolution in

the form

N
J(z) = f(z) * Y Jub(z — z,) - (4.5)

n=1

The Fourier transform of J is thus given by
J(ke) = f(ka)T5 - (4.6)

In the above, f and J; are the Fourier transforms of the chosen basis function f

and the discrete function J;, respectively. For the above two choices in ( 4.3) and

(44),
Py = TEESA 0
5(k) 2ko[cos(kzA) — cos(koA)] (4.8)

sin(koA)(k§ — k2)

21



In evaluating Js, it is assumed that the N samples {J,} of the original function

are one period of a periodic waveform whose Fourier transform is given by

N
J&k = Z Jme-21rjmk/N k= 1, tee ,N (49)

m=1

and is commonly known as the discrete Fourier transform.

As a corolary, it is important to note that for a sufficiently small sampling

interval (lima_o f(k;) = A) the relation
J ~ AT; (4.10)

holds when the above expansion functions are employed. Equation ( 4.10) estab-
lishes the connection between the analytical and discrete Fourier transforms of the
current when the sampling interval is sufficiently small. Since the same result can
also be derived via direct application of the rectangular rule of integration in the
computation of the Fourier integral, ( 4.10) has been exclusively associated with
the piecewise constant basis functions in the application of the FFT algorithm
despite the fact that it holds true for all subsectional expansions. As will be shown
later, the convergence of the CGFFT method is improved considerably if the more
accurate expression ( 4.6) is used in the formulation instead of ( 4.10).

In the case of a two dimensional current representation, an appropriate expan-
sion is

N M
J(z,y) = f(z,y) z_:l 2 Jam6(T = T,y — Ym) (4.11)

where f (:c, y) denotes the surface basis function and J,,, = J (Zn,Ym). The corre-

sponding Fourier transform is
T(kzy ky) = f(kz, k,)T5 (4.12)

22



and consistent with the previous notation, the tilde and hat denote the two dimen-
sional Fourier and discrete Fourier transforms, respectively. The two dimensional

piecewise constant and sinusoidal basis functions are given by

J 1 ,on As
P(z,y) = P(z)P(y) = (4.13)
\ 0 ,else
[ deatoecle . snlouctul or,
S(z,y) = S(z)S(y) = v (4.14)
\ 0 ,else

where As denotes the area of the surface element. Their corresponding spectra are

sin(k,Az/2) sin(k,Ay/2)

5 TRy _ 2ko[cos(k;Az) — cos(koAz)]
S(kza ky) - S(kz)s(ky) - sin(koA:c)(k{‘; — kg)
2ko[cos(kyAy) — cos(koAy)] (4.16)
sin(koAy) (kg — k2) ’ '
and as As — 0, ( 4.12) reduces to
J > AsJs - (4.17)
Using ( 4.6) or'( 4.12), ( 3.9) can now be written as

E =5-J+F YT f3;)- (4.18)

Clearly, the transform f of the basis function needs tq be computed only once and
thus the computations per iteration implied by ( 3.9) and ( 4.18) are essentially
the same. It should of course be noted that ( 4.18) is valid only on the body of
the scatterer, a condition that is imposed on the numerical solution along with the

sampling requirements and linearity of the corresponding discrete convolution[5].
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These numerical considerations are briefly discussed in appendix B. Next, the ap-
plication and convergence behavior of the CGFFT formulation of ( 4.18) for various

problems involving one and two dimensional current distributions is examined.

24



Chapter 5

Applications and Results

5.1 Radiation by a Thin Wire Antenna

As a first example, a center-fed cylindrical wire dipole of length [ and radius
a oriented along the z axis is considered. The scattered field due to the current
excited in the dipole is

E® = (k3 + VV-)II(r) (5.1)

subject to the boundary condition on the total tangential electric field that
El=E!+Ei=0- (5.2)

In ( 5.2), IT is the electric Hertz vector potential given by

II(r) = —%/v,.](r’)G(r; r')dv’, (5.3)

where Zy = 1207 and ko are the free space intrinsic impedance and wave number,
respectively.

Under the thin wire approximations (ka << 1 and a < [), the current flow
is assumed to be directed only along the z axis and the azimuthal variation of

the current is neglected. Thus, the well known Pocklington’s integral equation is

25



obtained
Ei(z) =1 Z°(k2 a 7, / 1(2)G(z; #)d2, (5.4)

where [ is the total wire current and G is the Green’s function

G(z) = 5 /0 44 (5.5)
with
R= \/(z — 2')? 4 4a?sin’ g— . (5.6)

For the Pocklington’s equation, the adjoint operator takes the form[9]

1o

Al =~ + o / G*(2;2)1(2')d’ (5.7)

where * denotes complex conjugate.
Employing now a subsectional basis expansion for the current representation,
( 5.4) becomes

