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Using the DGS representation and the scaling phenomena we suggeat that the nature of the scale breaking
term of YWy in inelastic e-p scattering, shoul be of the form Gz(w)Mz/QZ. Using Regge theory it is then pre-
dicted that Gg{(w) would be a constant for large w, and is estimated to be approximately -0.06. These pre-
dictions, in particular the constancy of the slopes for v Wy versus 1/Q2 plots for large w (w > 8), compare
very well with the recent experimental data, Similar results for W1(¥ @ 2) are also discussed.

The SLAC-MIT data [1] on inelastic e-p
scattering has revealed some scale breaking
effects for the structure function sz(u,Qz). It
is found that vWg increases with the increase of
Q 2 for a fixed large w (w >8). The nature of the
Q2 - dependence of the structure functions (as
revealed in fig. 17 of ref. [1]), indicates a very
similar characteristic for all large w, sugges-
ting thereby an underlying simple structure for
the scale breaking term. In this paper we de-
monstrate how this can be understood simply
from a Deser-Gilbert Sudarshan [2] (DGS) re-
presentation of the forward virtual Compton
scattering amplitude, supplemented with scaling
and Regge behaviour,

The electroproduction structure functions [3]
Wol v,QZ) and W1(v,Q“) are given by the absorp-
tive part of the forward virtual Compton scat-
tering from an unpolarized target. Therefore,
since the DGS representation * decribes a causal
matrix element of two currents between states
having the same four-momentum, it is very
suitable [4-6] for studying these inelastic struc-
ture functions. We begin by writing a DGS re-
presentation for the structure function W2( V,Qz)
in the following form

* The DGS representation can be obtained from the
following form of the Jost-Lehmann (LJ) represen~
tation

F(qo, q)=f d'3y f dt2 W (¢, Aq-Uu, t) .
u2 < p2 0

Although this representation is a specialization
of the JL representation, it has been shown by
Nakanishi to hold in every order of perturbation
theory.
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o0 1
Wa(r,Q%) =@ [ ar [ dBoa(,B)
0 -1

x 6 (2MBr+M282 Q2 -x) . (1)

Here we have omitted an ¢ (My+ BMZ) factor
since we are interested in results for large v
(v > M), and we have included the Q2 factor to
ensure the kinematic constraint that as @2 goes
to zero

vWy — (4n2a)"1 @20, (v), (2)
Q%0

where o, is the total photo-absorption cross-
section for proton.

It is reasonable with the DGS formalism to
assume that the spectral function og(}, 8) falls
off rapidly as A increases. Then, noting that the
expression inside the §-function can be factorized
and remembering that the limits of the S~integra-
tion lies between 1 and -1, we obtain ** for large v

** The §-function can be written as
6(2BMv +M282-Q2-)) =
F(2+Q2+0)F (6 MB+v-Vv2+Q2 )
+ dMB+v +Jm] .

For large v and @2 and fixed w we can write

V2+@2en =V 124921400 /@Y ] .

Then since large A values are assumed to be
damped out by the spectral function, for first
order correction to scaling , A inside the square
root can be neglected,
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Q%+ @4
aray (2, -y (3
2M7(u +Q%) o f 20 iy s

We see immediately that in order vWy to be
finite in the Bjorken limit (v, Q2 —» with w =
2M1/Q2 fixed) we must have [4]

o

f dr o9 (A, 1/w) =0, (4)
0

for all w. We have therefore to go to higher or-
der terms inf{w)/v. Thus

J1+02/,2 —i 5 1 1
1+Q4/1v4 v Wo B w /21 pt (2 b1

@ MNP
X Ofd)\ (A-—?Z-) op? (A, 1/w) (5)
where
2P,
‘b(l 1/w)~———2—(——’3)— at B=1/w.
5?

Since we are interested in the next-to-scale
breaking term, we keep only the first two terms
in eq. (5) neglecting terms of order 1/@% and
obtain

V1+4Q2/v szz_; Folw)+Gy (w) M2/Q2 , (6)
1]

where ***,
Fo(w) =§fl-wfdnoé *, 1/w) ()
i
and
'(52(w)=4M3 f anlol (\,1/w) +
o 4f d)Ou:rz(A 1/w) . (8)
w

It is expected that the scale breaking term must

be such that it vanishes in the Bjorken limit; but
it was not clear a priori what the functional form
of this term would be. Eq. (6} gives us a simple

1/Q2 form for the breaking term.

