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ABSTRACT

The study of acoustic attenuation at low frequencies by thin spherical shells was
continued beyond the initial analysis by Goodman and Stern (J. Acoust. Soc. Am., 34:338,
1962). Experimental measurements were conducted both in air and in water. Numerical
evaluation was extended to include the first-order coefficient. For metallic shells immersed
in either air or water, the first-order coefficient is larger than, and exhibits interesting
fluctuations at lower frequencies, than, the zeroth-order coefficient. As a practical conse-
quence, pure zeroth-order behavior is difficult to observe even in the laboratory and most

measurements exhibit the combined effects from several orders.
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1. INTRODUCTION

The physical problem under consideration involves a study of the acoustical
fields which result when a plane sound wave impinges upon a complete spherical shell composed
of isotropic elastic material. A particular case of the general problem, which is closely
related to practical underwater acoustical engineering, occurs when the shell is immersed in
and flooded with sea water. This particular case constitutes a spherical idealization of a
passive sonar system in which the elastic shell plays the role of a sonar dome. A detailed
study of this case offers the possibility, among others, of critically examining the role
of the shell's material parameters as they affect the acoustic intensity transmitted into the
interior space. It will become evident that the role of the shell is much more complex than
is predicted using the more conventional considerations of sound transmission through
layered media. In addition to sonar problems, there are many other practical situations
which can be approximated and then studied in detail by utilizing an appropriate spherical-
shell model.

From the standpoint of pure physics, the spherical-shell problem goes far
beyond the fundamental considerations of the transmission of sound through a three-layered
medium. By virtue of its geometry, the spherical-shell problem involves an enclosed space
of finite dimensions and eigen values appropriate to that geometry appear in the solution.
Furthermore, the shell material is considered to be a physical solid possessing finite shear
stiffness and, as a consequence, the characteristic impedance of the shell material is not a
sufficient parameter to characterize its acoustical behavior. Through these essentials, a
spherical shell configuration constitutes the simplest complete physical representation of an
acoustical enclosure and, therefore, it is an appropriate model for the study of the
elementary physics of acoustical enclosures.

Much of the importance attached to the spherical-shell model derives from the
fact that it is amendable to a detailed theoretical analysis and because the mathematical

solutions are in closed form. (Shells possessing nonspherical geometrics generally are



less tractable mathematically although the physics of the situation must remain essentially
similar to that for the spherical shell.) Several investigations have considered portions of
the spherical-shell problem or closely related problems. For example, Rayleigh discussed
the scattering of plane sound waves by a spherical obstacle (Ref. 1). Anderson has treated
the scattering of sound from a fluid sphere (Ref. 2). More recently, Goodman and Stern
have analyzed the spherical-shell problem from the standpoint of classical potential theory
and, in particular, have given an explicit expression for the acoustical field internal to the
shell (Ref. 3; also Refs. 4,5). The research described in this report rests most directly on
their work. Hickling has also published recently concerning the scattered field from a solid
spherical obstacle (Ref. 6) and from an elastic spherical shell (Ref. 7). Likewise, some
recent experimental research has been reported (Refs. 8, 9) which relates directly to the
theoretical treatments of the scattered field in Refs. 6 and 7, respectively.

So far as is known, only the work of Goodman and Stern has explicitly treated
the acoustical field interior to the spherical shell (Ref. 3). Hickling's paper (Ref. T)
implicitly includes the interior field also, since his analysis is similar to that used in Ref. 3.
However, he directed his attention exclusively to the scattered field and derived only those
solutions relating explicitly to the exterior field. His equations would have to be solved again
for a different set of coefficients to extract information about the interior field.

Goodman and Stern (Ref. 3) devote the major portion of their discussion to the
external scattered field and demonstrate that appropriate limiting cases correlate with more
specialized analyses by other investigators. Of most importance to the present report, how-
ever, is the fact that Goodman and Stern provide an exact analytical expression for the
acoustic pressure; or alternatively, for the acoustic intensity, within an elastic spherical
shell when it is immersed in and filled with the same ideal fluid. Liquid sea water was the
archetype fluid but in their general analysis, no special restrictions were imposed on the
ideal fluid beyond assuming that the same fluid existed on both sides of the shell. (Even the
assumption of identical ideal fluids could be dropped at the expense of some algebraic
complexity).

After deriving an exact expression for the interior acoustical field, Goodman
and Stern specialize their analytical results to the low-frequency approximation which holds

at the center of a thin spherical shell. As would be expected, various higher-order
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mathematical terms were discarded in the course of developing these approximations. Most
of the discarded terms belonged to the series expansions for the spherical Bessel and
Neumann functions but some of the decisions to discard terms may have been based on
magnitude comparisons involving the material parameters which characterize the fluid and
the shell. Consequently, one must adhere strictly to the general intent of the approximate
solutions, i.e., thin shell of solid material in water, low frequencies, and center of shell.
The alternatives are either to employ the general form of the solution with its complicated
coefficients or to reevaluate the approximations, making explicit the physical consequences
of each mathematical step. For example, it is not immediately certain if the approximate
value of the coefficient AoIII given by Goodman and Stern (Ref. 3, Eq. 22a) may be applied

to a metal shell in air although their general formulation certainly admits this case.



2. BASIS FOR PRESENT RESEARCH

As has been noted, the present research rests directly upon the analytical
expression obtained by Goodman and Stern for the acoustical field interior to a spherical
shell. The geometry of the problem is defined in Fig. 1 and the scalar potential applying

to the fluid contained within the shell was expressed as: (Ref. 3, Eq. 4c):

ST i .
¢III = ﬁz=0 AQ Pﬂ(cos 6 )]ﬁ (kr) (1)
where:
¢III = scalar potential function for the fluid
inside the spherical shell
AﬂIII = coefficients for the interior field
Pﬂ(cos 6) = Legendre polynomials (expressing all
directional variations)
jﬂ(kr) = spherical Bessel function (expressing
all radial variation)
r, 6 = coordinates of a point in the interior space
0<r<R-Aand0< 6L I
k = w/c = wave number
[ = mathematical order of the functions
R = outer radius of the spherical shell
A = thickness of the spherical shell
I = designation of the interior space when used

either as subscript or superscript (in
contrast to the exterior space, designated

by I and the shell, designated by II.)






The coefficient Ain is (Ref. 3, Egs. 21A and 21b):

Alm = il@2e41)
for £ > 1
and
A

11 %12 Y13 %14 %15 4
a1 %22 Y23 %24 %25
0 ez ag3 a5 @55
0 oy ey @y ay5 0
0 ag agy @gy ag5 O
0 ag ag agy ag; O
@y 9yp g3 ¥gq g5 O
@gy gy @93 Ay @55 0
0 @y, agy agy a5 0
0 ayy a3 @y 45 Ayq
0 agy @5y agpy @55 g
0 ag agy agq g5 O

%11 %12 Y14 A

a1 %22 %24 %

0 oy ay 0
m_!0 @5 a5 0

%11 %12 %14 0

@91 gy ¥pq O

0 @y ayy ey

0 ag agy age

(2a)

(2b)



where ap, 2 and ozi]. are functions of the material parameters and dimensions as given in
detail in Appendix A. Although the above expressions are exact for the assumed physical
model, it is evident that they are so complicated that it will be very difficult to evaluate the
roles of individual parameters. For small shells of arbitrary thickness, an approximate

evaluation of the coefficients Ain leads to (Ref. 3, Eqs. 22a and 22b):

I -3MOp + 26p) 3
Ay = 5 S (3a)
4un()\n + 5 by - AI) (1-£7)+ 37\1(7\11 + Zu.H)
(2L
I gl(pII)
Al = 3g i : (3b)
TH—+2(1-'bﬁ)(1-§ )
where
A
E = 1- (‘R')
The sound intensity in the interior space is
_ 2
I= lgyl (4)

and, as Goodman and Stern point out (Ref. 3, Eq. 23), if attention is restricted to the field

at or very near to the center of the spherical shell:

T A2 (5)

It was at this juncture that it was decided to attempt an experimental verification
of the accuracy and adequacy of these analytical results. Eq. 5 above asserts that to a first
approximation at low frequencies and at the center of the shell, the sound intensity is
governed by the square of the magnitude given by Eq. 3a or, alternatively, that Eq. 3a
directly represents the sound pressure. At first glance, this assertion appears quite foreign
to the usual transmission loss situation because Eq. 3a is comprised exclusively of Lamé
constants and shell dimensions; density does not appear.

In the case of sound transmission at normal incidence through, a steel plate,

for example, immersed in water, ordinarily on the basis of layered media considerations
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one obtains an expression of the form (see Ref. 10, p. 138, Eq. 6. 37a):

4

o = Pyty ? (6)
4 cos?®(k, 2) + ( ) sin®(k, £)
2 p.c 2
171
where
o . - . . _ intensity transmitted
o = intensity transmission coefficient = Tntensity incident
Py = characteristic impedance of the fluid (density,
velocity of sound respectively)
poCy = characteristic impedance of plate of solid material
[ = thickness of the plate
k2 = wave number in the plate = cﬂ
2

or, for a thin plate at low frequencies, k2 1< 1,

(2pycq)*
B (2p1c1)2 + (pzw )2

%

(7)
which expression leads to the mass law of architectural acoustics when the fluid medium is
air. Inthese cases, the transmitted intensity is governed by parameters including density,

velocity, frequency, and thickness. By identifying:

e
1 Py
the above equation can be rewritten as:
4p.
11
cvt & (78.)

4prg + (p2 wl)?

so that the Lamé constant Al appears explicitly in place of the propagation velocity, Cq
Sound transmission through plates as described by Eqs. 6 and 7 has been thoroughly studied
and need not be discussed further here; the adequacy and limitations are well-known.