JZo

Ei(2) = Jr"{’C(k )5} (5.8)

where

K(k.) = (k3 — k2)G(k.)f(k.) (5.9)

and
~ 1
G(k,) = o Jo(aV k] — kg)Ko(ay/ k2 — K3) (5.10)

in which Iy and K|, are the zeroth order modified Bessel functions of the first and
second kind, respectively. The corresponding adjoint operator ( 5.7) is similarly

expressed as
A1) = L2 RG T (5.11)
0
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Figures 5.1 to 5.4 show the antenna current distributions for a 1) thin wire
dipole of radius a = .005\ evaluated by the CGFFT method and the MOM. The
tolerance on the normalized residual error for the CGFFT solution was set at
0.3%. Two excitation models were used in the analyses: the voltage gap model
and the magnetic frill model. These are discussed in appendix C. For a given
excitation, the two methods exhibit similar sampling requirements in order to
converge to the correct solution. The same observation was further noted when the
input impedance was computed via the two methods as a function of the sampling
density(Fig. 5.5). As expected, the results from the two analyses converge to the
same value for a sufficiently small sampling interval.

Figure 5.6 shows a comparison between the antenna current distribution for a 9
thin wire dipole(a = .005)) using the CGFFT method with different basis functions
and that obtained by the MOM. The convergence patterns for the 9\ dipole is
depicted in figure 5.7. Clearly, the use of piecewise sinusoidal basis functions is
seen to reduce the number of iterations by approximately a factor of two. Also,
the improvement in the iteration ratio(the required number of iterations divided
by the number of unknowns) for the 1) dipole considered before is shown in figure

5.8.
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Effect of Somple Density on the MoM Solution

5.0
— — M=15
4.0 |- — — — M=31
— M=63
3.0

[1(z)], mA

-0.50 -0.25 0.00 0.25 0.50
Relative Length in Wavelength

Figure 5.1: Numerical convergence of the linear current distribution for a 1)\ dipole with in-
creasing sampling density evaluated by the MOM. Top to bottom: M=15,31,63,127; Voltage gap
model.
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Effect of Somple Density on the CGFFT Solution

5.0 r
i — — M=17 N=64
4.0 - — — — M=31 N=64
M=63 N=128
3.0
€
- 2.0
1.0
o.o 1 l 1 l A l A I
-0.50 -0.25 0.00 0.25 0.50

Relative Length in Wavelength

Figure 5.2: Numerical convergence of the linear current distribution for a 1\ dipole with in-
creasing sampling density evaluated by the CGFFT. Top to bottom: M=15,31,63,127; FFT pad
order=2,2,2,1; Voltage gap model.
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Effect of Sample Density on the MoM Solution
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Figure 5.3: Numerical convergence of the linear current distribution for a 1A dipole with increas-
model.

ing sampling-density evaluated by the MOM. Top to bottom: M=15,31,63,127; Magnetic frill
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Effect of Sample Density on the CGFFT Solution
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Figure 5.4: Numerical convergence of the linear current distribution for a 1) dipole with in-
creasing sampling density evaluated by the CGFFT. Top to bottom: M=15,31,63,127; FFT pad
order=2,2,2,1; Magnetic frill model.
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Oipole Input Impedance; Frill Model
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Figure 5.5: Real and imaginary parts of the input impedance for the 1A dipole(a/X = .005) as a
function of sampling frequency.
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Radiation of a Thin Wire Dipole
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Figure 5.6: Current magnitude for a 9\ dipole(a = .005)) computed by the MOM and the
CGFFT using different basis functions and a voltage gap model for the source(13 unknowns/)).
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Radiation of a Thin Wire Dipole
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Figure 5.7: Convergence patterns for the 9\ wire dipole(13 unknowns/)).
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lteration Ratio Vs. Number of Unknowns
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Figure 5.8: The improvement in the iteration ratio for the 1) wire dipole(a = .005)) as a function
of the number of unknowns.
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5.2 Scattering by a Thin Strip

The integral equation for a thin perfectly conducting strip of width w lying on
the zz plane(Fig. 5.9) is obtained by imposing the boundary condition demanding

that the total tangential electric field vanishes on the strip(as in ( 5.1) and ( 5.2).

-w/2 w/2

Figure 5.9: Geometry of a perfectly conducting strip illuminated by a plane wave.

For an E-polarized plane wave incidence,

El = 3E el ko(z cos(do) + y sin(¢o)) (5.12)
and
. w/2
Hoel koz cos(do) %/_wn J.(a" B (kolz — o'|)da’ (5.13)

where ¢ and ¢ denote the angles of incidence and observation, Héz) is the zeroth
order Hankel function of the second kind and J(z) is the unknown current density

on the surface of the strip. Similarly, for the H-polarization,
H' = 3 Hyel kol 003($0) + y sin(¢o)) (5.14)
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and
koz cos(do) — _L ;2 n 1r(2) /
e T+ ) [ OBl = )iz (51)