*** Here we have omitted terms of the type
dx oP(A,1/w), which barring pathological cases

would vanish by eq. (4).
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For an analysis of the data we now expand
1 +Q2/V and keep only terms up to 1/Q2 and
obtain [7]

VW (v,@2) = Fy(w) + Gy (w) M2/Q2 (9)
where

Go(w) = Ga(w) - (2/w?) Fy(w). (10)
We have plotted in fig. 1 the available experimental
data [1] for VWQ(V,QZ) as a function of 1/§2 for
several fixed values of w. Since rWy is quite
sengitive to the value of R, which is not known
with good accuracy, we have used only the 6°
data where the errors due to uncertain R will

be minimum, We have taken the SLAC-MIT data
analyzed for R = 0,18, The figures show definite
mdxcatzons that the data may fall in straight lines
for @2 > 0.5 (GeV/c)2 %Jrechcted by eq. (9).
Note that vW, increases [8 for a fixed w and
that the data for different w seem to have almost
the same slope. We shall presently show why we
expect this form a theoretical point of view.

We shall first argue that Gg(w) has a weak
dependence on w for at least large values of w.
Our reasoning will essentially be that if vWo
goes to a constant for large w, 02 (x, B} should
have a pole in Bas §— 0, and then cz(h B) will
have a double pole as § — 0, This behaviour
will make Fo{w) and Gz (w) independent of w
for large w. Finally, for large w, 2Fy(w) /w22
can be neglected compared to Fg(w) leadmg to
the result that Go{w) =~ Gg(w (i. e. the slope
of vWy against 1/Q2 plots) be constant and hence
same for all large w,

To obtain more information on Gé( , let us
now study the Regge limit (v~ «, @ f1xed) of the
structure function. Since o3(X, ) falls off for
large A, and eq. (4) must be satisfied we ob-
tain

T That the breaking of scaling phenomena be of this
nature was also predicted from a study of the trans-
verse momentum distributions in the parton model.
In that formalism [7] each parton is given a rea-
listic momentum distribution and hence has a
component of momentum which is orthogonal in a
four~vector sense to the nucleon momentum, This
generated a scale~ breakmg term as a power series
inQ2/v2 = 4M2/9%02, and thus vanishing in the
Biorken limit.

T This was first pointed out in ref. [7] and also in
a phenomenclogical analysis of the data by Gardiner
and Majumdar in ref. [8]..
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Fig. 1. Values of ¥ W2 are piotted against 1/Q2 for several fixed ranges of w. The points are taken from ref, [1]
for 6 = 6° measurements analyzed for R = 0.18,The straight line drawn in all the three figures has the same

slope -0,053.
oc 2 d
Q 1 an
W, (v Q2) - 2 ey
27 R p=1 (2MP+l P o
by S x5 =0 (17)
x [ an? aé’(;\, 2?;}) . any o ’
0 when & is independent of A.

Now, from Regge analysis of the {-channel
process y + ¥~ N + N, one finds [9] that

Wolv, @) TRZ(Q% 22 (12)
and
wilr,@2) = R1(Q%)1 | (13)

where «is the leading Regge-trajectory atf =0
with natural parity and even charge conjugation.
The pomeron with a = 1 would be the leading
trajectory for this process and P' and Ay tra-
jectories both with @~ 1/2 can also contribute.

To achieve the result for pomeron dominance,
as written down in eq. (12), from our spectral
representation eq. (11), we are now led to as-
sume that g (A, 8) has a simple pole at 8 = 0.
This behaviour has the additional advantage of
producing a constant asymptotic behaviour for
Fo{w) for large w. Thus we take

o352, B) =n(\) Inp+7(A) BL -2+ X(X,B) , (14)
where a < 1 and X' (A, B) is the least singular

part of og (A, B) as A~ 0. Eq. (4) then implies
that

[nyax=0, (15)
0
S a=0, (16)
0

274

After obtaining the Regge limit, if we let
Q2 — 0, we obtain from eq. (2)

2 o0
4’2’1; [ axn()ma. (18)
0

cy(v—'w) =

After establishing the behaviour of og(X, B)
as §— 0, we now go back to the Bjorken limit.
The leading contributions are easily obtained
from eqs. (7) and (8)

17 l-a 1 [
Fo(w) = 5orf aaxn()«+ Tnj“wfl'?f AT}
0 0

+ 0 (1/w) (19)

and

o J an2q()

4M30

o0
a(l-a) 1 (4327 (0)+0(1/w? 20
4M3w1'aof (M)+0(1/w2) . (20)
Following experimental indications if we now
accept that the Bjorken limiting value of vWo

i.e. Fo(w) is approximately given by 0.32 (and
this seems to be true for @ >10), then conside-
ring only the leading terms of egs. (19) and (20)
we obtain

Go(w) = -

1

Fol@) ™~ 337

fred
{ axan(x) = 0.32 (21)
0
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and
Colw) ~ -—L%f o). (22)

This shows that as w increases along with Fz(w)
Gz(w) also becomes independent of w.