In contrast to the above, the form of Eq. 3a is quite foreign and therefore needs



explanation and verification. (Goodman and Stern have assumed that the incident plane wave
has unity amplitude and consequently IAgII 2 effectively represents the transmission ratio
for the spherical-shell.) Analytically, the different results are not surprising. The initial
models are very different and moreover, the spherical-shell model includes shear stiffness
through assigning a finite value to gt For the spherical-shell model at low enough fre-
quencies, the behavior should be stiffness controlled and ought to differ from a mass-
controlled description.

Nevertheless, it feels slightly strange for mass or density to be so conspicuously
absent. True, density reappears in Eq. 3b, but the mathematical contribution of this term
and of all higher order terms vanish at the center of the shell. Experimentally, the statement
of Eq. 3a is even less familiar and therefore demands explanation and verification. More-
over, there are practical implications. Sonar dome materials ordinarily are selected and
engineering designs executed on the basis of matching the characteristic impedance of water;
a reasoning based on Eq. 6. However applicable the precepts of Eq. 6 may be for plane
windows of solid materials at higher frequencies, Eq. 3a implies otherwise for curved
windows at low frequencies.

Goodman and Stern continued their studies by considering a hemispherical shell
mounted on a rigid plane of infinite extent. In that case, the intensity near the center of a

hemispherical shell became (Ref. 3, Eq. 28):

2
‘ 9 AIII

0 (8)

Lemis phere

(Eq. 8 represents simply the analytical expression for pressure-doubling at a rigid
boundary.) They concluded their presentation with several graphs for particular cases of

hemispherical shells (selected radii, thickness, and shell material) immersed in sea water.
2

They plotted 10 log1 OI 2AIOII along the ordinate against frequency as abscissa. Because

unity was selected as a reference magnitude, the complete absence of a shell (or for a shell
"constructed" of sea water) led to an intensity level of +6. 02 db on their graphs. Thus the
predicted attenuation (or gain) is displayed on those graphs by the amount the curves depart
from a level of +6. 02 db. Miss Stern has published a larger collection of such graphs in

Ref. 5.



Figure 2 reproduces the calculated results for a complete spherical shell made
fr‘om steel 3/ 8-inch thick and two feet in outer radius. The ordinate values used in Fig. 2
are-20 1og10|f(I)_1H_I and thus represent the acoustical intensity to zeroth order at the
center of a complete spherical shell as given by Eq. 5. In the absence of a shell, the
intensity level would be zero decibels. Thus positive values of the ordinate in the graph
represent attenuation due to the shell. The long-dash line was obtained by using Eq. 3a
while the solid line was obtained by using Eq. 2b to evaluate A{)H. (Figure 2 is essentially
the same as Fig. 11 in Ref. 5 displaced downward by 6.02 db.) The short-dash line
indicates the attenuation which would be predicted for 3/ 8-inch steel plate using Eq. 6.
The original point of departure for this experimental research was to explore
the agreement with the analytical results depicted in Fig. 2. At low frequencies, all of the
particular cases presented in Ref. 5, yielded results similar to those in Fig. 2; namely:
(a) at very low frequencies, the curve was horizontal,
(b) at very low frequencies, the level of the curve represented attenuation
of small magnitude,
(c) with increasing frequency, the curve first dipped to a shallow minimum
(at about 550 cps in Fig. 2) and then climbed rather steeply,
(d) at still higher frequencies, more complicated behavior appeared but
reservations were expressed in Ref. 5 about whether the computed values
were accurate in this region and whether the zeroth-order term was still

preponderate.

The magnitude of attenuation at very low frequencies increased with increasing shell thick-
ness and decreased with increasing shell radius. The magnitude of this attenuation also
varied with type of shell material. For the real materials which were studied in Ref. 5, the
parameters A, u, and p all varied simultaneously so that it was difficult to comprehend
their individual effects in isolation. For example, Lucite contributed the smallest attenua-
tion presumably because its values of X and p were most like sea water but simultaneously,
its value of u was also the smallest among the several materials. In this instance, the

results are consistent with conclusions drawn on the elementary basis of matching

acoustical impedance. They do not clearly reveal what, if anything, the introduction of
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Fig. 2. Zeroth-order analytical prediction for steelshell immersed in water.
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solid characteristics, namely, a finite value of i, has contributed to the understanding of
the problem.

It was decided to undertake some experiments to see if the general features dis-
played in Fig. 2 could be verified. Thus, the initial idea was to observe the sound pressure
at the center of a thin spherical shell as a function of frequency and to see if we could
obtain the predicted curve; that is, a small and constant amount of attenuation at lowest fre-
quencies and then a dip followed by an abrupt increase at higher frequencies. Because the
predicted low-frequency attenuation for a shell in sea water amounted to a few decibels at
most, consideration had to be given to obtaining extraordinarily precise relative measure-
ments, reliable to perhaps one-tenth of a decibel. Less precise measurements would not
suffice for validating the analytical predictions.

The radius of a shell enters the analysis only through the arguments of the
spherical Bessel and Neumann functions, more specifically, it appeared only in the nondi-
mensional expression, %1} . Apparently any convenient value of radius may be selected for
the experimental studies provided only that the frequency range is adjusted accordingly, or
conversely, the radius may be chosen to fit a particular frequency range. The auxiliary
frequency scale in Fig. 2 emphasizes this consideration and is intended to suggest that much
of our experimental work was accomplished with 3-inch radius shells. Initially, it was felt
that two shells identical except for thickness (say, 4-inch radius stainless steel, 0.037-inch
and 0. 078-inch thick) and another shell of different material (say, 3-inch radius copper,

0. 022-inch thick) would suffice for experimental comparison with the analysis.

A variety of pressed or spun metal shells were acquired from several sources
(commercial products for which tooling existed) and exploratory experiments undertaken. 1
A small anechoic water tank was designed and constructed to assist the research (see Ref. 11).
This anechoic tank was intended to provide characteristics suitable for preliminary studies
whereas the final definitive data were to be taken later at one of the Navy's free-field trans-

ducer calibration facilities such as the one at Pond Oreille Lake, Idaho.

1The spherical or rather hemispherical shape is difficult to draw, press, or spin
free from ripples. Both prolate and oblate spheroidal shapes are easier to fabricate.
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The envisioned final data have not been collected because the problem turned out
to be more complex than anticipated. Nevertheless, the laboratory research has provided
considerable information about the behavior of acoustical fields inside spherical-shells.
Moreover, the various difficultiesencountered forced a more detailed interpretation of the
analytical results which originally were considered to be complete. By hindsight, it is now
clear that for most physically realizable experimental situations (sonar applications included),
the zeroth-order term is not sufficient even at low frequencies. What originally appeared to
be a straight-forward experimental study gradually evolved into a more detailed study and

interpretation of the original analysis.

13



3. EXPERIMENTAL STUDIES

The several following subsections report specific aspects of the studies on
spherical shells. Actually, these several categories of research were pursued more or less
simultaneously but are organized according to physical considerations rather than according
to chronological history.

3.1 Shells In Air And Filled With Air. The sponsored research reported in Refs. 4 and 5 was

oriented toward shells immersed in sea water, i.e., a generalized sonar problem. However,
when starting the experimental studies, it was recognized that the analytical solution in its
most general form must encompass shells immersed in air. Consequently appropriate
experiments in air could also be used to test the analytical results. Indeed, some types of
measurements appeared easier to accomplish in air than in water and gave promise of
displaying certain aspects of the problem more clearly than experiments in water.

The initial undertaking for studies of shells in air had to be a calculation based
on Egs. 2b, 3a, and 5 corresponding closely to experimental conditions. Thin copper shells,
fabricated by two different methods, were available and so calculations were performed for
their parameters and dimensions which are listed in Table I. The actual shells consisted of
two hemispherical segments which slightly overlapped at the equator. They were joined
either with glue (radio service cement) or soft solder. The low-frequency results computed
from the parameter values in Table I are shown in Figs. 3 and 4 which have essentially the
same format as used previously in Fig. 2. Equation 3a is seen to yield the correct asymp-
totic values for these two shells in air. 2

The curves displayed in Figs. 3 and 4 resemble those applying to metal shells in
water except that in air the magnitude of the attenuation is very much larger. In fact, the
attenuation for these shells is inconveniently large from the standpoint of routine airborne

sound measurements.

2These results were obtained by Misg Stern. The calculations were performed on an

IBM 709 system programmed to produce A0 as defined in Eq. 2b.
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TABLE 1

COPPER SHELLS IN AIR

Material Density Lame constants
p, kg/m® A, N/m2 i, N/m?
Air 1.29 1.54x10%° 0
Copper 8890 1.31x10™1! 4.60x10+10
Shell Fabrication Radius Thickness
R, m A, m
L. -2 -4
A spinning 7.62x10 5.59x10
@3m) (0.022")
B drawing 7.62x1072 3.56x10%
3m) (0.014")

A variety of experiments were performed with the copper shells in air. Some
measurements were conducted outdoors under approximately free-field conditions and with
an incident plane wave. Other measurements were performed in the diffuse field of a
reverberation room. Likewise several microphone types, crystal, dynamic and condenser,
were employed to measure the internal sound pressure level resulting from a given
external sound signal. All of these measurements indicated a large attenuation at low fre-
quencies of the order of 40 to 70 db but never quite as large as predicted in Figs. 3 and 4.
Moreover, all experiments gave a different frequency dependence than predicted; namely,

a gradual but continuing rise with frequency, terminating in a pronounced peak at about

1500 cps. Figure 5 displays the results from one of the better early measurements performed
in the reverberation room on copper shell B. 3 The signal-to-noise ratio was at least 10 db
under the worst conditions and, in this measurement, the internal microphone was an Altec
Type 21-C operated on a compact cathode follower built especially for this study. The

dashed curve indicates the purely theoretical A{)II prediction.

An attempt has been made to reproduce the jaggedness of the line drawn on the x-y
recorder. This jaggedness is a normal consequence of the use of a reverberation room and
selected time-constants of the instrumentation. In later curves, this fine structure is
disregarded by drawing an average curve.
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Commercial cathode followers were too gross to place inside the spherical shell
and still be able to position the microphone's diaphragm at the center of the shell. Electri-
cally, the more compact cathode follower was similar to the General Radio Type 1551-P1-25

Microphone Base and it was operated from a General Radio Type 1551-P1-30 Power Supply.