Applying the same procedure discussed for the dipole problem, the integral

equations take the form

Hyel Foz cos(do) _ Z%}'“{W(lcz)j;} (5.16)
where
_ KHP (k,) f (ke ,E — pol.
Wk, = | Foffo (Rl (k) i (5.17)
(kS — KV HG" (ko) f(k2) , H — pol.
and
A (k)= —2 .
Hg”(k;) = Py (5.18)
The two dimensional radar cross section(echo width) is defined as
l |E*(8)I*
o(d) = hm . 5.19
)= g )R (519
Using the asymptotic large argument approximation to the Hankel function(limg,—o0)
. —7kp
D (kp) ~ (| 2 ein/4E 22
Hy"(kp) i 7 , (5.20)
equation ( 5.19) takes the forms
U'E(¢) H(2)|/ J: (-'L' )ejkx cos ¢dz Iz (5.21)
and
__ko . w/? n,Jjkz' cos @ 5 112
or(4) = Ve | sin ¢ /_ RACOT dz'| (5.22)

for E and H polarizations, respectively.
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Figure 5.10 shows a comparison of the computed surface current density of a
4\ conducting strip for the H-polarization at normal incidence as obtained by the
CGFFT and the MOM. The bistatic echowidth for this case is shown in figure 5.11.
The backscatter echowidth for the same strip as computed by the two methods
is also given in figure 5.12 for verification purposes. As before, the convergence
rate is increased by a factor of two when employing the piecewise sinusoidal basis
function as shown in figure 5.13.

This formulation can be easily extended to tapered resistive strips. Allowing
dielectric variations only along the width of the strip, the resistivity for a thin strip
of thickness 7 and relative permittivity e, is defined by

1

B(=) = jweo(er(z) — 1)1 (5.23)
The total tangential electric field is now written as
ET = R(z)J(z) (5.24)

and the integral equations for the E and H polarizations are expressed as
. k w/2
Hoel Foz cos(b0) — p(2)J,(2) + f , J,(z")HP (kolz — 2'|)dz’  (5.25)
and

Hyel Koz cos(o) n(2)J(z) T k2 + ——)/ Jo(") HP (Kol — '|)dz’,

(5.26)
respectively. In the above, n(z) denotes the normalized strip resistivity
R(z
() = 2. (5:27)
0
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Application of the extended CGFFT formulation to these integral equations
follows in the same manner as before except for the presence of the terms involving
the surface current densitics outside the integrals.

Figures 5.14 and 5.15 show the results for a strip which is tapered parabolically,
that is

T

n(2) =7 + el = 72 - (5.28)
in ( 5.28), n. and 7. denote the resistivity at the center and the edges of the
strip, respectively. The results obtained by the moment method are also shown
in those figures. In practice, tapering of the strip resistivity is used to lower the
sidelobe levels as can be seen from figures 5.16 and 5.17 where the backscattering
echowidths of the tapered strip is compared with those of the perfectly conducting

one for both polarizations.
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Scattering by a Conducting Strip
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Figure 5.10: Surface current density magnitude for a 4 strip illuminated with an H-polarized
plane wave at normal incidence computed by the MOM and the CGFFT using piecewise sinu-
soidal basis functions(20 unknowns/\).
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Scattering from a Conducting Strip
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Figure 5.11: Bistatic echowidth of the 4 strip illuminated with an H-polarized plane wave at
normal incidence.
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Scattering from a Conducting Strip

30
m
©
<
2
g
=
2
3
a0
E
3
4
g CGFFT-PWS
X ’ - ® MOM
8 - n X
- 60 N N 1 . | P
0.0 30.0 60.0 90.0
Angle of Incidence, ¢, deg.

Figure 5.12: Backscatter echowidth of the 4 strip illuminated with an H-polarized plane wave.

42



Scattering from a Conducting Strip
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Figure 5.13: Convergence patterns for a 4A conducting strip illuminated by an H-polarized plane
wave at normal incidence using 20 unknowns/\.

43



Parabolic Resistive Taper
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Figure 5.14: H-polarized scattering results for a 4) parabolically tapered strip.
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Parabolic Resistive Taper Surface Current Distribution
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Figure 5.15: E-polarized scattering results for a 4\ parabolically tapered strip.
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Scattering by a Resistive Strip; H—POL.

PERFECTLY CONDUCTING PARABOLICTAPER. __..
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Figure 5.16: Comparison of the backscatter echowidths of a 4\ perfectly conducting and parabol-
ically tapered strips for the H-polarization.
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Scattering by a Resistive Strip; E-POL.
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Figure 5.17: Comparison of the backscatter echowidths of a 4) perfectly conducting and parabol-
ically tapered strips for the E-polarization.

47



5.3 Scattering by a Dielectric Cylinder

Figure 5.18 shows the gcometry for the case of scattering by a dielectric rect-
angular cylinder. The cylinder is assumed to be homogeneous, although the fol-
lowing formulation is equally applicable for inhomogeneous cylinders. Introducing

the equivalent electric polarization current density[14] inside the cylinder

Figure 5.18: Geometry for a dielectric cylinder illuminated by a plane wave.

