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Abstract. We show that for any group H (finite or infinite) there exists an independence struc-
ture with automarphism group isomorphic to 4. The proof is by construction and shows that
for any M there is 1 geometric lattice with automoryphism group isomorphic to H.

§ 1 Introduction

We show that for any group H (finite or infinite) there exists an in-
dependence structure with automorphism group isomorphic to H. The
proof is by construction and shows that for any H there is a geometric
lattice with automorphism group isomorphic to H.

An independence structure on a set S is a family T of subsets of §
such that:

(i) Qe1.

(i) IfA€TandBCA,thenBG 1.

(iii) If A€ ] and B€ 1 with|4]| =|B! + 1, there existsa€A—B such

thatBu ay € 1.
(iv) 1 has finite character, that is if X is an infinite subset of § and
every finite subset YC X also belongsto T, then X € 1.

When S is finite, the inderendence structure is a matroid M on S.
The members of T are called independent sets. A base is a maximal
independent set. Another matroidal teminology is that of [4] and apart
from the existence of a dual it car ‘es over to independence structures
in the obvious way.

* Revised version received 21 April 1971; final . .sion received 16 August 1971.
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A permutation ¢ of S preserves incidence provided X € T if and only
if (X) € 1. The automorphism group of an independence structure [
1s the collection of permutations of § which preserve independence, and
will be denoted by A(T), or by A(M) when the structure is a matroid
M.

The graph theory terminology is fairly standard, see [31.

Theorem L. Given any group H there exists an independence structure
1 such that the automorphism group ¢f 1 is isomorphic to H.

From the proof, it will be clear that when the group H is finite, we
can find a matroid M such that the automorphism group of ¥ is iso-
morphic to H.

§ 2. Proof of the main theorem

To prove Theorem 1, we need the following lemmas about infinite
graphs.

A graph G consists of a set V = F(G) (possibly infinitc) of vertices and
a subset £ = E(G) of edges, that is, of unordered pairs |, v] of distinct
vertices. A cycle in G is a finite sequence of edges (v, , vy ] vy v3] .
(a1, 0,1 Ly, vy ] where v; (1 < i< n)are distinct elements of V. If
we let X € £ be a member of M(G) if and only if X does not contain a
cycle, then it is easily seen (Piff [6]) that M(() is an independence
structure on E. In the case where G is finite, 1 (G) is just the cycle
matroid of G see {3]. Let Ap(G) be th:2 point automorphism group of
(7, and let A_(G) be the cycle automorphism group of G. That is, a
permutation 7 of V' is a member of A,(G) provided [v;. v, ] € E(G
it and only if [#(v)). mMv;)] € E(G). A permutation ¢ of E is a member
of A (G} if a subset X is a cycle of G if and only if §(X) is also a cycle
of G.

Lemma 1. 4.(G) = AM(G)).

We omit the proof, which is obvious from the definition.
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Lemma 2. If G is 3-connected, then A l,((i )= A(G).

Proof. In the finite case, the theorem is essentially proved by Whitney
(91;see [S, Theorem 15.4.4.].

Let G be 3-connected and infinite. As in the finite case, call a sub-
set X of E(G) a cocycle of G it it is a minimal disconnecting set of
edges of G. In general. independence structures do not have duals in
the same way as matroids. However, analogous to the finite case, it is
true that X is a cocycle of G if and only if X has a non-null intersection
with every spanning tree of G, that is, with every base of M(G), and X
is minimal with respect to this property. Alternatively, we can prove
that a cocycle of G is the complement in £(G) of some hyperplane (max-
imal proper closed set) of M(G). Now if ¢< A (G), then ¢€ A(M(G)) and
hence ¢ prescrves hyperplanes of MiG). Thus ¢ prescrves cocycles of G.

If v e V(G), let st(v). the s*ar at v, be the set of edges of G incident
with v. Then st(v) is a cocycle of € since G is 3-connected. If

and hence there exists a cycle CC E(G)--stv) such that {e;.e;}C C.
Thus

¢tic;. e3 NC HOVC E--¢(st(uh.

Thus the removal of ¢(st(v)) from E(G) results in a graph G’ in which
any pair of vdges is contained in a cycle and therefore, since also ¢(st(v))
is a cocycle, this can only happen if there exists some vertex v' € V(G)
such that ¢(st(v)) = st(v').

Define the map ¥: F(G) - V(G) by ¥v) = v'. This is clearly a bijec-
tion, and if there exists an edge {v, . v; ]| € E(G), then
S(st(vy N N B(st(vy ) 2 @, hence [W(v)), V(vy)] € E(G) and ¥ € A (G).
It is trivially verified that the map f: A (G) - A,(() defined by f(®) =V
is a group isomorphism. thus completing the proof of Lemma 2.