Ordinary cathode follower constructions did not have as large an acoustical attenuation as
the spherical shell so they could not be allowed to project outside the shell. Also, it was
not desirable to cut a hole through the shell large enough to pass the commercial units or
even the large cable attached to them. Several types of microphones were used, motivated
partly by uncertainty about the effect of each microphone's finite acoustical impedance upon
measurements in a closed cavity. Likewise, the outdoor 'plane-wave' experiments were

tried to see if they would uncover some fault in a line of reasoning which concluded that the

results from diffuse-field measurements in the reverberation room would be directly com-
parable to the analytical plane-wave solution; a point discussed in more detail below. There
were a variety of other reservations related to how closely experimental conditions con-
formed to the ideal mathematical model, e.g., closeness to center of shell, physical
intrusion into the interior space by the volume of the microphone, effect of the seam on the
equator of the shell, effect of the hole cut in the shell to pass the microphone cable, effect
of slight departures from a strictly spherical shape, etc.

Nevertheless, Fig. 5 represented the most reliable experimental result and it
certainly contradicted much that was expected on the basis of the zeroth-order coefficient
as given in Fig. 4. The peak at 1500 cps was identified as occurring at the frequency of
the lowest normal mode for a spherical cavity as given by Rayleigh (Ref. 1, p.265). At this
stage, the anechoic water tank was ready for use and so work in air was discontinued in
favor of measurements in water. Ultimately, further studies in air became an essential
aid in clarifying a variety of outstanding problems.

The use of a reverberation room for conducting airborne sound measurements
on spherical shells was mentioned above and the justification for such diffuse-field measure-
ments may be argued as follows. The mathematical model, diagrammed in Fig. 1, required
that a plane sound wave be incident from the negative z-direction. Much of the detail,
however, represents merely analytical convenience and need not necessarily be carried

over into the experimental activity. First, the shell is completely symmetric about its
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center and so the direction chosen for the z-axis is immaterial. Furthermore by invoking
superposition, plane waves arriving from any number of directions could be accommodated.
In the extreme, waves could arrive from all directions with any phase relationship creating

a diffuse field at the location of the shell and still the interior field would be predictable on

the basis of superposition of the solutions already available. The higher orders of the
solution have particular directionalities associated with them through the P 0 (cos 0) terms.
In the case of diffuse fields, these would integrate out to particular constant average values
leaving only the radial variation prescribed by the j 0 (kr) terms for r <R - A. Moreover,
in the present problem, we presumably are interested primarily in the zeroth-order term
which has no directionality since PO(cos 6) = 1. Consequently, to zeroth order, experi-
mental measurements performed in a diffuse field ought to yield precisely the same answer
as the analytical solution for a plane wave incident from a specific direction. In the case of

higher-order terms, a particular constant occurs for each order which is the result of

integrating the P, with respect to 9.

L

Our laboratory is equipped with a 5400 cubic foot reverberation room and
employs a rotating vane to accomplish "pure-tone' diffusion. Based on the above reasoning
and confirmed by experimental evidence, this reverberation room facility can be used
effectively for precise measurements on spherical shells in air which can be compared
directly with the analytical predictions. Obviously, a good anechoic chamber could be
utilized also but such a facility was not as conveniently available.

The most crucial question, when again undertaking measurements in air, was
what pressures were acting upon the interior microphone. The observation that the peak at
1500 cps corresponded in frequency to the lowest normal mode for a spherical cavity
suggested that the interior space of a metallic shell in air might behave almost like a rigid
spherical cavity. That is, the impedance of the shell would be so large compared to air
that a rigid cavity approximation would be valid. (Not necessarily true in water.) Thus in
air, one might expect that the frequencies of the normal modes and the ordering of the
normal modes would correlate with those for a rigid spherical cavity. The amplitudes of
the modes could not be predicted in this way since, in reality, they would be governed by
I

A

At this point, closer attention was directed to the form of the analytical result

20



(see Eq. 1), concentrafing particularly on the function j ) (kr). For convenient reference,
several of the lowest-orders are graphed in Fig. 6 (see Ref. 12). Inthe case of a spherical
cavity with rigid walls, the particle velocity must vanish at the walls; thus eigen values

occur whenever zero slopes occur in Fig. 6.

First, j0 has a zero slope at a zero-value of the argument. Because the
internal radius of the cavity is finite, the argument can only vanish at zero frequency so this
result appears to constitute the analytical realization of Pascal's law for this spherical
model. With increasing values of the argument, the next zero slope occurs in the first-

order term at kr =~ 2.1 This corresponds to the lowest-frequency mode for a rigid

Value of Function j 0 (kR)

T T T T T
0 1 2 3 4 5 6 17 8

Argument kR

Fig. 6. Spherical Bessel functions; low order and small argument.
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spherical cavity described by Rayleigh and correlates with the peak in Fig. 5. Continuing
to increase the argument, the next zero slope occurs in the second-order term and then
there follows a zero slope in the zeroth-order term. The important point is that when
making experimental measurements by sweeping upward in frequency, the first normal
mode which may be observed for an almost rigid boundary corresponds to order £ =1
and not £ = 0.

Further experimentation with the copper shells produced the results displayed
in Figs. 7 and 8. These measurements were obtained in a diffuse external field generated
in the reverberation room. The internal microphone (an Altec 21B mounted on a miniaturized
cathode follower mentioned previously) was suspended on soft rubber bands and positioned
to locate the microphone's diaphragm at the center of the spherical cavity. Errors in
centering the diaphragm were estimated to be less than + —5% shell radius (+ —11—6-").

As Figs. T and 8 illustrate, various normal modes were observed at the fre-
quencies expected for a rigid spherical cavity of the same dimension. The three lowest-
frequency modes were resolved cleanly. At higher frequencies, some modes occur close
together and this clustering accounts for the ragged tops on several of the experimental
maxima. Clearly, in this experimental situation, modes due to first- and second-order
terms have not been avoided by attempting to measure the sound pressure at the center of
the spherical shells. Indeed, from an examination of these results, one would judge that all
of the lower modes are excited about equally strongly.

The attenuation curve for the thicker shell A consistently lies below the curve
for the thinner shell B by 4 or 5 decibels when equivalent test conditions are obtained.
(Figures 7 and 8 do not display this results clearly because the low-frequency portion of
Fig. 8 is sloping rather than horizontal.) This direction of change would be expected from
reasoning based upon either increased massiveness or increased stiffness. The magnitude
of the change suggests mass as the controlling parameter but this evidence is much too
weak to consider as definitive.

After locating the mode frequencies, it became experimentally possible to
verify the mode identification of the three lowest-frequency modes by investigating the
radial distribution of sound pressure. A probe-tube microphone system possessed sufficient
attenuation through its housing to permit interpretable measurements at a mode frequency
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when the open end of the probe was located in pressure antinodal regions. At other locations
and frequencies, the probe microphone system could not provide useful results even in the
case of the 0. 014-inch thick copper shell.

In as much as the larger condenser microphone system was the only one which
yielded satisfactory measurements off the normal mode frequencies, the effects of shifting
the radial location of its diaphragm were investigated. Figure 9 displays some of the
results obtained in this manner. Clearly, the results are dependent upon microphone loca-
tion across the whole spectrum, but the observed changes are not drastic enough to
significantly alter the general interpretation of the interior field at low frequencies.

When the probe microphone was used, the peak at 1500 Hz could be suppressed
a little more than illustrated in Fig. 9, but it could not be made to vanish. Even if the
diaphragm of the condenser microphone were precisely at the center of the cavity, the
lateral extent of the diaphragm would cause it to experience more of the off-axis pressure
field than the 1/ 8-inch diameter opening of the probe. Moreover, the lowest signal level at
1500 Hz demonstrated in Fig. 9 occurred when the microphone was located behind center;
probably an indication that the mode shape within the spherical shell has been distorted by
the bulk of this microphone system.

One additional experiment in air is worth brief mention. From the start of the
research we were concerned about how drastically a small leak through the shell would
affect the results and whether the presence of such a leak could be recognized from the
experimental data alone. That is, a shell with a leak would seem to constitute a form of
Helmholtz resonator and a completely extraneous category of phenomenon might be intro-
duced into the experiments. Of course, in the realm of practical engineering applications,
a slightly leaky shell might be more realistic than a tightly closed shell.

Among other experiments bearing on such considerations, an experiment was
conducted with the 0. 014-inch thick copper shell having a 0. 040-inch diameter hole (No. 60
drill) drilled into it at the equator. Figure 10 shows the results in comparison with results
for a closed shell. For the conditions of this experiment, the Helmholtz resonator
(fundamental) frequency would be expected to occur far off to the left of the graph at about
45 Hz (calculations based on Eq. 8.16, Ref. 10). The new broad maximum at about 380 Hz

in Fig. 10 probably corresponds to one of the higher modes of Helmholtz resonator action
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alluded to in Ref. 10. The second mode (for a closed spherical cavity) at about 2440 Hz

seems to have been much suppressed by the small leak. Under these experimental condi-

tions, a small leak has changed the results appreciably and precautions against unintentional
leaks are clearly indicated if closed-shell results are sought.

3.2 Shells In Air And Filled With Water. This case of different fluids inside and outside of

the shell does not seem to have been examined analytically. The analysis in Ref. 3 was
general up to the point where the boundary conditions were introduced and then identical
fluid media were assumed. Thus, to include different media, it would be necessary to
retrace the analysis while keeping track of two sets of fluid parameters in the composition
of the coefficients. No mathematical difficulties of fundamental nature should occur; only
algebraic complexity. In the case of the scattered field, Ref. 7 comes closer to treating a
two fluid problem for in one calculation water surrounded an evacuated spherical shell. In
any event, detailed analytical results were not immediately available for comparison with
the experimental results related below.