I(r) = jw(e — €)ET, (5.29)

the total electric field in the dielectric medium can be expressed as

Zo

T _ pi 8 __ .
ET=E +E _jw(er—l)J

(5.30)

The governing integral equations are subsequently obtained by substituting for the

scattered field in ( 5.30). Thus, for E-polarization,
E = 3Eelkor cos(¢ = o) (5.31)
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J = 2J,(z,y) (5.32)
and

1 kop cos(¢d — ¢o 1 2
Hoe o0 (9 = 90) = o1, (5) 4 2 [ 1) kol ~ )as’ (5,39

where p and ¢ are the polar coordinates of the field point inside the cylinder and
#o is the angle of incidence. Similarly, for the H-polarization the corresponding

equations are

H = 3Hyelkorcos(d— ¢o) (5.34)
I = 3J.(z,y) +3y(2,9) (5.35)
and
Hosin(go)elkopcos(é —do) ]T(T,—)- Jz(p) (5.36)
2 2 62 (2) ' I}
/ Ve + 5) + iy S (kolo = /) ds
— Hy cos(¢o)ed Fopcos(é — o) _ -J-ko(e,—l) J,(p) (5.37)

b [V + (K + 2 kol — s
ko Js* " Ox0y 0y?
which represent a system of coupled integral equations to be solved for J, and Jy.
An implementation of the CGFFT formulation regarding ( 5.33) or (5.36) and
(5.37) involves basis functions that are defined over a surface element, implying

two dimensional Fourier transforms. Employing the known result[15]
_ 1.2
/ H( )(ko!/-'b'z +y2)e” ]kz.'l.'dx — \/Z_kz Jlyl\/k8 - (538)
o0 0
the two dimensional Fourier transform of the Hankel function is calculated to be

4

fe) - :
HO (kxaky) - J(kg _ kg - k:)

(5.39)
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The final operator equation can now be written for E-polarization as

E; = —1—— _1- -1(Pe T
Zo ~ jko(er — I)JZ('D) + 4kof {C<J.} (5.40)
where
G = k2HD (kg ky) F(ka, ky)- (5.41)

Also, the corresponding system of equations for the H-polarization may be ex-

pressed in dyadic form as

B = 1 L a3
Zo  jko(er — I)J(p) + 4k0f' {Ch-J} (5.42)
where
Gh = (k3 — kﬁ)f]éz)(kx, ky) (—k’k”)Hj(’i)(k”’ k,) | -
(_kzky)l'](()2)(kx, ky) (kg - kz)H(()Q)(kz, ky)
and
J f ka:yk ja:
k)= | 2 (5.44)
f(kz, ky)Jy

5.4 A Finite Material Plate

The case of a non-magnetic plate in the presence of an arbitrarily oriented short
Hertzian dipole is considered next. The situation is depicted in figure 5.19.

Starting from the volume integral formulation for a layer, the boundary condi-
tions invol_yi_n_g @angential electric fields and normal electric flux are applied to the
total field at the surface of the plate. Assuming no transverse variation for the cur-
rent distribution across the plate, the thickness is forced to approach zero allowing

the volume current to be replaced by equivalent surface current in the limit. The
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Figure 5.19: Geometry for a material plate in the presence of an arbitrarily oriented short
Hertzian dipole. - : ‘ '

plate is thus replaced by an equivalent composite sheet whose impedance is de-
fined by the plate’s electrical characteristics[16]. The relevant integro-differential
equations for a homogeneous non-magnetic thin plate of relative permittivity e,

and thickness 7 are([8,16]

. 32 32
i = — (12
Ez(x’ y) - R:.‘Jr(x’ y) [(ko + amz)nz + azayHV] (5’45)
: 9? ., 0°
E(2,y) = RyJy(z,y) - [Waynx + (ko + a—yg)ny] (5.46)
: o? 0?
Eie) = Reliley) + (G5 + 50)IL] (547)
where IT is the electric Hertz vector defined in (5.3)
() = -1% [ 3w)6(ew)as, (5.48)
ko s
and G is the free space Green’s function
e—jk()lr - rll
G(r;r') = . (5.49)

4r|r — r'|
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Also,

_p = "%
—jﬁ,-Zo
R, = ———. 5.51
kor(e, — 1) (5:51)

In the above, R, and R, are attributed to a resistive sheet supporting planar
electric currents J; and J, while R, is attributed to a modified conductive sheet
supporting planar magnetic currents represented by a sheet of vertical dipoles. It
is noted that the two sheets are decoupled for the case of a planar plate considered.

Expanding the planar current components, J; and J, as in ( 4.11) and using the
approximation (4.17) for the normal component of the current, the new system of

integral equations suitable for the CGFFT method takes the form
JZo

Bifz,y) = Rede(e,y) + 2 F{Glhe, k)(kE = KEDL(kay k) = bk Ty (ke )1}
Bi(e) = Ruy(a,0) 4 2 F Gk khoby Tohe ) + (0 — DT (ke )
Bi(ay) = Rudi(ay)+ S2F Gk, k)02 + K)AST) (5.52)
with J as defined before,
Tolkarky) = flks, k) Tz(key ky) (5.53)
T(korky) = Flkay k)T (kerky) (5.54)

and
. k2 k2 < K2
Glkorky) = { BVEHHR ' : (5.55)
1 .2 2 2
wERR TR

However, since the piecewise sinusoidal basis function S(z,y) given in ( 4.14) van-

ishes at the end-points, it does not provide an accurate representation for the
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current density flowing parallel to the plate’s edges where it is non-zero. A similar
situation arises in the analysis of the conducting strip illuminated by an E-polarized
plane wave. Therefore, it is necessary that corrective measures be employed when
using this basis function for such problems. Below, a method is presented to par-
tially alleviate this difficulty as applied to the rectangular plate geometry and a
similar procedure is suitable for the one dimensional case.