In [ 8], Sabidussi prcves:

Lemma 3. Given a group H. there exists a graph G such that H is iso-
morphic to A, (G).
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The graph so constructed in [8] is however only l-connected and
Ap(G) #F A0,

Lemma 4. For any positive integer p and finite group H, there exists a
finite p-connected graph G with Ap(GY=H

This is proved in Sabidussi [7].
For the proof of Theorem 1 and Corollary | we need a 3-connected
graph with given group #.

L.emma S. For any positive integer g and group H, there exists an in-
finite p-connected graph G with Ap(G) = H.

Proof. By [8], there exist non-isomorphic 1-connected graphs G,

Gy..... G, such that A (Gy) = Hard A, (G)= ... = A p(G,) = 1. Since
thic G s are 1-connected, they are prime relanve to cartcsmn multiplica-
tion. Henu: vy |7, Lemma 2.3.],G = G, X G, X ... X (5, is p-connected
and by {7, Lemma 2.10.].

A(G)= AG )X AG) X .. X A (G, = H

This is really all that is needed for the proof of Theorem 1!

We can now complete the proof of Theorem 1. By Lemrma $, for any
gmup H there is a 3-connected graph G such that A p(C) = H. By Lemma
2, 4p(G) = A (6), and by Lemma 1, M(G) has automorphmm gmup
zmmorphn to H.

Corollary 1. Given uriv group H there exists an independence structure
1 such that all the Jollowing properties hold:
() A{1)=H,
(11) 1 isageometry,
i) 1 is graphic,
“(iv) 1 is non-separable,
) lisa non-transversal structure.

Proof. The only statement not immediately obvious from the proof of
Theorem 1 is (v). Every 3-connected graph without parallel edges con-
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tains K, as a homeomorph (perhaps this is 2 well-known result). For
suppose G is 3-connected and [v;,v;] is an cdge of G. Let py, p, be
paths joining v; and v, in (- disjoint from {v,, v, 1, and suppose v4 and
vy are intermediate nodes on p, and p,, respectively. Then, since G is
3-connected, there exists a path p; from v, to vy which does not pass
through vy or v,. Let ug be the last vertex of p; N p; and v the follow-
ing vertex of py 0 py. Put py equal to the section of py joining vg and
Vg. The the subgraph consisting of [v;, v, 1, p;. p, and p, is a home-
omorph of l&;"

Taking a 3-connected graph G with A,(G) = H, we see that G con-
tains K4 as a homcomorph, hence. by a recent result vaf Bondy 2],

M(G)Y is not transversal. /’

From (ii) and the correspondence between geometries and geometric
lattices (semimodular, relatively complemented, atomic, and of finite
length), we have:

Corollary 2. Given any group H, there exists a geometric lattice with
automorphism group isomorphic to H.

This result neither implies nor is implied by the theorem of Birkhoff
[ 1] who shows the existence of a distributive lattice wuh arbitrary auto-
morphism group.

§ 3. The infinite version of Lemma 5

The strong infinite version of Lemma § is of independent interest and
is now demonstrated.

Theorem 2. For any cardinal p > 0 and infinite group H, there exists
un infinite p-connected graph G with A (G) = H.

Procf. Let G, and G, be edge- and vertex-disjoint, 1-connected graphs
such that A, (G,) = H and A (G),) is the identity group, and such that
V(G ) > p, IVIG)l is infinite. Let V(G) =V, = {v;: i€ ]} and
V(Gy) =V, ={y:je N Let V= {v; i€l jeJ} be aset disjoint from
V, and V,. Let G’ be a graph with vertex set V', U ¥, U ¥, such ihat
G'~-(Viu¥)=G,, G'-(V,Uu¥)=G,. Also foreach i€, j€J, let
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there be edges in G' joining v; tov; and v;. Thus in G', ifve V, LU V),
then v has degree strictly greater than p, and if v€ V, then v has degree
Let u, v denote two arbitrary vertices of G'. If {u, v} C V| orif
{u, v} T V,, there exist at least p vertex-disjoint path: from u to v in
G'.Ifue V., ve ¥,. we find p vertex-disjoint paths in G’ from u to
v as follows. There is one path of length 2. There are p—1 paths of
length 2 from u into ¥ —v, followed by p—1 disjoint paths returning
from ¥, v to ¥y—u. 2nd finally p—1 paths irom ¥, ~u tov.
‘Since Ay(G,) = ¥ and i is infinite, |V, = = and since V is infinite
and > p, we can parrition V, into disjoint (p--1)-subsets, say
(Ag: ke Ky Foreach ke Kanduy € V), if Ay =y i€ i}, we form
the complete graph with vertex set v,, i€ I, 3. Denote this graph by
Gk, jg). Nowlet G= G'ulU, kg Gk, la)- We claim that G is g-connect-
ed and A () = H. There are several cases to consider. We list in each
case p disjoint paths connecting two arbitrary vertices « and v, and
throughout this listing will often refer to “paths™ when we mean “col-
lection of vertex-disjoint paths”.