The experimental work on this particular case was motivated by several research
needs. It partially decomposed the problem with respect to interior versus exterior
measurement problems. It allowed the use of a hydrophone inside the shell without the
attendant problems of working completely in water. Techniques of measuring and manipul-

ating the external sound field were identical to those discussed in the previous section. Then,

for example, it became possible to consider the effect of an air bubble inside the shell with-

out contending with air bubbles clinging to the outside of the shell.

In the case of a metallic shell in air and filled with air, there is little question
that from the inside, the shell behaves like a rigid wall. The shell most definitely does
not constitute a pressure-release surface. When the same shell is placed in water and
filled with water, the appropriate behavior to assign to the shell as viewed from the inside
is not as obvious.

In one instance, we experimented with a shell of acetate plastic whose charac-
teristic impedance was close to that of water and whose shear modulus was low. This
shell, filled with water and suspended in air, was expected to behave very much like a sphere
of water suspended in air. Its outer surface should constitute a pressure release surface.

If the pressure inside the acetate shell goes to zero at the surface, then the
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normal mode frequencies will correspond to the zeros of the spherical Bessel functions.
(The zeros in Fig. 6 rather than zero slopes.) The normal modes should be differently
ordered than for the previous case of a metallic shell in air and filled with air. Indeed, for
the acetate shell in air and filled with water, the sequence should follow the mathematical

order of the spherical Bessel functions. Thus the lowest frequency mode would correspond

to the first zero of the zeroth-order function and should fall at kR = 3. 14 (Fig. 6). For the
acetate shell which is 6-15/ 16 inches in diameter, this should occur at 6850 Hz. The
experimental results obtained with this water-filled acetate shell are shown in Fig., 11.

Peaks in this curve occur precisely in the order and at the expected frequencies for a sphere
of water of this size. Thus the assumption about the physical role of the surface of the water-
filled acetate shell is verified. Another point of interest relates to the amplitudes of the
normal modes. The simple theory which predicts the mode frequencies does.not encompass
dissipation hence the experimental values offer the only firm insight on this aspect of the
interior field.

Far below the frequency of the lowest mode, the pressure inside the "'sphere
of water" is practically equal to the acoustic pressure in the air surrounding it. This is as
it should be for Pascal's law must govern the behavior. Moving upward in frequency, there
occurs a dip, then a rise into the lowest-order mode peak and then successively higher-
order mode peaks. Although the conditions attending this experiment were not treated in the
guiding analysis, the frequency behavior found in Fig. 11 most closely resembles the
analytical predictions. (See Figs. 3 and 4 and also Refs. 3 and 5.) Indeed, one can argue
that the resemblance should be expected. In the present experiment, the lowest-order mode
is given by the zeroth-order spherical Bessel function and at lower frequencies, this zeroth-
order term predominates. Thus it was necessary to go to this unusual (and unrealistic)
shell configuration in order to display experimentally an uncontaminated zeroth-order
behavior.

This particular transparent acetate shell was useful in other ways. We could
see, for example, whether or not bubbles were present on the inner surface of the shell or
the hydrophone. Also, when working with the pressure response of a hydrophone in air,
the resonant phenomenon (at a normal mode) can be used to enhance the pressure magnitude

affecting the transducer; a built-in frequency filter. In Fig. 11, a gain of approximately
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25 db was observed at the lowest nondirectional normal mode.

Several experiments related to the one just discussed were performed with a
water-filled plastic bag surrounding the hydrophone. Such a bag has a pendulus geometry
which would be difficult to describe in terms of mathematically-simple boundary shapes.
Likewise, there is a flat free upper surface to the water. The main consideration is that
the bag certainly is very flexible and hence the bag and the free-water surfaces most
assuredly constitute pressure release surfaces.

The experimental results were very similar to those shown in Fig. 11. Because

the water-filled bag was six or eight inches across and about as deep, the normal modes fell
in roughly the same frequency range as for the acetate spherical shell—only here we don't
know what geometry to select for calculation of the normal mode frequencies. From the
looks of the experimental data, an equivalent-sphere approach would be as good as any.

Figure 12 presents the experimental data for the water-filled plastic bag. In
the case of the dashed line, the bag results resemble those for the acetate sphere very
closely. The solid line represents the same experimental arrangement after it had been
allowed to stand over night. Dissolved air in the water came out of solution and coated the
hydrophone and the inside of the bag with a layer of fine bubbles. The effect of these
bubbles is evident as low as 1000 Hz and a variety of changes in curve shape have occurred.

This particular experiment with dissolved air had the very limited objective of
providing a qualitative indication of what might happen; quantitative investigation was not
attempted. It is obvious, however, that such bubble accumulations due to release of
dissolved gases might produce some rather startling calibration shifts in free-flooding sonar
domes or in any other application where dissolved gases can go in and out of solution during
the normal course of operations. Although interference due to bubbles on a hydrophone is
a well-known phenomenon, it is rather startling to observe such detailed effects as repro-
duced in Fig. 12.

Another set of experiments were undertaken with a water-filled, three-liter,
round-bottom, pyrex, chemical boiling flask as the shell. Figure 13 illustrates the flask
with the hydrophone in position. These experiments were performed subsequently to tests
with water-filled metal shells in air and were intended principally to permit visual obser-

vation of the interior. The material parameters of pyrex glass (density and the Lamé
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constants) resemble those of metal, particularly aluminum, more than they do water or
acetate plastic. In this respect, then, the pyrex flask should exhibit a dynamic behavior
similar to the metallic shells with the added advantage that the interior could be observed.
On the other hand, this chemical flask departed appreciably from an ideal spherical shell by
virture of its comparatively large and massive neck construction. As Fig. 13 indicates,
this neck was fitted with an aluminum plug so that the internal space occupied by water was
very nearly spherical. Nevertheless, the extent of departure of its behavior from that of
an ideal spherical shell due both to the neck and plug construction and to the finite size of
the hydrophone could not be clearly ascertained. Note also that a brass adapter sleeve has
been attached to the hydrophone to allow it to be adjusted in position while maintaining a
tight fit in the aluminum plug. The plug was sealed to the glass with beeswax.

As far as the dynamical behavior of the water-filled flask is concerned, it is
difficult to decide a priori whether the flask will behave more nearly like a pressure release
surface or a rigid wall and the experimental data are not especially helpful on this point
either in view of the complex volumetric geometries contributed by the neck of the flask and
the hydrophone.

Figure 14 displays typical results from the pyrex flask. The large number of
minor peaks above 2500 cps is typical behavior but behavior which is not easily accountable.
On the assumption of a pressure release boundary, one would expect to find the lowest
normal mode about 8400 Hz or if a rigid boundary at about 5600 Hz and other modes spaced
accordingly. In other words, we would expect a similarity to Fig. 11 on the one hand or
Figs. 7 and 8 on the other hand. However, these expectations are not fulfilled. When the
hydrophone is displaced along its axis from the center of the flask, the general character of
Fig. 14 remains although details vary. One situation, see Fig. 15, with the hydrophone
placed two inches ahead of center results in a low frequency maximum at about 350 cps
which was a repeatable phenomenon at this location although its magnitude was not as stable.

Visible bubbles inside the flask caused some drastic alteration of the spectra as
indicated in Fig. 16. Two situations are depicted. In the first case (solid line) the interior
of the flask was lined with small bubbles due to natural processes and a moderately large
bubble had collected on the underside of the aluminum plug. In the second case (long-dash

line) this one large bubble was removed but the coating of small bubbles remained. The most
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obvious consequence of the bubbles (Fig. 16 compared to Fig. 15) is the absence of the many
small peaks in the region from 2000 to 15,000 Hz and the general emergence of a cleaner
spectrum. Removal of the larger bubble is accompanied by the disappearance of the peaks
at 740 Hz and other alterations at higher frequencies.

There is no intention to belabor the interpretation of results obtained with the
pyrex flask but simply to employ these observations as a background for considering the
results from metallic spherical shells, filled with water and placed in a diffuse airborne
sound field. Figures 17, 18, and 19 present such results from two stainless steel shells
of different thickness and a third stainless steel shell of smaller radius. The many small
peaks between 2000 and 8000 Hz are a prominent feature and, by comparison with the pyrex
flask results, suggest that visible bubbles probably were avoided. In order to obtain such
results, the water was heated and then allowed to stand several days. The experimental
s hells were kept filled with such water for weeks at a time, shaken or swabbed to dislodge

bubbles, etc. The hydrophone was inserted into the shell with the entire shell immersed in

de-aerated water. After the hydrophone was properly positioned, then the shell was removed
from thé water and its exterior dried. The appearance of the spectra fine structure does
not guarantee that the spherical shell was perfectly filled with water. Additional compliance
may be present in the form of non-visible bubbles, air trapped in the clearances around the
hydrophone insertion fitting or alternatively a small opening here which communicates
Helmholtz resonator fashion with the exterior. Likewise, the hydrophone, or parts of it
may be more compressible than the water.

In any event, the disregarding the finer structure, Fig. 17 demonstrates peaks
at about 8200, 12000, 14, 850 and 17, 800 Hz for the thinner 8-inch diameter shell. Figure 18
displays a slightly cleaner spectrum and peaks at 8800, 12,500 and 14,600 Hz for the thicker
8-inch diameter shell. The predominately upward shift in frequency may indicate increased
stiffness due to the thicker shell but the evidence is not definitive. At low frequencies, the
thicker shell seems to consistantly yield a few decibels more attenuation but the magnitude
of this difference is small compared to the overall attenuation. Figure 19 shows that for a
6-inch diameter shell, 0. 078-inch thick, these modes frequencies lie at about 11, 140 Hz and
15,750 Hz. That is, at roughly the same kR values which argues strongly for these modes

corresponding to the size and geometry of the shell and not to just fortuitous processes.
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3.3 Shells In Water And Filled With Water. The underlying theory was addressed princi-

pally to this case (Ref. 3) and the initial motivation for the present research was to obtain
experimental verification of the analytical predictions. Likewise, the intitial plan of the
research was to instrument several spherical shells with hydrophones and to directly measure
the sound pressure at the centers of those shells. To this end, a small anechoic water tank
(Ref. 11) was constructed to permit laboratory work with instrumented experimental shells.
This tank was not expected to be sufficiently free-field to permit the collection of the final
definitive data. Consequently the original plan was to test some of the instrumented shells

at one of the U. S. Navy's underwater ranges. The purpose of the anechoic tank was princi-
pally to assist the development of the preliminary experiments in the laboratory.