Each component of the current density is expressed using sinusoidal expansion
functions so that the basis elements associated with the current component perpen-
dicular to the edges go to zero. Meanwhile, those corresponding to the component
parallel to the edges are extended to include an additional set of subsectional ex--
pansion functions which are non-zero at the edges as shown by dotted lines in figure

5.20. The final current representation is subsequently obtained by subtracting out

Figure 5.20: The extended sinusoidal basis functions for the current component which is nonzero
at the edge.
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the portion of the basis element that extends beyond the plate. As a result, the

Fourier transforms of the planar components of the current can now be written as
‘Zc(km k) = §(km ky)j;'(kz’ ky) — g(kz)nz(ky) (5.56)

j;/(kmky) = g(k:c’ky)j;(kmky)_§(ky)ﬂy(kz) ’ (5-57)

where {2, and , account for the contribution of the extraneous current elements

introduced outside the plate. They are given by
Q(ky) = Jo(z,—b/2)x" (k) + Jo(z,b/2)x* (k) (5.58)
(k) = Jy(=a/2,9)x" (k) + Jy(a/2,9)x* (k) (5.50)

where x~ and x* denote the Fourier transforms of the shifted right and left halves

of the sinusoidal basis function. For the y component they are given by

x*H(k) = FH(k,)e ke (5.60)

x“(ks) = 5 (k,)el*e3 (5.61)
where
Sy 1 [(ko — ko)a2]sinl(ko + ko) SE]  _j[(ko + k,)42] sinl(ko — kz)4E]
St(k,) = m{eﬂ( )5 Pt E — eI (ko + ko) F] P }
o _ 1 i[(ko + k,)A2 sin[(ko — k2)4%]  _; ko — k)42 sin((ko + k) 5F]
§-(k,) = ]—'—sin(koAx){eJ[( + k2) &7 e - I )5 L }.

(5.62)

With these modifications, equations ( 5.52) can be formally written as

AJ]=R-J+ lkZ—°f-1{5 .J} =E (5.63)
0
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where

(k2 — k)G (—k.k,)G 0
D=| (-kk)G (B-i)G 0 : (5.64)
0 0 (k2 + k2)G
R. 0 0
R=| 0 R, 0 , (5.65)
0 0 R,

and

S(k)IS (k). — Q)
I(kas k) = | S(k,)[8(ko)T, — 0, (k)] : (5.66)
‘ Asfz

The above formulation was applied to plates of various sizes and compositions.
Figures 5.21 and 5.22 show the planar current densities for a 1\ x 1) conducting
plate illuminated with a horizontally oriented Hertzian dipole located 0.25) above
the center of the plate. A principal plane normalized radiation pattern(appendix
D) for this geometry is shown in figure 5.23 along with the corresponding result
obtained via the MOM]17]. Clearly, the agreement between the two solutions ver-
ifies that the CGFFT has converged to the correct solution. Also, shown in figure
5.24 is the improvement in the rate of convergence when the piecewise sinusoidal
is used. The results for the same plate when the dipole is oriented vertically are
given in ﬁg_ures 9.25 t0 5.30. Due to the symmetry of the problem in this case, the
two current components are identical except for a 7/2 shift in the distribution(Fig.
3.25 and 5.26). Also, it is observed that the spectra of the planar currents do not

identically go to zero at the edges parallel to the component under consideration
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as shown in figure 5.27 for the J. component. This is in agreement with the edge
condition as discussed elsewhere in this report.

The formulation was applied to larger plates as well. In all cases the usual
improvement in the convergence rate of the solution was observed when the si-
nusoidal basis functions were used. For example, the convergence patterns for
2A x 2X and 5) x 5A conducting plates are shown in figures 5.31 and 5.32, respec-
tively. The plates are illuminated with a horizontal Hertzian dipole. The excited
surface current densities on a thin 5\ x 2\ dielectric plate(¢’ = 4.) in the presence
of a vertical Hertzian dipole are given in figures 5.33 and 5.34. It is noted that
since the edge currents are no longer dominant, the convergence was achieved after

only 6 iterations using the extended PWS basis functions.
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Figure 5.21: The like-polarized component of the surface current density on a 1) x 1) conducting