Case 1. There exist k. 1, such that {u. v} C G(k. jy). 1t is trivial that
g disjoint paths «xist,

Case 2. u€ Glky, jy), vE G(ky, jy), where ky # k.. There is a path
(u, Yy vYand p--1 additional paths obtained by com;ectmg p 1 paths
from & (7 A 1o the p--1 faths of length 4 from Ak, 1o Ay, and then
connecting the p--1 paths from Akz tov.

Case 3. u< Gk, j,). veE G(X, j;). There are p—1 paths from u to ..
and p—1 paths from A, to v. There is a further disjoint path from « to
v through Yo and vy, -

Case 4. u€ Gk, jy ), v s G(ky, jy), where ky # ky, jy # j,. There is
one path P, from A; , to Ay ) which only inizrsects A, and £ atits
endpoints and otherwise lies in G, . Lettingu;, v; be tl**e endpomn of
Pwetave apathu uy, P vy, v Vow consider the p--2 paths of length
4 from Ay, -ty 10 Ay, vy which pass through Vy v —v;, . These can
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be extended to paths from « to v. Finally, it is easy to see that there is

a path Q of length 4 from v;, tovj, such that NP = QﬂAkl =QnN Ak?_ =
Q. The path u Yj, Qu;, v is a path disjoint from the p —1 previously con-
structed.

Case 5. us G(k. Jo)hu= Vi In this case, p- 1 disjoint paths are im-
mediately obvious. The last is obtained by taking the edge from u to
A, followed by a path in | to a vertex outside A, and then a path of
length 2 to v, b =V .

Case 6. u€ Gk, jy), v = v, - Iy # Jg. There exist p- 1 disjoint paths
from u through G(&, j,) to 4, To these connect the p—1 disjoint paths
from A, through G{k, j;) to v, =v. Also there is a path disjoint from
these of the form v, Q where Q is a path from v, tou; contained
in ;.

Case 7. u€ Gk, jy), vE€ 4, There is a path of length at most 2 from
u tov. There is a second from u to v, 1oy, Uy # jg) and then two
further edges across to v. The remaining p—2 paths are obtain.d by
travelling along p - paths through G(k, jy) to A, . then across to p--2
distinct points in G, ~Uy, Y s followed by p-2 paths to v.

Case B. u€ G(k. j;), v€ G, A, . This is very similar to case 7 and
clear from a diagram.

As these eight cases are exhaustive, this completes the proof that
G is p-connected. Now consider any ¢ € A, (G). Clearly ¢ must map V
onto itself from vertex degree arguments. Consider G-V and ¢' = ¢
restricted to G~ V. Then ¢’ must be an automorphism of G— V. Since

and ¢'(V;) = V. Hence since A, (Gy) is the identity group, ¢’ and
thus ¢ restricted to G, must be the identitiy; therefore ¢ is uniquely
determined by its effect on (5. That is, A,(G) = A,((5 ) = H. which
proves the theorem.



1) F. Harary et al., On the automorphism group of a matroid

§ 4. Further results
A trivial but useful result is the following:
Theorem 3. For any matroid M on S and its dual =%, 4(M ;*) = A(M).
Proof. Obvious since the dual is unique.

Theorem 4. A matroid M on a set of cardinality n has S,, as its auto-
morphism group if and only if M has as bases every *-subset of S for
some kK, V K K< n e is k-uniform,

Proof. Let A(M) =S, Let M have rank 7. Take any base B. For any
r-set X € S, there exists 7 € A(4) such that #(B) = X. Hence every r-set
in $ must be independent.

Thecrem 5. An independence structure 1 on an infinite set S has the
Jull permuiation group as its automorphism group if and only if either
(a) it is k-uniiform for some finite k or {b) it is the trivial structure in
which cvery subset of S is independent,

The proof is very similar to that of Theorem 4 and will be omitted.

Theorem 6. There is no matroid on a sct of n elements with auto-
morphism group equal to the alternating group A, forany n 2 3.

Proof. Let nn > 3. 1t is well-known that A, is (n- 2)-plv transitive. Hence
suppose A(M)= A, and M has rank r < n- 2. Then every r-subset of §

is independent and hence A(M) = S,,. If M has rank > n-2, then M* has
rank < 71- 2 and so A(M*) = §,,, whence by Theorem 3, A(M)=5,,.

An interesting application of the above theory is as follows. Consider
the 3-dimensional Desargues configuration. Regarded as a matroid with
independence induced by projective independence, it has rank 4 on 2
set of 10 elements and is easily seen to be the same matroid as the cycle
matroid of K. Hence its automorphism group is the same as the auto-
morphism group of MtK5). Also since K is 3-connected,
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AM(K)) = A (Kg) = Sy, and we sce that the Desargues configura-
tion has automorphism group isomorphic to S5.
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