As mentioned earlier, the envisioned final data have not been achieved because
of various changes in research direction needed to cope with the problems of interpretation
of experimental data. It is now realized that a considerably more sophisticated final
experiment will be needed than thought originally. Nevertheless, laboratory work with the
anechoic tank played a vital role in reaching the current understanding of the problem.

The experiments in the anechoic tank were conducted with a USRL Type J9

source‘-1 mounted near one end and the shells placed at various distances from the source.

In so;e cases, measurements were performed using one hydrophone with and without a
spherical shell. In most cases, however, a second hydrophone was placed outside the shell
to simultaneously monitor the pressure in the external sound field. Because of the small
values of attenuation expected from the shells, a differential measurement seemed most
appropriate in the laboratory and also for the anticipated final tests. In reality, of course,
such a differential measurement constituted a comparison involving Ag at some external
field point and Aén at the center of the shell and not a direct measurement of A:)II alone.
Even so, this type of measurement appeared preferable to the use of a single hydrophone
which would have placed extreme demands on absolute calibration of the hydrophone and on
the comparatively long-term stability of the entire instrumentation system.

Many tests were conducted in the anechoic tank but most of them are not worth

4 .
This source and two model LC-32 hydrophones were borrowed from the U. S. Navy
Underwater Sound Reference Laboratory, Orlando, Florida.
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reporting in detail at this stage. Some of the difficulties encountered motivated more ex-
tensive studies in air of air-filled shells and the water-filled shells already discussed.
Other difficulties motivated the extension of the numerical computation discussed in the
following section.

One problem related to whether or not air bubbles were presenf either inside or
outside the shell. It appeared essential to be able to recognize from the characteristics of
the experimental data alone what condition actually prevailed. Qualified success in this
direction was obtained by repeating the measurement several times on different days, each
time taking all available precautions such as using de-aerated water, adjusting the
hydrophone with the shell submerged, use of a wetting agent on the hydrophone and shell,
etc. Of course, the presence of gross bubbles was comparatively easy to recognize but
only é sort of asymptotic approach using multiply-repeated experiments offered reasonable
assurance of bubble-free data.

As Ref. 11 indicated, the anechoic properties of the water tank did not extend
upward in frequency as far as expected. Thus the frequency range available in the labora-
tory which was reasonably free of standing-wave phenomenon was rather narrow. Tests
were made with the monitor hydrophone located at various distances and angles from the
shells in order to expand the interpretable frequency range. We were not really successful
in this endeavor to correct for residual standing-wave effects although possibly a more
elaborate analysis of the spectra would have gained some interpretability. Inthe main, the

anechoic range occurred slightly too low in frequency to exhibit interesting spectral behavior

for the small shells being tested.

The analytical model assumed a shell that was free to move and to deflect under
the influence of the impinging sound wave while the sound-pressure measurement at the
center of the shell should be a point, inertially-fixed measurement. Thus a question existed
about how to accomplish the mounting of a shell around a hydrophone in practice. In one set
of experiments, a hole was cut in the shell just slightly larger, perhaps 0. 015" clearance,
than the hydrophone. The hydrophone was clamped firmly to a mounting bracket. The shell
was suspended from two thin nylon cords and positioned so that the center of the hydrophone's
active area was at the center of the shell. In addition, the shell was manipulated so that it

cleared the stem of the hydrophone.
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This arrangement caused spectral peaks to occur below 1000 Hz which pre-
sumably were Helmholtz-resonator action. Such effects occurred with all shells but were
quite variable in details presumably due in large part to variablility in the clearances
between the hydrophone stem and the shell. Obviously the shell had to be "'sealed" to the
hydrophone even though only a few decibels of attenuation were expected. Likewise, such
results confirm that the shells constituted relatively rigid containers and presented a
significant discontinuity even though the acoustic impedance of the shell material was not
drastically different from water. An acetate-plastic shell behaved in similar manner.

As a consequence of the above experiments, a rigid and tighter coupling of the
shell and hydrophone was employed. Threaded brass sleeves were soldered to the metal
shells or glued to the plastic shells. These sleeves mated with a tight collar which clamped
to the hydrophone's stem. In this way the shells were quite rigidly attached to the hydro-
phone's support bracket and the clearance around the hydrophone's stem reduced to a
passage at most one or two thousandths of an inch wide and about 3/ 8-inch long. This change
eliminated the Helmholtz behavior or at least shifted it below the observable frequency range.
With this more rigid clamping between the shell and the hydrophone, the only certain com-
pliance was the isolation of the ceramic element from the hydrophone stem within the
hydrophone proper. That compliance would provide effective isolation at high frequencies
but not at low frequencies and so a discrepancy of unknown importance was introduced
between the analytical model and the laboratory model.

The finite size of a hydrophone compared to the shells' radii was another matter
of concern. Miniature hydrophones can be constructed but the model LC-32 employed was
the smallest convenient '"'standard' hydrophone. Its radius was about one-tenth of the shell
radius and thus might be considered small enough. Further analysis (given in the next
section) now confirms that the LC-32 hydrophone was not nearly small enough to permit the
observation of pure A{)H behavior in the frequency range employed. Probably an even more
serious limitation,however, is the rather large bulk of the hydrophone stem and indeed all of
the nonacoustically sensitive bulk. This inert bulk would significantly distort the acoustic
field within a spherical shell in a way that would be difficult to correct. Indeed, possibly the
only way to observe pure Agl behavior is to measure at such low frequencies that the zeroth-

order term predominates throughout the entire enclosed volume.
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Some tests using a thin (0. 014" thick, 3' radius) copper shell in water seemed
to show some extraneous small peaks between 1000 Hz and 2000 Hz as compared to the
stainless-steel shells. The most obvious fault of the copper shell was that its surface was
somewhat rippled due to the forming process whereas the stainless steel shells appeared to
be perfectly formed. To check on this point, a large dent, about 3" in diameter, was
hammered into the copper shell and then it was retested. Figure 20 displays these test
results, and the dent seems to have contributed the large excursion at about 900 Hz.
Whether this "resonance" is a flexural mode of the dented shell or is related to the shape
of the enclosed volume has not been determined.

Figure 21 is typical of some of the better results obtained in the anechoic water
tank. The ordinate is the logarithm of the ratio of the interior hydrophone signal to the
monitor hydrophone's signal. One of the curves is for these two hydrophones in their
respective positions without a shell in place. The various departures from a straight
horizontal line are indications of residual standing waves, differentials in the response of
the two hydrophones, and possibly other factors. Note that most of the jaggedness occurs
above 2000 Hz which fact agrees with the experimental echo reduction reported in Fig. 2,
Ref. 11. The frequency range from roughly 1000 Hz to 2000 Hz is particularly clean.

The other curve in Fig. 21 represents the case where a stainless steel shell
is mounted over the one hydrophone. Up to about 2000 Hz, the two curves are nearly
identical except for the vertical displacement. At higher frequencies complicated changes
occur and it is difficult to obtain sufficient precision in frequency to justify a detailed
analysis of the differences in order to find the shell's attenuation. If attention is restricted
to the frequency range from 200 to 2000 Hz and the average level of the traces obtained
(assuming all frequency variation in this range to be artifacts not related to shell attenua-
tion characteristics) then some semblance of reasonableness is obtained. For example,
an 8-inch diameter, 0. 038-inch thick stainless steel shell gives an average attenuation of
4.75 db while an 8-inch diameter shell, 0.078"-thick yields about 9. 75 db attenuation.

Such values agree reasonably well with approximate calculations of Agl which yield 4.9 db

and 8.1 db respectively. If anything, this agreement is too good and probably represents

the interplay of several fortuitous effects. In the next section, some calculations are given

for a steel shell of 24-inch radius and 0. 0375-inch thick. The 4-inch radius shells are six
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times smaller, thus the corresponding frequencies would be six times higher. Using the
same arguments developed there, the A{)H term should predominate throughout the entire
interior space below 120 Hz and in a central region of 0. 4-inch radius up to 1200 Hz. Thus
the near agreement cited above probably originates from almost operating in conformity
with the analysis and the lack of exact agreement is likewise understandable.

Not very much more can be made of the laboratory measurements conducted in
the small anechoic tank. They served a valuable purpose in the exploratory stages of this
research but the actual data collected remain only indicative, not definitive.

In some experimental pulse studies of scattering from spherical shells of the
type described in Ref. 9, it has been observed that the method used to join the two hemi-
spherical shells and the orientation of that equator to the direction of the incident pulse
affects the results (Conversation with K. J. Diercks). With respect to the interior fields
investigated for this study, no such effects were noticed although the test conditions pro-
bably were not critically sensitive to joint construction. In air, both glued and soldered
joints were used. The stainless-steel shells were welded together under ordinary pro-
duction procedures; no special precautions taken. For the low values of argument investi-
gated here, the two criteria for the joint would seem to be:

(a) no large discontinuity in shape or thickness of the shell at the joint, and,

(b) a joint capable of communicating bending stresses across it.

At higher frequencies where vibrational modes of the shell can be expected to play a more

prominent role, the joint characteristics may become much more important.
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4. EXTENSION OF NUMERICAL EVALUATIONS

During the course of the experimental studies, it became desirable to make
certain numerical evaluations for cases not covered previously in Refs. 4 and 5. Various
computations were accomplished both on a desk calculator and on a high-speed digital com-
puter. One instance of these additional computations has already been presented in Section
2.1 where Agn was evaluated for the specific parameters of two copper shells immersed
in air.