plate irradiated by a horizontal Ilertzian dipole positioned A/4 above the center of the plate(25 x
25 unknowns and FFT pad of order 2).
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Figure 5.22: The cross-polarized component of the surface current density on a 1A x 1) conducting
plate irradiated by a horizontal Hertzian dipole positioned A/4 above the center of the plate(25 x
25 unknowns and FFT pad of order 2).
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Figure 5.23: Principal plane radiation pattern(Ey(8, ¢ = 0)) of a short horizontal Hertzian dipole
in the presence of a 1A x 1) conducting plate computed by the MOM and the CGFFT using
extended sinusoidal basis functions.
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CGFFT Convergence Patterns for Different Basis Functions
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Figure 5.24: Convergence rate of the normalized residual error pertinent to the radiation of a hor-
izontal Hertzian dipole in the presence of a 1\ x 1) flat conducting plate.(Solid line: approximate
eq. 4.17; dashed line: extended PWS.)
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Figure 5.25: The X-component of the surface current density on a 1A x 1\ conducting plate
irradiated by a vertical Hertzian dipole positioned A/4 above the center of the plate(25 x 25
unknowns and FFT pad of order 2).
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Figure 5.26: The Y-component of the surface current density on a 1A x 1\ conducting plate
irradiated by a vertical Hertzian dipole positioned A/4 above the center of the plate(25 x 25
unknowns and FFT pad of order 2).
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Figure 5.27: The spectrum of the surface current density(X-component) for the 1Ax 1) conducting
plate irradiated by a vertical Hertzian dipole positioned A/4 above the center of the plate(25 x 25
unknowns and FFT pad of order 2).
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Figure 5.28: Principal plane radiation pattern(Ey(f#, 4 = 0)) of a short vertical Hertzian dipole
in the presence of a 1A x 1\ conducting plate computed by the MOM and the CGFFT using
extended sinusoidal basis functions.
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4

Figure 5.29: Principal plane radiation pattern(E4(f = %,4)) of a short vertical Hertzian dipole
in the presence of a 1A x 1\ conducting plate computed by the MOM and the CGFFT using
extended sinusoidal basis functions.
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CGFFT Convergence Patterns for Different Basis Functions
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Figure 5.30: Convergence rate of the normalized residual error pertinent to the radiation of a
vertical Hertzian dipole in the presence of a 1A x 1) flat conducting plate.(Solid line: approximate
eq. 4.17; dashed line: extended PWS.)
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CGFFT Convergence Patterns for Different Basis Functions
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Figure 5.31: Convergence rate of the normalized residual error pertinent to the radiation of a hor-
izontal Hertzian dipole in the presence of a 2\ x 2 flat conducting plate.(Solid line: approximate

eq. 4.17; dashed line: extended PWS.)
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CGFFT Convergence Patterns for Different Basis Functions
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Figure 5.32: Convergence rate of the normalized residual error pertinent to the radiation of a hor-
izontal Hertzian dipole in the presence of a 5 x 5 flat conducting plate.(Solid line: approximate
eq. 4.17; dashed line: extended PWS.)
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Figure 5.33: The X-component of the excited surface current density on a 5 x 2) dielectric plate
irradiated by a vertical Hertzian dipole(12 x 12 unknowns/)2.)
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Figure 5.34: The Y-component of the excited surface current density on a 5\ x 2) dielectric plate
irradiated by a vertical Hertzian dipole.(12 x 12 unknowns/A2.)
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Chapter 6

Concluding Remarks

The application of the conjugate gradient FFT method to antenna and scatter-
ing problems was explored. A technique was presented to improve the convergence
of the conj_ugaté gradient FFT method by introducing subdomain basis functions
in the formulation of the problem. The CGFFT formulation was thus extended to
generalized expansion functions. It was shown through several examples that this
formulation can be efficiently utilized in the analysis of large systems. In particu-
lar, for the problems investigated in this study, the rate of convergence was shown
to increase by a factor of two when incorporating sinusoidal basis functions. The
improvement in the rate of convergence is attributed to a more accurate represen-
tation of the current in the spectral domain.

A faster convergence rate translates into a shorter CPU processing time as
depicted in figure 6.1 for the case of a 1) dipole.

Fina,llyz_ to e_va,luate the performance of the CGFFT method, the storage re-
quirements and the total number of operations for the CGFFT and the Gaussian

elimination are listed in table 6.1. The storage constraints for the two methods
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“ Method | Storage Requn‘ernentf No. of Operations? Il

" Direct "— N?43N 2N3/3+3N?/2 - N/6
[I CGFFT H 6N + N’ +3 (4N'log, N' + 10N +2) x N; |

tiN= No of unknowns N' = 2“””""’(2"'1“") N = No of iterations.

J

|—

Table 6.1: Comparison between the performances of the Gaussian elimination and the CGFFT
methods.

are plotted in figure 6.2. Clearly, the CGFFT method offers a substantial storage
economy over the direct method which requires prohibitive storage sizes ,in terms
of computer memory, for large problems. Figure 6.3 compares the performance of
the two methods based on the entries in the second column of table 6.1. Here the
equivalent number of iterations is plotted versus the number of unknowns. For a
given number of unknowns, the solid line gives the upper limit on the number of it-
erations allowed for the CGFFT in order for the method to match the speed of the
corresponding direct algorithm. On the other hand, it is known from the theory of
the the conjugate directions- and from numerical experiments with CGFFT- that
the number of iterations required for the method to achieve a reasonably small
tolerance is always less than the corresponding number of unknowns(the bound
indicated by the dashed line). Thus, it is concluded that for the problems whose
sizes exceed a certain limit, the CGFFT is actually faster than the corresponding
direct method. This is indeed the case as shown in figure 6.4 where the CPU
times needed to solve for the current distribution on a resonant dipole are plotted