To obtain some estimates, we now employ
an approximation procedure of saturation at
X =X of the following kind. Let

4r20 1 [
oy(e) m St s [ aann) =
0

)- (23)

Since ¢,,(=) is approximately [10] 108 ub, we
obtain from eqgs. (21) and (22)

X =0.33 (GeV)2 (24)
and

M2Gp(w) ~ - Fg(w) = 0.053 (GeV/c)2. (25)
This is our prediction for the slope”. In figs.
la, 1b and 1¢c we have drawn a straight-line
which has this slope of -0.053, and the data
within errors do seem to fall along this slope.
To test the reasonability of our approximation
we have calculated f dA 77(A) 1n A with the help
of the X approximation and also exactly from
eq. (18) and found that both give approximately
1.8 for this integral. This means that our
approximation of In A for eq. (23) is quite good
and the rough estimate obtained should not
be unreasonable.

Thus froma DGS representation of the virtual
forward Compton amplitude and the concepts
of scaling and Regge behavior we suggest that
the appraoch to scahng in vWo(v, Q2 ) would be
of the type Galw)M /% and that the slope,
of the vWy versus 1/Q% graphs be independent
of w for large w. We have then argued that the
slope be negative and have estimated its value
to be ~ -0.053. All these predictions are well
accommodated by the present experimental data.

Similar analysis can be made for the other

AR we saturate the integral by a §-kind of function,
say (AN =-a 6"’ (A - X), then a reasonable estimate
is obtained for a = 0.45 and A = 0.3 which gives
Fo(w) = 0.24 and Gz(w) =-0,07. Again, if we take
an exponentially decreasing function with only two
parameters say 17(A) = 8 (@X-1) exp (-aA) which
satisfies eq. (15), then also we obtain reasonable
estimates for & = 6 and8 = 12.5 which gives
Fy(w) = 0.2 and G2(w) = -0.06.
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structure function Wy(v, @2). From the kinematical
relation between Wy and Wy we find that in the
Bjorken limit

2MW; ~ Fi(@)+ 1,5 G1() YM2/Q2 (26)
where

Fi(w) =w Fy(w) / (1+R) (28)
and

G 1(w) =Gg(w) + (2/w?) Fa(w) . (29)

From eq. (10) we than obtain a prediction be-
tween the two slopes of vWy and W, namely
Gy(@) - Gy(w) = (4/2) Fy(w) (30)
and hence, as w becomes large, the two slopes,
as defined above, will approach each other,

At present it is not possible to test the de-
tails of the scale invariance breaking of Wy
since several data points for a fixed w are not
available. It has been claimed by Chen {11] that
W1 exhibits small but definite deviations from
scale invariant behaviour, He finds that for R =
0.18, 2MW1 / [@(1+Q2/12)] can be accomo-
dated by a scaling curve in the region for w
from 1.3 to 7.5. This means Gy(w) = 4 Fa(w)/w 2
for this kinematical region. Bloom et al.[1] finds
no scale breaking of vWs for 4 < w < 6, That is
Go(w) = 0 for this region and hence it agrees well
with our prediction eq. (30). For w less than
3.5, it is claimed by Bloom et al.[1] that vW32
decreases with increase of @2. Eq. (30) then
predicts an increase of G1(w) for lower w values.
The verification of this result must await for
detailed data at lower w. Note that for all of our
analysis we have assumed R to be constant, and
a significant deviation from thesezpredlctlons
would lead us to the question of @< -dependence
of R,

Several comments are now in order. First it
should be stressed that the essential ingredient
behind these derivations is the causal represen-
tation of the forward virtual Compton amplitude
and hence similar conclusions can also be de-
rived from the Jost-Lehmann [12] representation.
Then it is natural to expect that the scale breaking
term can also be analyzed from considerations
of operator-product expansion [13] near the light
cone, although the exact nature of the scale
breaking term will depend on the dimensions of
the singularities. After the completion of our
work we came across two preprints [14] which
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made attempts in these directions. These
authors find a similar scale breaking term,

but in their analysis G9(w) derived from the
leading light-cone singularity vanishes as w

goes to infinity, a result in contradiction to the
present analysis. Schnitzer [14] has derived an
additional scale breaking term from the non-
leading light cone singularity of the type 1/(@2)b,
where b is 1 for canonical dimensions only.

In conclusion we may add that our analysis,
although dependent on the particular represen-
tation chosen here, and perhaps not as rigorous
as it should be, are essentially the results of a
causal representation, and hence it would be
very interesting to see how these results compare
with the future experimental data. It goes
without saying that a better experimental deter-
mination of the scale breaking effects for large
w would be very crucial from a theoretical point
of view. Details of this work including higher
order terms and further comparisons with in-
vestigations from other theoretical points of
view will be published elsewhere.

1 would like to thank Professor J. D. Bjorken
for suggesting this investigation and Professor
Y. Tomozawa for many helpful discussions.
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