A troublesome point, which became increasingly important as experimental
work proceeded, related to the conditions necessary for the zeroth-order term to pre-
ponderate. The guiding analysis had treated the zeroth-order coefficient in considerable

detail but not the higher-order coefficients. Thus questions about how high in frequency one
may go or how close to the center of the shell one must measure had not been answered in
any practical sense.

In order to obtain some insight into such questions, calculations based on the
approximate expressions for A})II and AIIII (Egs. 3a and 3b) were undertaken. It was
assumed that these approximate expressions would be sufficiently precise for the intended
purposes; an assumption validated later by computation according to the exact expressions.
Initially this assumption was rather shaky because the variation with frequency of AIIII was
completely unknown while AgI was known through Ref. 5.

One of these approximate calculations was undertaken using the physical para-
meters for sea water and a steel shell 3/ 8 inch thick and 24 inches in radius. (See

Appendix C for numerical values of material parameters.) The same parameter values led

to Fig. 2 and the following results were obtained:

]Af)n ~ 0. 44758

a value which agrees with Fig. 11 in Ref. 5 and Fig. 2 of this report, and:
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bAl ~ 9.4971
or
| a7
-:IH—, g 5!6
0

Thus, for this steel shell in water, the approximate value of lAIIH’ is appreciably larger
than IA(I)HI and a presumption that the zeroth-order term shall predominate rests

heavily on j 0(kr) being sufficiently larger than j 1(kr). Indeed, if the directional charac-
teristics of the higher-order terms are disregarded (and, at most, the Legendre polynomial
part of the solution equals unity, see Eq. 1), then for the zeroth-order term to predominate,

we might require:

lA11H| j(kr)
T . <01
‘Ao l Jolkr)

and since

lim jl(kr) kr

ke 0 Jo{kr) -3

we are led to the conclusion that:
kr < 0. 0536

In the present example, therefore, the requirement that the zeroth-order term predominate
restricts one to much smaller values of the argument than might be guessed. Often, in the
case of problems dependent upon spherical Bessel functions, adequate representation by the
zeroth-order term alone can be assumed up to kr-values of 0.5 or even untiy. Not so for
the spherical shell problem! The restrictions on (kr) are much more severe.

Continuing with the above line of investigation, we may ask below what value of

frequency will the sound pressure measured anywhere inside the spherical shell be controlled
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by the zeroth-order coefficient alone? Recall that:

2rfr
[

kr =

and solve for frequency with ¢ = 1.481 x 10°m/sec and r = 0. 60m. The answer is 20 Hz.
If the region of sound-pressure measurement is restricted to the central one-tenth of the
shell's radius, the frequency range may be extended upward to 200 Hz. Examination of

Fig. 2 reveals immediately that the most interesting portion of ABH lies above 200 Hz and
that the approximate expression for A%)II is already losing validity. Moreover, the validity
of the approximate expression for AIIII remains untested as well as possible significant
contributions from still higher-order terms.

A similar calculation was applied to a 3-inch radius copper shell, 0.022-inch

thick immersed in air. In this case:

10
A l -1

%11 .0 29533x1o_3 - 1 g x 10°
A; | 0. 15637 x 10

and applying the previous criterion for the zeroth-order term to predominate, namely:

I

iA I j,(kr)
le l Jolkr)
we obtain:
kr < 0. 0016

In order that the zeroth-order term predominate throughout the entire interior of the shell

(c = 345 m/sec and r = 0. 0762m):

ff_ 1.15 Hz

which value is inconveniently low for ordinary experimental acoustical procedures. The
microphone used in some of the airborne sound measurements had a diaphragm about one-
quarter inch in radius. A parallel calculation requiring that the zeroth-order term pre-

dominate over the area of the diaphragm leads to an upper limiting frequency of about 14 Hz;
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likewise inconveniently low. In order to work as high as 1000 Hz, the effective diameter of
the microphone should be only about 0. 007 inch. Evidently, it will be difficult to observe
the pure zeroth-order behavior of a shell in air also.

As calculations, such as the approximate ones just cited, loomed larger in
attempting to interpret experimental data obtained both in air and in water, it was decided
to program for the exact evaluation of at least A{)H and A{II. Upon expert advices, a pro-
gram was written to solve directly the set of six simultaneous differential equations
governing the shell problem rather than to write specific programs to evaluate each coeffi-
cient of interest. The printout included all of the coefficients in the analysis by order (AI

ﬂ’
om . o I _II III

Aﬁ, Bﬁ , Cﬁ, Dﬂ , and Aﬁ in the notation of Ref. 4) although only the Aiu were of

immediate interest.

The usual difficulties in obtaining 'correct' results were encountered and the
computational effort became an on and off affair depending inversely upon how the experi-
mental work seemed to progress. At one point, computational effort was completely dis-
continued when apparently wild results were obtained. Later it was discovered that a
routine, borrowed from another application, was producing a transposed solution which had
been acceptable in its original application because of the symmetry of the governing equa-
tions, the transposed solutions appeared as nonsense. Once this difficulty became known,
it was a comparatively simple task to correct the spherical shell program and to obtain what
now appear to be correct solutions. This final adjustment to the computer program occurred
near the end of the active contract period and so only a few calculations were run.

These final calculations appear to be correct in as much as the values of A{)H
agree with those published in Ref. 5 which in turn were produced by a straight-forward
evaluation of Eq. 2b. The newly calculated values of A{)H agree with those mentioned in the

footnote on page 14to four significant digits and a comparison with one of Hickling's (Ref. 7)
values for the scattered field agreed within about two percent (Appendix B). Nevertheless,

several doubts linger including the algebraic sign of certain terms, the precision of the

5This program and all digital computations were performed by the Computation Depart-
ment, Institute of Science and Technology, The University of Michigan using an IBM-7090
computer. The assistance of Mr. John Riordan, Research Mathematician and head of the
Computation Department, is gratefully acknowledged.
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answers, and the range of argument accommodated without recourse to special procedures.
Basically, the final program should permit numerical investigation of the effects of param-
eter variations on the acoustical fields both inside and outside of the shell in an efficient
manner. Nevertheless, because the computer results are so difficult to verify, a very
thorough recheck of the program ought to preceed any elaborate use of this program. As an
example of the computation time required by the present program, it produced a printout of
five significant digits of the real and imaginary parts of all six coefficients (AIQ, AiI, BE,
C?, D?, A}ZH) for five orders (£= 0, 1, 2, 3, 4) for 18 different frequencies for two
different shells in an elapsed time of 1' 19. 1".

Figures 22 and 23 present these computed results graphically for a steel shell

in water and a copper shell in air respectively. In both figures, the magnitude of the coeffi-
III
0"

steel shell in water (Fig. 22), the difference at low frequencies is 15 db, an answer con-

cient Ain is larger than A(I)II and rises to a peak at a lower frequency than A For the
sistent with the approximate calculations given earlier in this section. Now, however, the
general frequency dependence of Ain is known (assuming that the computer program is
correct) and the earlier approximate calculations are seen to be appropriate to frequencies
as high as several hundred cycles per second. (kR = 0.5 to 1.0). The earlier comment
about being limited to extremely low frequencies if pure A{)H behavior is to be observed
experimentally is valid likewise. In addition, it is observed that when sweeping upward in
frequency, significant variations appear in the first-order coefficient before anything inter-
esting occurs in the zeroth-order coefficient. This fact limits observation to an even
smaller region precisely at the center of the shell if the interesting frequency dependence
of the pure zeroth-order coefficient is to be observed experimentally. In almost any
practical situation, experimental observations would be predominated by the first-order

coefficient or possibly by even higher-order coefficients. Figure 22 indicates that AIZII

: or Ain. Of course,

rises to larger values and at lower frequencies than either A{)I
because of the nature of j2(kr), this second-order term is more easily suppressed by
operating at small values of (kr) than AiH but at values of say kr > 1.0, its contribution
probably must be taken into consideration. (Incidentally, reservations about the accuracy of
the present computer program cast more doubt on the higher-order coefficients so not too

much point is made of them here. )
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Refering to Fig. 23, a very similar situation is found for a copper shell in air.
At low frequencies, AiH is 35 db larger than Af)n which is a tremendous magnitude to
suppress by operating at low values of the argument. Likewise, Ain peaks at lower fre-
quencies than Azn and there is indication that the higher-order coefficients possess signifi-
cant magnitudes at comparatively low frequencies also.

At very low frequencies, the final computer program gives slightly erratic
results. For example, the values of A{)H and AIIII begin to deviate from the steady values
displayed in Figs. 22 and 23 and also from the lower limiting values computed on the basis
of Eqs. 3a and 3b. Such erratic computation should be expected due to truncating of the
functions involved. A modified computer program would be needed to successfully approach
an argument of zero. As the program now stands, the first two coefficients settle down to
their appropriate values when kR is about 0. 02 or larger. Likewise, the computed values
of say Agn produce somewhat jagged graphs even within the range of argument where A{)n
and AIIII and possibly even AIZII yield smoothly varying graphs. This behavior also is
thought to arise from insufficient accuracy at points within the computational procedure.
However, it should be possible to obtain several more of the higher-order coefficients in
a straight forward manner without resorting to special computational routines. Up to this
stage, the computer printout has been in terms of the coefficients but simple extensions of
the program could print out a complete solution for Eq. 1 for a specified field point and
angle to match any desired experimental configuration.