versus the number of unknowns using the two methods. All computations were
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carried out on an Apollo DN 3000 node. As it can be seen from the figure, for
larger problems the conjugate gradient FFT method becomes more efficient than
the direct Gaussian elimination. The speed is further improved when CGFFT is
applied in conjunction with piecewise sinusoidal expansion functions, as discussed
before. Also shown in figure 6.4, is the impressive performance of the special mo-
ment method algorithm for the solution of purely Toeplitz matrices. Although this
algorithm takes full advantage of the structural symmetries of such problems, it
is not applicable when the diagonal elements of the system matrix are no longer
identical(perturbed Toeplitz) as in the case of scattering from an inhomogeneous
structure. For such cases, however, the CGFFT formulation discussed in this re-
port remains valid and is applicable because the convolutional nature of the integral

operator is not disturbed by the inhomogeneouities.
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CPU Time Vs. Number of Unknowns for CGFFT
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Figure 6.1: The improvement in the CPU time for the problem of a 1) wire dipole(a = .005))
as a function of the number of unknowns.
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Computer Memory Requirements
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Figure 6:2:" The storage requirement of the MOM and the CGFFT based on table 6.1.
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Figure 6.3: The bounds on the equivalent number of iterations for CGFFT based on table 6.1
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Figure 6.4: A comparison of the CPU time required by the MOM and the CGFFT formulations
for the solution of the 1\ wire dipole problem.

77



Appendix A

Convergence of the Subsectional
Basis Expansions

A.1 Vanishing End-Points

Let u(z) be a continuous function with continuous first and second derivatives

satisfying the Dirichlet boundary condition(Fig. A.l)
u(0) = u(l) = 0- (A.1)

A piecewise approximation to u(z) in terms of a sequence of basis functions {f=}
is given by
N
un(z) =Y uafalz) , h=I/N (A.2)

n=1

where functions f,, have compact support over interval n with vanishing end-points
and form a sequence of mutually orthogonal functions(except, perhaps for adjacent
ones). Noting that u, = u(nh) = uy(nh), it is of interest to show the convergence
of this approximation to the given function u(z) as the sampling interval decreases.

To this end, the error introduced by the discretization of the function on any
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subinterval (n — 1)h < z < nh is expressed as
v(z) = u(z) — un(z)- (A.3)

By expanding v and its first and second derivatives in Fourier sine series it can be

shown that[18]

= [ WP sy [ @) (A4)

n-1)h (n-

upon adding and noting that |v”(z)| < |u"(z)| in the subintervals
h? .,
D(u—un) < /0 (u"(z))%dz - (A.5)

Thus, the approximations converge in the Dirichlet energy nofm at the rate h2.
An upper bound on the Hilbert norm of the residual can be obtained as well by
employing the Poincare’ inequality[18] which holds for any continuous function
with continuous first derivative on an interval A and vanishing at the end-points.
The inequality is

/ * v¥(z)dz < B2DM(v) (A.6)

and when applied to ( A.5), it gives
/ ' )z < K*D(u - uy) = / \((2))dz (A7)
0 - N 2Jo" |

which establishes the convergence of the approximation in the mean square sense

as the sampling interval decreases.
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ﬁ u(x)

Figure A.1: A continuous function with vanishing end-points.
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A.2 Singular End-Points

Assuming now that the function u(z) is singular at the two end-points(Fig.
A.2), the mean square residual may be expressed as
1 h I-h
/ () - un(2)lPdz = lim / u(z) — un(z)|de + /;. |u(z) — un(z)2dz
0 =0 Je

l—¢

+ lim - [u(z) — un(z)|*dz- (A.8)

=0
The second term on the right hand side is bounded because the above treatment
may be applied by forming a Dirichlet problem for each interval and applying
the Poincare’ inequality to each segment. The inequality, however is no longer
valid closev to the singular region and one must resort to other methods to show
convergence. A weaker bound can be established by rewriting the singular terms
in the above equation and applying the triangle inequality. Considering the first

term,

iy [ 1ue) ~ wafu(@Pde < [ lu(o)Pdo+ [ o)
< [ lu@Pde+BuWABE (A9

Again, the second member on the right side of the above equation is finite and it
remains to show that lims—o [ |u(z)|2dz = 0 which is true if the current grows to
infinity slower than 1/4/z as the edge is approached. This is in fact guaranteed
by the edge condition which requires that the electromagnetic energy in a finite

neighborhood of the edge to be finite[19).
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Figure A.2: A continuous function with singular end-points.
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Appendix B

Numerical Considerations

The Fourier transforms in ( 3.9) and ( 4.18) are carried out discretely by a radix
2 FFT routine. The sampling interval is chosen small enough to satisfy Nyquist
criterion and thus avoiding aliasing. However, due to the periodic representatioh
of the function and its transform in the Discrete Fourier Transform (DFT), this
operation results in the circular convolution rather than the desired linear convo-
lution. The periodicity constraint results in an overlap of the convolution of one
period to that of the succeeding period. To avoid these discrepancies, the period,