By examining Figs. 22 and 23, and estimating how these would alter when the
coefficients are multiplied by the appropriate j 2(kr) value, one can obtain an idea of how

I

the sound pressure fields inside the shells vary. It was noted previously that A1

at a lower frequency than A{)H. The relative contribution of these two orders varies

peaked

according to the location selected for the internal field point. If we consider a point at the
interior wall of the shell, i.e., jl[k(R-A)] goes through its first maximum at a slightly
higher frequency than jl(kR) but not enough higher to appreciably alter the estimates unless
rather thick shells are considered. As the computations stand, both for a metallic shell

in water and in air, the closest elementary cavity would seem to be the rigid cavity; not a

pressure release surface. It follows then that the observed ordering of normal modes ought



dj (kr)
to correspond to the zeros of Wﬂm rather than of j !Z(kr); at least for the first several

modes. Since the spherical shell indeed is not perfectly rigid, the particle velocity viewed
from the inside is not precisely zero at r = R - A but will have fallen to a small value. In
this sense, the mode behavior at low-frequencies and / or low-order modes resembles that
for a rigid spherical cavity of slightly larger radius.

On the basis of the above picture of modal distribution for the low-order modes,
if one does not perform a point measurement precisely at the center of the shell, he should
first encounter a peak due to the first-order term, next the second-order term and then one
due to the zeroth-order term; the order of derivative zeros in Fig. 6 neglecting the one from
jo(kr) at zero frequency. Such an ordering agrees completely with the experimental results
obtained in air. It probably should be expected for a shell in water also when a sufficiently
good experimental measurement is obtained. Likely the magnitude of the intensity variations
to be observed in water will be relatively small. Presumably, even a lucite shell in water
should behave more like a rigid cavity than like a pressure-release surface but this
speculation needs confirmation from additional computations and / or experiments. It
would appear to be theoretically possible to select parameters for a "shell material in
water which would be pressure-release like in the ordering of normal modes in the interior
space. It might even be possible to fabricate an experimental shell exhibiting such behavior
from perhaps foamed rubber or foamed plastic for example.

The extended numerical evaluations lead to an understanding which correlates
closely with physical intuition. Recall that the low-frequency approximation of A(I)II
(Eq. 3a) is essentially a stiffness- dependent coefficient since it did not contain density terms.
At extremely low frequencies, stiffness must predominate and the analysis confirms this.
However, before any significant frequency variation is encountered, density reappears as
a significant parameter for all realistic measurements inside the spherical enclosure. Only
a point measurement performed precisely at the center of the shell can preserve a zeroth-
order term preponderance and thereby isolate density from the Lamé constants of the
material. Under more normal circumstances, the acoustical attenuation of a shell is
related to the mutual effects of the several material parameters.

Limited consideration was given to the question of whether Eq. 1 at high fre-

quencies yielded the same predictions as Eq. 6. By considering the form of the asymptotic
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expressions for the spherical Bessel functions of large argument, one can almost see some-

thing closely related to Eq. 6 emerging. However, no completely satisfactory mathematic

equivalence was obtained during the time devoted to this consideration. Physically, for a
large enough shell and high enough frequency, an interpretable correspondence must exist.
A different point arises at low frequencies. The layered- media concept as
embodied in Eq. 6 is often assumed as a first approximation even at low frequencies. In
the case of a closed spherical shell, enough is known to be certain that Eq. 6 is not an even
remotely appropriate expression. When it was thought that AgI embodied all of the
essential low-frequency behavior, the different parametrical dependence was very marked
indeed. Now that it is realized that density enters prominently and at relatively low fre-
quencies also by way of Ain, the situation is not quite as clear cut. One might guess that
the combined effects of the A{)H and Ain coefficients do not yield the same dependence as
predicted by Eq. 6 but just how strongly they disagree and to how high a frequency one must

go to obtain essential agreement remains an open question.
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5. SUMMARY AND RECOMMENDATIONS

The investigation of sound transmission through spherical shells originally
reported in Refs. 4 and 5 (and condensed for the open literature, Ref. 3) has been extended
with numerical analysis and experimental studies both in air and in water. The theoretical
investigation had indicated that at low frequencies a considerably different relationship held
between a shell's material parameters and its acoustical attenuation than would be expected
on the basis of characteristic impedances and the usual layered-media considerations. The
exact analytical relationships for a spherical shell are complicated, but at low frequencies
and near the center of a shell, considerable simplification can be invoked.

The original analysis indicated that at the center of a shell and at low enough
frequencies, the zeroth-order solution alone was sufficient. Mathematically, this is
correct but further investigation has demonstrated that the conditions necessary for the
zeroth-order solution to predominate are much more restrictive than thought initially. Thus
for practical shell structures, even under laboratory conditions, pure zeroth-order behavior
is almost impossible to achieve. This result has been demonstrated both analytically and
experimentally.

Thus, for practical shell structures both in air and in water, account must
generally be taken of at least the zeroth-order and the first-order terms and possibly in
some cases of even higher-order terms. That this is true derives from a combination of
two considerations. For real shell materials, particularly metals, the first-order coeffi-
cient at low frequencies is numerically much larger than the zeroth-order coefficient. In
addition, the radial dependence of the first-order solution, namely jl(kr), approaches zero

for small values of argument comparatively slowly and hence it can not easily suppress its
numerically large coefficient. Terms of second- and higher-orders appear to be sufficiently
suppressed to be disregarded in low-frequency investigations although more work is needed to
clearly establish the limitations. Obviously, at high frequencies the spherical shell model
should yield results in agreement with the usual layered media predictions but this too
remains to be demons trated formally.
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In addition to purely mathematical considerations, the finite dimensions of
practical microphones or hydrophones placed inside a spherical shell seem to distort the
internal acoustical field. Thus the suppression of first- and higher-order terms near the
center of a shell expected on a mathematical basis is not achieved. It would appear that
only a remote measurement of the internal sound pressure field, say by optical means
through a transparent shell, could achieve the analytically predicted results. In practical
applications of a spherical shell such as in a sonar dome, the large hydrophone structure
would undoubtedly cause more extreme divergence from the analytical behavior than for the
laboratory experiments reported here.

Laboratory experiments with small spherical shells immersed in air exhibit a
normal mode sequence closely resembling the normal modes for a rigid air-filled spherical
cavity of the same dimensions. The lowest-frequency mode corresponds to the first, not
the zeroth-, order solution and falls at an argument value of about 2.1. The third lowest
mode is the first one attributable to the zeroth-order solution. At frequencies well below the
lowest mode, the attenuation caused by a thin spherical shell is very large although prac-
tically not as large as would be expected from a consideration of ABH alone. It is possible,
however, to achieve 55 db attenuation below 1000 Hz through 0. 014-inch thick copper in the
form of a six-inch diameter shell. Thus the spherical shell constitutes one approach to
creating a very quiet space with a light-weight stiff structure if one is content to operate
below the first cavity-mode frequency. At the mode frequencies themselves, such a shell
exhibits little attenuation, at least when the interior is devoid of acoustical absorption. The
observed low-frequency attenuation is so large that small air leaks or acoustical shorts
cause large changes and any sizable leak converts the shell into a Helmholtz resonator.

The case of different fluids inside and outside of a shell was not treated
explicitly in the original analysis although it can be accommodated with some additional
algebraic complexity. Several experiments in this configuration were performed in the
laboratory using water-filled shells in an airborne sound field. A thin acetate-plastic shell
acted as a pressure-release surface bounding a spherical body of water. In this situation,

the observed internal modes followed the mathematical ordering of the spherical Bessel

functions, the lowest frequency mode corresponding to the zeroth-order term, etc.

Experiments in air with a water filled pyrex-glass flask were used to investigate
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the effects of bubbles in the enclosed space. The absence of bubbles is accompanied by a
multitude of small peaks lying below the lowest cavity mode encountered. The detailed origin
of these peaks is unresolved. Water-filled metallic shells tested in air gave similar results
in as much as similar small peaks were most evident when presumably bubble-free conditions
existed on the interior of the shell.

Experiments with metallic shells immersed in water were more valuable in
clarifying general interpretation than providing specific validation of the analysis. The
anechoic frequency range of the laboratory tank was too narrow to encompass the lowest-
frequency modes of the experimental shells and residual standing-wave effects made de-
tailed quantitative analysis difficult.

Even small clearances between a shell and the penetrating hydrophone stem result
in pronounced Helmholtz resonator action in water. This result indicates that the shell is
stiff enough to constitute a water-filled cavity. The spherical-shell behavior when immersed
in water appears very dependent upon exact spherical geometry in as much as deliberately
denting a copper shell introduced some pronounced excursions at frequencies well below
the lowest spherical-cavity mode.

The measurements, in the laboratory, on metallic and plastic shells immersed
in water confirm the analytical predictions with respect to the general magnitude of low-
frequency attenuation. They also confirm the need for simultaneous differential measurements
if accurate comparisons are to be made between theory and experiment.

Further numerical analysis has clarified the nature of the low-frequency atten-
uation through a spherical shell. Both in air and in water, a metallic shell behaves more
like a rigid cavity than a soft pressure-release surface. Dominance of the zeroth-order
coefficient can only be maintained very close to the center of the shell and at very low fre-
quencies (actually, at very small values of argument). The first-order coefficient for
metallic shells is larger at low frequencies than the zeroth-order coefficient and it is
difficult to suppress simply by working at small values of argument. Even under laboratory
conditions, it is usual to observe effects due to the first-order term. Furthermore, the
first-order coefficient shows interesting frequency behavior at lower frequencies than the
zeroth-order term.

A computer program was developed which supplies all of the coefficients for the
spherical shell problem up through several mathematical orders. So far, it has been used
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only to provide predictions for two experimental shells. but it appears capable of facilitating

a much more thorough and extensive investigation.

Additional effort will be needed to complete the problem. The analysis of an
immersed spherical shell has introduced an important and complicated problem with over-
tones of pure acoustical physics and practical acoustical engineering. In addition to acous-
tical impedance considerations of sound transmission through layer ed media (implicit
but obscured by the algebraic complexity attending the spherical geometry) there are included
the modal behavior characteristic of a spherical cavity and the vibrational behavior charac-
teristic of a spherical shell. As yet, these physically important limiting cases have not been
clearly demonstrated analytically.