N’ of the array to be transformed is chosen so that[5]:
N'=2":N'"> Nnyguiat, N' >2x N = 1 (B.1)

where N is the number of unknowns and 7 is an integer. In practice « is chosen

according to the rule

v 2>log,(2N = 1) +p (B.2)

where p is an integer (usually unity) setting the order of the pad dimension to

ensure adequate frequency sampling in the spectral domain when performing the

83



inverse transform operation. The discrete transform variable, k is defined as

l ! !
k=komr = <ISE -1, (B.3)

where A is the sampling interval and kg is the free space wave number. The array

elements beyond the antenna’s physical range are set to zero.
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Appendix C

Dipole Input Impedance

C.1 Dipole Excitation Models

Two excitation models commonly used in the analysis of the wire antennas,

namely the voltage gap model and the magnetic frill model are considered here.

C.1.1 Voltage Gap Model

In this model the source arises from the assumption that a finite voltage is
placed across the antenna gap of width § giving rise to an impressed electric field
which is entirely confined to the gap. Thus, no fringing fields exist outside the gap

region and the impressed ficld is expressed as
E=V/§ . (C.1)
C.1.2 Magnetic Frill Model
The magnetic frill model is of practical significance specially in the modeling of

a coaxial line feeding a monopole on a ground plane(Fig. C.1). Assuming that the

coaxial structure supports a purely TEM aperture field of the form

1
Ey(p) = plaja)
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Figure C.1: The magnetic frill model.

the aperture and the ground plane are replaced with a frill of magnetic current

using the image theory. The corresponding magnetic current distribution is

M = —-axE
A 1
0D (€2)

from which the electric field can be found by using the vector Hertz potential of

magnetic type. The exact expression for the field on the axis of the antenna is[20]

1 e—ijl e—ij2

E.0,2) = e BT R
where
R] =V 22 + a2
and

Rz = VZ2+b2.
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This expression gives a nonzero value for the incident field on every point along
the wire antenna and accounts for the fringing fields outside the region of the

generator.
C.2 Input Impedance

Once the current distribution on the cylindrical body is known, the input

impedance can be computed based on power relations. From Poynting theorem,

-;-1(0)1*(0)2,-,. - % [ExH-ds (C.3)
1 ! / - / /
Zin = ~ 15T /_ I E,(a,% )I*(2')d, (C.4)

where E, is the tangential scattered electric field
E, = E(a,z) = —E!. (C.5)
Thus, the input impedance is written in the form
Zi= e | ' Bi(a, )I*(2')d2" (C.6)
"= TR S '

For a voltage gap model, the above equation reduces to the well known Ohm’s

law:
Vi

Zin = m (C.7)
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Appendix D

Radiation Pattern of a Short
Hertzian Dipole in the Presence
of a Plate

D.1 Fields of a Hertzian Dipole Illuminating a Plate

The near field components of an infinitesimal Hertzian dipole (I < A/50) ori-
ented in the z’ direction with its center positioned at a point O’(z1,y1,21) can be

expressed in the dipole coordinate system as(Fig. D.1)

1 1 e—Jkr .,
By = 2Zolokolr— (1 + F ) Bl G (D.1)
. 1 1 e—Jkor’ [ e
Eot = lZoIokoI(l + jko'l" - (korl)z) py— 1- (Z . 7‘) (D2)
E¢l == 0' (D.3)

The associated unit vectors are expressed in unprimed coordinates so that
z' = sin(f,) cos(¢,)Z + sin(8, ) sin(¢, )jj + cos(6;,)3, (D.4)
where 6, and ¢, specify the orientation of the dipole relative to the plate. Also
r=r/|r| (D.5)
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Figure D.1: An arbitrarily oriented Hertzian dipole above a plate with the associated coordinate
systems. :
with
r=r—-n (D.6)

and
RNV (D.7)
(=" x r")|

The field components can now be expressed in the unprimed coordinate system as:

Ei = (E.r' + Epf) - 2 (D.8)
Ei = (Er' + Egb') - (D.9)
E; = (E,JT:’ + Eolé') .z (D].O)

The incident fields are computed by using the above equations for observation
points lying on the plate. These are then used in the operator equation as the

known excitation.
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D.2 Radiation Vector

The scattered field due to an induced polarization current on the plate can be

expressed as

—]kor
E® = -—]k()Zo Nt , kr >>1 (D.l].)
where Ny denotes the radiation vector
Ny = N - 7N; (D.12)
with
N(0,4) = / Iy Ffag (D.13)

Assuming a surface current density expansion of the form(Eq. 4.11)

J(z,y) = f(z,y) * ZJ,,,,,&(Q: — nAz,y — mAy), (D.14)

n,m

the radiation vector can be computed numerically for the plate. It is given by

Ne(68,6) = JKo, k) Edume —ik(nAzk; +mAyk,) (D.15)
where
S(k., k) //S (z,y)e i(kez + k,y)dzdy
and

k, = ksinfcos¢ , k, = ksinfsin¢- (D.16)

The total electric field is subsequently computed by adding the scattered field E®

and the dipole incident field given before in the far field.
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