A satisfactory computer program for direct solution of the set of six simultaneous
partial differential equations appears to have been achieved. Separate identities for the
exterior and interior fluids were maintained but this feature has not yet been utilized in the
printout. A thorough investigation of the range of applicability of the program is needed
before attempting to fully exploit it. The output for very small values of argument is known
to become incorrect due to truncation errors and special computational procedures would be
needed to approach a zero-value argument in the limit. This deficiency for very small
argument is not of serious import however because appropriate algebraic expressions exist
I

11
for A0 and A1

small argument.

and they can be used to identify divergence of the computer output at

It remains crucial, however, to determine how the program functions at rela-
tively large values of argument and for high-order terms. There are suspicions that
truncation errors may cause trouble in these cases also but so far no clear or independent
check has been applied.

After the range of applicability has been determined (and extended by revised
procedures if found wanting) we will be in a position to explore a variety of important
questions numerically, It should not be difficult to extend the program to provide specific
values, order by order, for specific field points both inside and outside the shell or to take
the ratio of these as might be needed for comparison with specific experimental data.
Likewise it should be possible to sum over as many orders as necessary to achieve adequate

precision in an answer. (At high frequencies, convergence becomes slow but Hickling,
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Ref. 7 has worked to relatively high orders with the scattered field without encountering
serious limitations. ) Also it should be possible to include the angular variation to
accommodate either the directionality attendant to plane-wave situations or to integrate

with respect to angle for diffuse-field situations.

Therefore, one should be able to investigate numerically all of the interesting
cases of varying the parameters of the spherical shell problem at low and medium fre-
quencies. And it is at low and medium frequencies where the spherical-shell problem
promises the most new infor mation.

The parameters for real materials and representative shell dimensions can be
entered in an extension of the approach used by Miss Stern in Ref. 5. However, at this
stage, it might be more informative to depart from the parameter values representing real
materials and to increment parameter values to clearly display the role of each independently

An important extension of the problem would be the use of different fluids inside
and outside of a shell. There might be significant advantages to certain combinations. In
geometrical optical problems one usually deals with the short-wavelength approximations
while the present spherical shell problem is more closely identified with a long-wavelength

approximation. Nevertheless, in optics, the sensitivity gain for an immersed detector is
well-known and there may be equivalent acoustical advantages. Likewise in optics, there
are considerations such as the spherical aberration introduced by a dome, the optical
power of a dome, the use of quarter-wave layers to reduce reflection losses, etc. Some-
what weaker but nevertheless significant acoustical effects may appear now that we are in

a position to make the requisite calculations. Even if significant effects fail to materialize
at the lowest frequencies, something ought to begin to appear at medium frequencies. After
all, acoustic lens effects become evident when an aperture is only a few wavelengths across
and sonar dome spoking occurs where diffraction effects would ordinarily be considered
negligible.

Additional unguided experiments with spherical shells would seem to be of small
value at this stage. Much of what has been learned in the present research has been due to
interaction between theory and experiment. However, we are now in a position to accom-
plish a more detailed analysis than previously and new experiments guided by such analysis

would be most appropriate. The complete interior acoustical field should be predicted for
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specific shells up through several mathematical orders along with the corresponding field
at the location of an external monitor transducer. The appropriate experimental data
can then be collected with essentially complete a priori knowledge of what to expect if the
experiment proceeds properly and also an idea of the form of probable deviations.

The use of larger ratio of shell radius to transducer radius would aid in

oI
observing pure AO behavior. However, even then one can probably only observe the

lowest-frequency horizontal portion of A{)H, that is, the limiting low-frequency magnitude.
Interesting frequency behavior would almost certainly involve contributions from several
orders.

The present experiments indicate that the entire interior transducer bulk ought
to be centrally located. The microphone's preamplifier or the hydrophone's stem distort
the acoustic field within a shell causing a loss of suppression of the higher-order terms. In
order to minimize this effect, the transducer's bulk ought to be small and roughly sperical
in shape with only a thin flexible cable communicating to the outside. Most transducers do
not conform very closely to such criteria. Some ceramic hydrophone elements have been
produced recently in the form of a sphere about one-inch or less in diameter. One of these
might be adapted to a spherical shell of say 25-inch radius to produce an experimental shell
model conforming closely to the analytical model. In the case of microphones, commercially-
available research systems are quite far removed from the ideal configuration. Possibly
an ordinary condenser microphone button might be operated with a field-effect transistor as
preamplifier to yield a better packaging. The alternative both in air and in water would be
to use a shell sufficiently large so that whatever the transducer's bulk, it was still very
small with respect to the shell.

The problem of inserting a transducer into a spherical shell so that the essential
aspects of the analytical model are preserved suggests an alternative approach to sonar
archetype studies; the more so considering the large physical bulk of sonar transducers
compared to the internal volume of a sonar dome. A more realistic model for analysis
would be the one shown in Fig. 24. A concentric spherical transducer has been placed
inside the spherical shell. Since a completely spherical geometry has been maintained, this
model should be tractable to analysis in closed mathematical form just as the spherical

shell was. (Other geometries will not permit such a complete solution.) The increased
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complexity of the new model enters an additional spherical surface on which boundary condi-
tions must be satisfied. This will increase the complexity of the coefficients, but the new
complexity is simply algebraic, not fundamental.

In the case of the new model, the spherical transducer would presumably have
solid-like material properties. Likewise, one would solve for the acoustical pressure on
the surface of the transducer. The transducer's radius could be of arbitrary magnitude as
long as it was smaller than the inner radius of the shell. Thus at one stroke, the need for a

point acoustical measurement would be relieved and a realistic transducer bulk introduced.

It would have been foolhardy to attempt the analysis of such a complicated model initially,
but the analytical success achieved with the spherical shell model is reassuring.

In summary, the recommendations for future research are to exploit the computer
solution for the spherical-shell problem with appropriate comfirmatory experiments in air,
water, and mixed fluids. Then a more complicated model of a spherical transducer sur-
rounded by an immersed spherical shell ought to be analyzed. These investigations are to
be accomplished under steady-state conditions. As a final step, it would be desirable to
look at pulse shapes for the internal field in a manner similar to Hickling's work (Ref. 7) on
the scattered field. Since the shell and the enclosed cavity encompass dynamic behavior
characteristics, pulse shapes received inside a shell probably are altered under some

circumstances.
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APPENDIX A

TERMS IN THE COEFFICIENTS

Using the abbreviations x=kR, X; =k R, X, = kR, y = k(R - 4), y; =

kL(R - A), and yT = kT(R - A), the elements of the determinants are given by:
a; =Xy Py
a = xjy(x)
o, = b, Mo/ oy
%y = Xy
g = [Apiglp) = 2ugip(x )] / O+ 20p)
Oy = xpip (xp)
oy = 2[x i} () - iylxp)]
gy = [Aiglyp) = 2ugip(yp)] / O+ 20
oo = ¥y i'lyp)
agy = 2[ypi) () - 1,07p)]
0 =-20(041) X7 [xd) (xp) - (k)]
aq = £(E+1) j (x7)
gy = Xp’jy () + (£+2) (£-1) § (%)
0y = -200041) v 2 [ypdy Gp) - §rp)]

Oy = £(4+1) §,(yp)
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%4

%4

034

yp© ip p) + (£42) (2-1) 4 (3p)
Do) - 2uagy ()] / Oypr2ieg)
x 0y (%)

2[x 0y (xp) - ny(x; )]

[Agny 7)) = 2ugny ()] / gy + 20p)
ypnp (vq)

2[y nj (yp) - nyyg)]
-20(0+1)x 2 [xpn) (xp) - ny(x7)]

£2(£+1) nﬂ(xT)

Xp 0 (xp) + (£+2) (£-1) n(x )

- 20(2+1) yT'z[yTn}z (yp) - np(yp)]
2(8+1) 0y (yp)

yp ny (yp) + (£+2) (1) ny(yp)

igWey / Py

yiy (v)
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APPENDIX B
CORRELATION WITH HICKLING'S COEFFICIENT

Hickling (Ref. 7), in his work with the scattered field from a spherical shell,
used an analysis which was similar to that of Goodman and Stern (Ref. 3). However, the
elements in Hickling's determinants were arranged and numbered differently as best suited
his purposes. Hickling defined a coefficient, Fn’ which fulfilled a role rather similar to
AI used by Goodman and Stern. In Ref. 7, Hickling presented tables of some typical
numerical values of his Fn‘ In order to compare out computer program's output with
Hickling's for the external scattered field, the following identification was found to hold.

It is expressed in the nomenclature of Goodman and Stern and of this report:

1 21 Fp-2

0 ayy Fy-ay
. Pr .,
$okR) 5 By - KRi(R)
h(kR) o F, - KRhy(kR)

Thus by running our program for a set of shell dimensions and material para-
. I .
meters used by Hickling and requiring our program to print out A0 along with the corres-

ponding values of j 0(kR) (kR), nO(kR), and n!(kR) which were produced to evaluate the

i1
’ ]0 0
aij’ we could form a comparison value of Ag from Hickling's numerical value of FO.

These two values of Ag agreed within about two percent.
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APPENDIX C

MATERIAL PARAMETERS

Material Lamé€ Constants Density
A 7 P

N/ m® N/m? kg/ m®
Air 0. 154E 06 0 0.129E 01
Sea water 0. 230E 10 0 0.102E 04
Steel 0.113E 12 0.757E 11 0. 770E 04
Aluminum 0.610E 11 0. 250E 11 0. 270E 04
Brass 0.113E 12 0. 380E 11 0. 853E 04
Copper 0.131E 12 0. 460E 11 0. 889E 04
Lucite 0.562E 10 0.143E 10 0.118E 04
Polyester-glass 0. 214E 11 0. 140E 09 0. 180E 04
Pyrex glass 0. 230E 11 0. 250E 11 0. 232E 04

Values obtained principally from Ref. 13.
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